Relative Telomere Length Change in Colorectal Carcinoma and Its Association with Tumor Characteristics, Gene Expression and Microsatellite Instability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA and RNA Extraction and Quality Control
2.2. Relative Telomere Length (RTL) Measurement
3. Results
Gene Expression of Telomere-Related Genes
- Telomere maintenance genes: Among the patients with telomere shortening, gene set ANOVA analysis suggested that the “telomere maintenance” group of genes was, on average, 1.26-fold (95% CI 1.23–1.29) overexpressed in tumor tissue compared to corresponding normal colon tissue (p = 1.06 × 10−68). (Figure 4A). Even among patients without telomere shortening, these telomere maintenance genes were also overexpressed in tumor tissue compared to corresponding normal colon tissue, but by 1.17-fold (95% CI 1.13–1.1.22, p = 2.24 × 10−17) (Figure 4B). This difference in magnitude of overexpression was significantly higher in patients with “telomere shortening” (“tissue × TEL-shortening” interaction, p = 0.002). In other words, on average, the telomere maintenance genes were overexpressed in tumor tissue compared to paired normal colonic tissue, irrespective of the presence or absence of telomere shortening; however, the magnitude of overexpression was significantly higher if the patient had telomere shortening compared to those without telomere shortening.
- 2.
- Alternative Lengthening of Telomere genes: A list of genes is shown in Table S2. Although statistically significant, the overall overexpression of this group of genes was only 1.03-fold (95% CI 1.01–1.05, p = 0.0012) in CRC tissue compared to normal tissue in patients with telomere shortening (see Figure S3A). Similar analysis for the same genes in patients with no telomere shortening did not show any statistically significant differential expression (fold change =1.03 (95% CI −1.004 to 1.06, p = 0.089)) in CRC compared to normal tissue (Figure S3B).
- 3.
- Non-canonical Telomere maintenance genes: A list of genes is shown in Table S2. These genes were, on average, 1.03-fold (95% CI 1.01–1.05, p = 0.0022) overexpressed in tumor tissue compared to corresponding normal colon tissue in patients with “telomere shortening” (see Figure S4A). Similar analysis showed that these genes were also overexpressed to a similar extent by 1.03-fold (95% CI 1.01–1.06, p = 0.0052) in tumor tissue compared to corresponding normal colon tissue (see Figure S4B) in patients without telomere shortening. In other words, there was no difference in differential expression of this group of genes in the presence or absence of telomere shortening (interaction, p = 0.76).
- 4.
- Shelterin–telomere protein-related genes: These genes were not differentially expressed in CRC compared to normal colon tissue in patients with “telomere shortening” (p = 0.19, Figure S5A). In patients with no telomere shortening, the fold change was minimal −1.03 (95% CI −1.001 to −1.06, p = 0.041, see Figure S5B).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackburn, E.H. Structure and function of telomeres. Nature 1991, 350, 569–573. [Google Scholar] [CrossRef] [PubMed]
- De Lange, T. Shelterin-Mediated Telomere Protection. Annu. Rev. Genet. 2018, 52, 223–247. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, R.J.; Karlseder, J. Telomeres: Protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 2010, 11, 171–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Rozadilla, C.; Kartsonaki, C.; Woolley, C.; McClellan, M.; Whittington, D.; Horgan, G.; Leedham, S.; Kriaucionis, S.; East, J.; Tomlinson, I. Telomere length and genetics are independent colorectal tumour risk factors in an evaluation of biomarkers in normal bowel. Br. J. Cancer 2018, 118, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Peacock, S.D.; Massey, T.E.; Vanner, S.J.; King, W.D. Telomere length in the colon is related to colorectal adenoma prevalence. PLoS ONE 2018, 13, e0205697. [Google Scholar] [CrossRef]
- Kroupa, M.; Rachakonda, S.K.; Liska, V.; Srinivas, N.; Urbanova, M.; Jiraskova, K.; Schneiderova, M.; Vycital, O.; Vymetalkova, V.; Vodickova, L.; et al. Relationship of telomere length in colorectal cancer patients with cancer phenotype and patient prognosis. Br. J. Cancer 2019, 121, 344–350. [Google Scholar] [CrossRef]
- Lopez-Doriga, A.; Valle, L.; Alonso, M.H.; Aussó, S.; Closa, A.; Sanjuan, X.; Barquero, D.; Rodríguez-Moranta, F.; Sanz-Pamplona, R.; Moreno, V. Telomere length alterations in microsatellite stable colorectal cancer and association with the immune response. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2992–3000. [Google Scholar] [CrossRef]
- Nakamura, K.; Furugori, E.; Esaki, Y.; Arai, T.; Sawabe, M.; Okayasu, I.; Fujiwara, M.; Kammori, M.; Mafune, K.; Kato, M.; et al. Correlation of telomere lengths in normal and cancers tissue in the large bowel. Cancer Lett. 2000, 158, 179–184. [Google Scholar] [CrossRef]
- Rampazzo, E.; Bertorelle, R.; Serra, L.; Terrin, L.; Candiotto, C.; Pucciarelli, S.; Del Bianco, P.; Nitti, D.; De Rossi, A. Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. Br. J. Cancer 2010, 102, 1300–1305. [Google Scholar] [CrossRef] [Green Version]
- Katayama, S.; Shiota, G.; Oshimura, M.; Kawasaki, H. Clinical usefulness of telomerase activity and telomere length in the preoperative diagnosis of gastric and colorectal cancer. J. Cancer Res. Clin. Oncol. 1999, 125, 405–410. [Google Scholar] [CrossRef]
- Palm, W.; de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 2008, 42, 301–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shay, J.W.; Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 1997, 33, 787–791. [Google Scholar] [CrossRef]
- Nakamura, T.M.; Morin, G.B.; Chapman, K.B.; Weinrich, S.L.; Andrews, W.H.; Lingner, J.; Harley, C.B.; Cech, T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997, 277, 955–959. [Google Scholar] [CrossRef]
- Monteagudo, M.; Martínez, P.; Leandro-García, L.J.; Martínez-Montes, Á.M.; Calsina, B.; Pulgarín-Alfaro, M.; Díaz-Talavera, A.; Mellid, S.; Letón, R.; Gil, E.; et al. Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers 2021, 13, 4758. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.R. Tumours of the colon and rectum. In World Health Organization Classification of Tumours-Pathology and Genetics of Tumours of the Digestive System; International Agency for Research on Cancer (IARC): Lyon, France, 2000. [Google Scholar]
- Kibriya, M.G.; Jasmine, F.; Roy, S.; Ahsan, H.; Pierce, B. Measurement of telomere length: A new assay using QuantiGene chemistry on a Luminex platform. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2667–2672. [Google Scholar] [CrossRef] [Green Version]
- Jasmine, F.; Shinkle, J.; Sabarinathan, M.; Ahsan, H.; Pierce, B.L.; Kibriya, M.G. A novel pooled-sample multiplex luminex assay for high-throughput measurement of relative telomere length. Am. J. Hum. Biol. 2018, 30, e23118. [Google Scholar] [CrossRef]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef]
- Jasmine, F.; Haq, Z.; Kamal, M.; Raza, M.; da Silva, G.; Gorospe, K.; Paul, R.; Strzempek, P.; Ahsan, H.; Kibriya, M.G. Interaction between Microsatellite Instability (MSI) and Tumor DNA Methylation in the Pathogenesis of Colorectal Carcinoma. Cancers 2021, 13, 4956. [Google Scholar] [CrossRef]
- Barthel, F.P.; Wei, W.; Tang, M.; Martinez-Ledesma, E.; Hu, X.; Amin, S.B.; Akdemir, K.C.; Seth, S.; Song, X.; Wang, Q.; et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 2017, 49, 349–357. [Google Scholar] [CrossRef]
- Sieverling, L.; Hong, C.; Koser, S.D.; Ginsbach, P.; Kleinheinz, K.; Hutter, B.; Braun, D.M.; Cortés-Ciriano, I.; Xi, R.; Kabbe, R.; et al. Genomic footprints of activated telomere maintenance mechanisms in cancer. Nat. Commun. 2020, 11, 733. [Google Scholar] [CrossRef] [Green Version]
- Maciejowski, J.; de Lange, T. Telomeres in cancer: Tumour suppression and genome instability. Nat. Rev. Mol. Cell Biol. 2017, 18, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmutz, I.; Mensenkamp, A.R.; Takai, K.K.; Haadsma, M.; Spruijt, L.; de Voer, R.M.; Choo, S.S.; Lorbeer, F.K.; van Grinsven, E.J.; Hockemeyer, D.; et al. TINF2 is a haploinsufficient tumor suppressor that limits telomere length. eLife 2020, 9, e61235. [Google Scholar] [CrossRef] [PubMed]
- Günes, C.; Rudolph, K.L. Telomere dysfunction puts the brakes on oncogene-induced cancers. EMBO J. 2012, 31, 2833–2834. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.N.; Qi, M.; Wang, R.; Adams-Haduch, J.; Miljkovic, I.; Opresko, P.L.; Jin, A.; Koh, W.P.; Yuan, J.M. Association Between Leukocyte Telomere Length and Colorectal Cancer Risk in the Singapore Chinese Health Study. Clin. Transl. Gastroenterol. 2019, 10, e00043. [Google Scholar] [CrossRef]
- Garcia-Aranda, C.; de Juan, C.; Diaz-Lopez, A.; Sanchez-Pernaute, A.; Torres, A.J.; Diaz-Rubio, E.; Balibrea, J.L.; Benito, M.; Iniesta, P. Correlations of telomere length, telomerase activity, and telomeric-repeat binding factor 1 expression in colorectal carcinoma. Cancer 2006, 106, 541–551. [Google Scholar] [CrossRef]
- Gertler, R.; Rosenberg, R.; Stricker, D.; Friederichs, J.; Hoos, A.; Werner, M.; Ulm, K.; Holzmann, B.; Nekarda, H.; Siewert, J.R. Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J. Clin. Oncol. 2004, 22, 1807–1814. [Google Scholar] [CrossRef]
- Hastie, N.D.; Dempster, M.; Dunlop, M.G.; Thompson, A.M.; Green, D.K.; Allshire, R.C. Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990, 346, 866–868. [Google Scholar] [CrossRef]
- Nersisyan, L.; Hopp, L.; Loeffler-Wirth, H.; Galle, J.; Loeffler, M.; Arakelyan, A.; Binder, H. Telomere Length Maintenance and Its Transcriptional Regulation in Lynch Syndrome and Sporadic Colorectal Carcinoma. Front. Oncol. 2019, 9, 1172. [Google Scholar] [CrossRef] [Green Version]
- Suraweera, N.; Mouradov, D.; Li, S.; Jorissen, R.N.; Hampson, D.; Ghosh, A.; Sengupta, N.; Thaha, M.; Ahmed, S.; Kirwan, M.; et al. Relative telomere lengths in tumor and normal mucosa are related to disease progression and chromosome instability profiles in colorectal cancer. Oncotarget 2016, 7, 36474–36488. [Google Scholar] [CrossRef] [Green Version]
- Takagi, S.; Kinouchi, Y.; Hiwatashi, N.; Nagashima, F.; Chida, M.; Takahashi, S.; Negoro, K.; Shimosegawa, T.; Toyota, T. Relationship between microsatellite instability and telomere shortening in colorectal cancer. Dis. Colon Rectum 2000, 43, S12–S17. [Google Scholar] [CrossRef]
- Robinson, N.J.; Schiemann, W.P. Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers 2022, 14, 808. [Google Scholar] [CrossRef] [PubMed]
- Alder, J.K.; Parry, E.M.; Yegnasubramanian, S.; Wagner, C.L.; Lieblich, L.M.; Auerbach, R.; Auerbach, A.D.; Wheelan, S.J.; Armanios, M. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene. Hum. Mutat. 2013, 34, 1481–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelhardt, M.; Drullinsky, P.; Guillem, J.; Moore, M.A. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin. Cancer Res. 1997, 3, 1931–1941. [Google Scholar] [PubMed]
- Bergstrand, S.; Böhm, S.; Malmgren, H.; Norberg, A.; Sundin, M.; Nordgren, A.; Farnebo, M. Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal-Hreidarsson syndrome. Cell Death Dis. 2020, 11, 238. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Collins, K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol. Cell 2007, 28, 773–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef] [Green Version]
- Kibriya, M.G.; Jasmine, F.; Roy, S.; Ahsan, H.; Pierce, B.L. Novel Luminex Assay for Telomere Repeat Mass Does Not Show Well Position Effects Like qPCR. PLoS ONE 2016, 11, e0155548. [Google Scholar] [CrossRef]
- Harley, C.B.; Futcher, A.B.; Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 1990, 345, 458–460. [Google Scholar] [CrossRef]
- Kimura, M.; Stone, R.C.; Hunt, S.C.; Skurnick, J.; Lu, X.; Cao, X.; Harley, C.B.; Aviv, A. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat. Protoc. 2010, 5, 1596–1607. [Google Scholar] [CrossRef]
- Pierce, B.L.; Jasmine, F.; Roy, S.; Zhang, C.; Aviv, A.; Hunt, S.C.; Ahsan, H.; Kibriya, M.G. Telomere length measurement by a novel Luminex-based assay: A blinded comparison to Southern blot. Int. J. Mol. Epidemiol. Genet 2016, 7, 18–23. [Google Scholar] [PubMed]
- Eisenberg, D.T. Telomere length measurement validity: The coefficient of variation is invalid and cannot be used to compare quantitative polymerase chain reaction and Southern blot telomere length measurement techniques. Int. J. Epidemiol. 2016, 45, 1295–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, D.T.; Kuzawa, C.W.; Hayes, M.G. Improving qPCR telomere length assays: Controlling for well position effects increases statistical power. Am. J. Hum. Biol. 2015, 27, 570–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janavicius, R.; Matiukaite, D.; Jakubauskas, A.; Griskevicius, L. Microsatellite instability detection by high-resolution melting analysis. Clin. Chem. 2010, 56, 1750–1757. [Google Scholar] [CrossRef] [Green Version]
- Kibriya, M.G.; Raza, M.; Jasmine, F.; Roy, S.; Paul-Brutus, R.; Rahaman, R.; Dodsworth, C.; Rakibuz-Zaman, M.; Kamal, M.; Ahsan, H. A genome-wide DNA methylation study in colorectal carcinoma. BMC Med. Genom. 2011, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Deschoolmeester, V.; Baay, M.; Wuyts, W.; Van Marck, E.; Van Damme, N.; Vermeulen, P.; Lukaszuk, K.; Lardon, F.; Vermorken, J.B. Detection of microsatellite instability in colorectal cancer using an alternative multiplex assay of quasi-monomorphic mononucleotide markers. J. Mol. Diagn. 2008, 10, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Findeisen, P.; Kloor, M.; Merx, S.; Sutter, C.; Woerner, S.M.; Dostmann, N.; Benner, A.; Dondog, B.; Pawlita, M.; Dippold, W.; et al. T25 repeat in the 3′ untranslated region of the CASP2 gene: A sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 2005, 65, 8072–8078. [Google Scholar] [CrossRef] [Green Version]
- Eisenhart, C. The assumptions underlying the analysis of variance. Biometrics 1947, 3, 1–21. [Google Scholar] [CrossRef]
- Downey, T. Analysis of a multifactor microarray study using Partek genomics solution. Methods Enzym. 2006, 411, 256–270. [Google Scholar] [CrossRef]
Characteristic | Category | Male (n = 96) | Female (n = 69) | p-Value |
---|---|---|---|---|
Age (years) | mean | 45.6 | 44.86 | 0.773 |
(SD) | 13.82 | 13.98 | ||
Age category | ≤40 years | 39 | 28 | 0.582 |
>40 years | 57 | 41 | ||
Location | Left | 75 | 57 | 0.556 |
Right | 21 | 12 | ||
Histopathology | Adenocarcinoma | 78 | 63 | 0.171 |
Mucinous adenocarcinoma | 17 | 6 | ||
Squamous cell carcinoma | 1 | |||
Stage | Stage-1 | 21 | 15 | 0.987 |
Stage-2 | 24 | 18 | ||
Stage-3 | 51 | 36 | ||
Grade | Low | 43 | 35 | 0.528 |
High | 53 | 34 | ||
Microsatellite | MSI | 29 | 12 | 0.069 |
MSS | 67 | 57 | ||
CEA (ng/mL) | mean | 42.59 | 45.49 | 0.844 |
(SD) | 95.14 | 86.9 | ||
KRAS | Wild | 65 | 50 | 0.435 |
Mutant | 29 | 19 | ||
BRAFV600E | Wild | 87 | 64 | 0.327 |
Mutant | 6 | 5 |
Characteristic | n | RTL in CRC Tissue | RTL in Normal Tissue | Delta = Tumor-Normal | p Value | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | 95% Lower BOUND | 95% Upper Bound | |||
Gender | |||||||||
Male | 88 | 0.73 | ±0.27 | 0.81 | ±0.24 | −0.08 | −0.14 | −0.02 | 0.009 |
Female | 64 | 0.71 | ±0.29 | 0.81 | ±0.25 | −0.09 | −0.16 | −0.03 | 0.004 |
Age | |||||||||
≥40 | 91 | 0.72 | ±0.26 | 0.81 | ±0.23 | −0.09 | −0.15 | −0.04 | <0.001 |
<40 | 61 | 0.73 | ±0.3 | 0.81 | ±0.26 | −0.08 | −0.16 | 0.002 | 0.055 |
KRAS | |||||||||
Mutant | 45 | 0.67 | ±0.31 | 0.80 | ±0.24 | −0.12 | −0.21 | −0.04 | 0.007 |
Wild | 106 | 0.75 | ±0.26 | 0.82 | ±0.24 | −0.07 | −0.12 | −0.02 | 0.007 |
BRAF | |||||||||
Mutant | 11 | 0.69 | ±0.21 | 0.82 | 0.18 | −0.13 | −0.33 | 0.07 | 0.190 |
Wild | 139 | 0.73 | ±0.28 | 0.81 | ±0.24 | −0.08 | −0.13 | −0.04 | <0.001 |
MSI Status | |||||||||
MSI | 38 | 0.67 | ±0.26 | 0.85 | ±0.28 | −0.18 | −0.26 | −0.10 | <0.001 |
MSS | 114 | 0.74 | ±0.28 | 0.80 | ±0.23 | −0.06 | −0.11 | −0.006 | 0.029 |
Histopathological Diagnosis | |||||||||
Adenocarcinoma | 130 | 0.72 | ±0.28 | 0.81 | ±0.24 | −0.09 | −0.14 | −0.05 | <0.001 |
Mucinous Adenocarcinoma | 21 | 0.75 | ±0.26 | 0.81 | ±0.28 | −0.06 | −0.20 | 0.09 | 0.444 |
Squamous Cell Carcinoma | 1 | 0.97 | 0.84 | ||||||
Stage | |||||||||
Stage-1 | 34 | 0.74 | ±0.34 | 0.76 | ±0.21 | −0.02 | −0.14 | 0.09 | 0.692 |
Stage-2 | 37 | 0.70 | ±0.27 | 0.82 | ±0.29 | −0.12 | −0.19 | −0.05 | 0.001 |
Stage-3 | 81 | 0.73 | ±0.25 | 0.82 | ±0.23 | −0.10 | −0.16 | −0.04 | 0.002 |
Grade | |||||||||
High-grade | 78 | 0.75 | ±0.26 | 0.79 | ±0.24 | −0.03 | −0.08 | 0.03 | 0.313 |
Low-grade | 74 | 0.69 | ±0.29 | 0.84 | ±0.25 | −0.15 | −0.21 | −0.08 | <0.001 |
Location | |||||||||
Left | 122 | 0.74 | ±0.29 | 0.82 | ±0.25 | −0.08 | −0.13 | −0.03 | 0.003 |
Right | 30 | 0.65 | ±0.24 | 0.28 | ±0.20 | −0.13 | −0.02 | −0.03 | 0.009 |
Stratification | DNA Replication Genes | Telomere Maintenance Genes | ||
---|---|---|---|---|
Fold Change (95%CI) | Fold Change (95%CI) | |||
Grade | ||||
Low-Grade | 1.27 | (1.25–1.28) | 1.28 | (1.25–1.31) |
High-Grade | 1.11 | (1.09–1.14) | 1.11 | (1.06–1.16) |
p | 2.04 × 10−26 | 2.97 × 10−8 | ||
Stage | ||||
Stage-1 | 1.31 | (1.28–1.34) | 1.42 | (1.35–1.49) |
Stage-2 | 1.22 | (1.20–1.25) | 1.19 | (1.15–1.24) |
Stage-3 | 1.22 | (1.20–1.23) | 1.22 | (1.18–1.25) |
p | 8.58 × 10−7 | 5.54 × 10−8 | ||
MSI status | ||||
MSS | 1.23 | (1.22–1.25) | 1.25 | (1.22–1.28) |
MSI | 1.23 | (1.21–1.26) | 1.22 | (1.18–1.26) |
p | 0.801001 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibriya, M.G.; Raza, M.; Kamal, M.; Haq, Z.; Paul, R.; Mareczko, A.; Pierce, B.L.; Ahsan, H.; Jasmine, F. Relative Telomere Length Change in Colorectal Carcinoma and Its Association with Tumor Characteristics, Gene Expression and Microsatellite Instability. Cancers 2022, 14, 2250. https://doi.org/10.3390/cancers14092250
Kibriya MG, Raza M, Kamal M, Haq Z, Paul R, Mareczko A, Pierce BL, Ahsan H, Jasmine F. Relative Telomere Length Change in Colorectal Carcinoma and Its Association with Tumor Characteristics, Gene Expression and Microsatellite Instability. Cancers. 2022; 14(9):2250. https://doi.org/10.3390/cancers14092250
Chicago/Turabian StyleKibriya, Muhammad G., Maruf Raza, Mohammed Kamal, Zahidul Haq, Rupash Paul, Andrew Mareczko, Brandon L. Pierce, Habibul Ahsan, and Farzana Jasmine. 2022. "Relative Telomere Length Change in Colorectal Carcinoma and Its Association with Tumor Characteristics, Gene Expression and Microsatellite Instability" Cancers 14, no. 9: 2250. https://doi.org/10.3390/cancers14092250
APA StyleKibriya, M. G., Raza, M., Kamal, M., Haq, Z., Paul, R., Mareczko, A., Pierce, B. L., Ahsan, H., & Jasmine, F. (2022). Relative Telomere Length Change in Colorectal Carcinoma and Its Association with Tumor Characteristics, Gene Expression and Microsatellite Instability. Cancers, 14(9), 2250. https://doi.org/10.3390/cancers14092250