Controversies and Opportunities in the Clinical Daily Use of the 21-Gene Assay for Prognostication and Prediction of Chemotherapy Benefit in HR+/HER2- Early Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Should We Integrate Standard Clinicopathological Risk Factors and Genomic Score?
3. Should We Test pN1 Premenopausal Women?
4. Should We Test Patients for Neoadjuvant Treatment?
5. Should We Test Patients with Histologies Other Than Ductal Carcinoma?
6. Should We Test Male Patients?
7. Should We Optimise the Timing of the Test?
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andre, F.; Ismaila, N.; Allison, K.H.; Barlow, W.E.; Collyar, D.E.; Damodaran, S.; Henry, N.L.; Jhaveri, K.; Kalinsky, K.; Kuderer, N.M.; et al. Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 1816–1837. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.J.C.; Amorim, L.C.; Megid, T.B.C.; de Resende, C.A.A.; Mano, M.S. Gene expression signatures in early breast cancer: Better together with clinicopathological features. Crit. Rev. Oncol. Hematol. 2022, 175, 103708. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; van’t Veer, L.J.; Bogaerts, J.; Slaets, L.; Viale, G.; Delaloge, S.; Pierga, J.Y.; Brain, E.; Causeret, S.; Delorenzi, M.; et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N. Engl. J. Med. 2016, 375, 717–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E., Jr.; Dees, E.C.; Goetz, M.P.; Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Sparano, J.A.; Gray, R.J.; Ravdin, P.M.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.; et al. Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer. N. Engl. J. Med. 2019, 380, 2395–2405. [Google Scholar] [CrossRef]
- Tang, G.; Cuzick, J.; Costantino, J.P.; Dowsett, M.; Forbes, J.F.; Crager, M.; Mamounas, P.; Shak, S.; Wolmark, N. Risk of recurrence and chemotherapy benefit for patients with node-negative, estrogen receptor-positive breast cancer: Recurrence score alone and integrated with pathologic and clinical factors. J. Clin. Oncol. 2011, 29, 4365–4372. [Google Scholar] [CrossRef]
- Sparano, J.A.; Crager, M.R.; Tang, G.; Gray, R.J.; Stemmer, S.M.; Shak, S. Development and Validation of a Tool Integrating the 21-Gene Recurrence Score and Clinical-Pathological Features to Individualize Prognosis and Prediction of Chemotherapy Benefit in Early Breast Cancer. J. Clin. Oncol. 2021, 39, 557–564. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; et al. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012, 379, 432–444. [Google Scholar]
- Kalinsky, K.; Barlow, W.E.; Gralow, J.R.; Meric-Bernstam, F.; Albain, K.S.; Hayes, D.F.; Lin, N.U.; Perez, E.A.; Goldstein, L.J.; Chia, S.L.; et al. 21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer. N. Engl. J. Med. 2021, 385, 2336–2347. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; et al. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar]
- Walshe, J.M.; Denduluri, N.; Swain, S.M. Amenorrhea in Premenopausal Women After Adjuvant Chemotherapy for Breast Cancer. J. Clin. Oncol. 2006, 24, 5769–5779. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Jeong, J.-H.; Geyer, C.E.; Costantino, J.P.; Pajon, E.R.; Fehrenbacher, L.; Atkins, J.N.; Polikoff, J.; Vogel, V.G.; Erban, J.K.; et al. Longer Therapy, Iatrogenic Amenorrhea, and Survival in Early Breast Cancer. N. Engl. J. Med. 2010, 362, 2053–2065. [Google Scholar] [CrossRef] [PubMed]
- Vanhuyse, M.; Fournier, C.; Bonneterre, J. Chemotherapy-induced amenorrhea: Influence on disease-free survival and overall survival in receptor-positive premenopausal early breast cancer patients. Ann. Oncol. 2005, 16, 1283–1288. Available online: https://www.sciencedirect.com/science/article/pii/S0923753419549365 (accessed on 1 August 2022). [CrossRef] [PubMed]
- Francis, P.A.; Regan, M.M.; Fleming, G.F.; Láng, I.; Ciruelos, E.; Bellet, M.; Bonnefoi, H.R.; Climent, M.A.; Da Prada, G.A.; Burstein, H.J.; et al. Adjuvant Ovarian Suppression in Premenopausal Breast Cancer. N. Engl. J. Med. 2015, 372, 436–446. [Google Scholar] [CrossRef] [Green Version]
- Francis, P.A.; Pagani, O.; Fleming, G.F.; Walley, B.A.; Colleoni, M.; Láng, I.; Gómez, H.L.; Tondini, C.; Ciruelos, E.; Burstein, H.J.; et al. Tailoring Adjuvant Endocrine Therapy for Premenopausal Breast Cancer. N. Engl. J. Med. 2018, 379, 122–137. [Google Scholar] [CrossRef] [Green Version]
- Regan, M.M.; Francis, P.A.; Pagani, O.; Fleming, G.F.; Walley, B.A.; Viale, G.; Colleoni, M.; Láng, I.; Gómez, H.L.; Tondini, C.; et al. Absolute benefit of adjuvant endocrine therapies for premenopausal women with hormone receptor-positive, Human epidermal growth factor receptor 2-Negative early breast cancer: TEXT and SOFT Trials. J. Clin. Oncol. 2016, 34, 2221–2230. [Google Scholar] [CrossRef]
- Buus, R.; Sestak, I.; Kronenwett, R.; Ferree, S.; Schnabel, C.A.; Baehner, F.L.; Mallon, E.A.; Cuzick, J.; Dowsett, M. Molecular Drivers of Oncotype DX, Prosigna, EndoPredict, and the Breast Cancer Index: A TransATAC Study. J. Clin. Oncol. 2021, 39, 126–135. [Google Scholar] [CrossRef]
- Harbeck, N.; Gluz, O.; Christgen, M.; Graeser, M.; Hilpert, F.; Krauss, K.; Thill, M.; Warm, M.; Müller, V.; Braun, M.W.; et al. ADAPTcycle: Adjuvant dynamic marker-adjusted personalized therapy (ADAPT) comparing endocrine therapy plus ribociclib versus chemotherapy in intermediate-risk HR+/HER2- early breast cancer (EBC). J. Clin. Oncol. 2020, 38, TPS601. [Google Scholar] [CrossRef]
- Nitz, U.A.; Gluz, O.; Kümmel, S.; Christgen, M.; Braun, M.; Aktas, B.; Lüdtke-Heckenkamp, K.; Forstbauer, H.; Grischke, E.-M.; Schumacher, C.; et al. Endocrine Therapy Response and 21-Gene Expression Assay for Therapy Guidance in HR+/HER2—Early Breast Cancer. J. Clin. Oncol. 2022, 40, 2557–2567. [Google Scholar] [CrossRef]
- Gluz, O.U.A.; Nitz, M.C. LBA14—Impact of age, recurrence score (RS) and ovarian function suppression (OFS) on endocrine response to short preoperative endocrine therapy (ET): Analysis of ADAPT and ADAPTcycle trials. Ann. Oncol. 2022, 33, S808–S869. [Google Scholar] [CrossRef]
- O’Regan, R.; Zhang, Y.; Fleming, G.F.; Francis, P.A.; Kammler, R.; Viale, G.; Lang, I.; Bellet Ezquerra, M.; Bonnefoi, H.R. Evaluation of the Breast Cancer Index in premenopausal women with early-stage HR+ breast cancer in the SOFT trial. In Proceedings of the 2022 San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 6–10 December 2022. Abstract GS1-06. [Google Scholar]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; ESMO Guidelines Committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrisi, R.; Marrazzo, E.; Agostinetto, E.; De Sanctis, R.; Losurdo, A.; Masci, G.; Tinterri, C.; Santoro, A. Neoadjuvant chemotherapy in hormone receptor-positive/HER2-negative early breast cancer: When, why and what? Crit. Rev. Oncol. Hematol. 2021, 160, 103280. Available online: https://www.sciencedirect.com/science/article/pii/S1040842821000688 (accessed on 1 October 2022). [CrossRef] [PubMed]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Burstein, H.J.; Chew, H.; Dang, C.; et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 691–722. [Google Scholar] [CrossRef] [PubMed]
- Griguolo, G.; Bottosso, M.; Vernaci, G.; Miglietta, F.; Dieci, M.V.; Guarneri, V. Gene-expression signatures to inform neoadjuvant treatment decision in HR+/HER2− breast cancer: Available evidence and clinical implications. Cancer Treat. Rev. 2021, 102, 102323. [Google Scholar] [CrossRef]
- Boland, M.R.; Al-Maksoud, A.; Ryan, J.; I Balasubramanian, I.; Geraghty, J.; Evoy, D.; McCartan, D.; Prichard, R.S.; McDermott, E.W. Value of a 21-gene expression assay on core biopsy to predict neoadjuvant chemotherapy response in breast cancer: Systematic review and meta-analysis. Br. J. Surg. 2021, 108, 24–31. [Google Scholar] [CrossRef]
- Zambelli, A.; Tondini, C.A. Can multigene assays widen their clinical usefulness in early breast cancer treatment choice during the current COVID-19 outbreak in Italy? ESMO Open. 2020, 5, 1–2. [Google Scholar] [CrossRef]
- Charehbili, A.; Fontein, D.B.Y.; Kroep, J.R.; Liefers, G.J.; Mieog, J.S.D.; Nortier, J.W.R.; van de Velde, C.J.H. Neoadjuvant hormonal therapy for endocrine sensitive breast cancer: A systematic review. Cancer Treat. Rev. 2014, 40, 86–92. Available online: https://www.sciencedirect.com/science/article/pii/S0305737213001242 (accessed on 1 August 2022). [CrossRef]
- Spring, L.; Gupta, A.; Reynolds, K.L.; Gadd, M.A.; Ellisen, L.W.; Isakoff, S.J.; Moy, B.; Bardia, A. Neoadjuvant Endocrine Therapy for Estrogen Receptor–Positive Breast Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Iwata, H.; Masuda, N.; Yamamoto, Y.; Fujisawa, T.; Toyama, T.; Kashiwaba, M.; Ohtani, S.; Taira, N.; Sakai, T.; Hasegawa, Y.; et al. Validation of the 21-gene test as a predictor of clinical response to neoadjuvant hormonal therapy for ER+, HER2-negative breast cancer: The TransNEOS study. Breast Cancer Res. Treat. 2018, 173, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Davey, M.; Ryan, E.J.; Boland, M.; Barry, M.; Lowery, A.; Kerin, M. Clinical utility of the 21-gene assay in predicting response to neoadjuvant endocrine therapy in breast cancer: A systematic review and meta-analysis. Breast 2021, 58, 113–120. Available online: https://www.sciencedirect.com/science/article/pii/S0960977621003726 (accessed on 1 August 2022). [CrossRef]
- Zelnak, A.B.; Murali, S.; Styblo, T.M.; Carlson, G.W.; Gabram, S.G.A.; Rizzo, M.; Torres, M.A.; Newell, M.; Liu, Y.; O’Regan, R. Phase II trial evaluating the use of 21-gene recurrence score (RS) to select preoperative therapy in hormone receptor (HR)-positive breast cancer. J. Clin. Oncol. 2013, 31, 562. [Google Scholar] [CrossRef]
- Bear, H.D.; Wan, W.; Robidoux, A.; Rubin, P.; Limentani, S.; White, R.L.; Granfortuna, J.; Hopkins, J.O.; Oldham, D.; Rodriguez, A.; et al. Using the 21-gene assay from core needle biopsies to choose neoadjuvant therapy for breast cancer: A multicenter trial. J. Surg. Oncol. 2017, 115, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Uribe, D.J.; Daling, J.R. Clinical characteristics of different histologic types of breast cancer. Br. J. Cancer 2005, 93, 1046–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakha, E.A.; Ellis, I.O. Lobular breast carcinoma and its variants. Semin. Diagn. Pathol. 2010, 27, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; El-Sayed, M.E.; Powe, D.G.; Green, A.R.; Habashy, H.; Grainge, M.J.; Robertson, J.F.; Blamey, R.; Gee, J.; Nicholson, R.I.; et al. Invasive lobular carcinoma of the breast: Response to hormonal therapy and outcomes. Eur. J. Cancer 2008, 44, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie, S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth, C.; et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 2015, 163, 506–519. [Google Scholar] [CrossRef] [Green Version]
- Desmedt, C.; Zoppoli, G.; Gundem, G.G.; Pruneri, G.; Larsimont, D.; Fornili, M.M.; Fumagalli, D.; Brown, D.; Rothé, F.; Vincent, D.; et al. Genomic Characterization of Primary Invasive Lobular Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 1872–1881. [Google Scholar] [CrossRef] [Green Version]
- Marmor, S.; Hui, J.Y.C.; Huang, J.L.; Kizy, S.; Beckwith, H.; Blaes, A.H.; Rueth, N.M.; Tuttle, T. Relative effectiveness of adjuvant chemotherapy for invasive lobular compared with invasive ductal carcinoma of the breast. Cancer 2017, 123, 3015–3021. [Google Scholar] [CrossRef]
- Felts, J.L.; Zhu, J.; Han, B.; Smith, S.J.; Truica, C.I. An Analysis of Oncotype DX Recurrence Scores and Clinicopathologic Characteristics in Invasive Lobular Breast Cancer. Breast J. 2017, 23, 677–686. [Google Scholar] [CrossRef]
- Christgen, M.; Gluz, O.; Harbeck, N.; Kates, R.E.; Raap, M.; Christgen, H.; Clemens, M.; Malter, W.; Nuding, B.; Aktas, B.; et al. Differential impact of prognostic parameters in hormone receptor–positive lobular breast cancer. Cancer 2020, 126, 4847–4858. [Google Scholar] [CrossRef]
- Tadros, A.B.; Wen, H.Y.; Morrow, M. Breast Cancers of Special Histologic Subtypes Are Biologically Diverse. Ann. Surg. Oncol. 2018, 25, 3158–3164. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-H.; Zhang, W.-W.; Wang, J.; Sun, J.-Y.; Li, F.-Y.; He, Z.-Y.; Wu, S.-G. 21-gene recurrence score and adjuvant chemotherapy decisions in patients with invasive lobular breast cancer. Biomarkers Med. 2019, 13, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Kizy, S.; Huang, J.L.; Marmor, S.; Tuttle, T.; Hui, J.Y.C. Impact of the 21-gene recurrence score on outcome in patients with invasive lobular carcinoma of the breast. Breast Cancer Res. Treat. 2017, 165, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Makower, D.; Qin, J.; Lin, J.; Xue, X.; Sparano, J.A. The 21-gene recurrence score in early non-ductal breast cancer: A National Cancer Database analysis. Npj Breast Cancer 2022, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Weiser, R.; Polychronopoulou, E.; Hatch, S.S.; Haque, W.; Ghani, H.A.; He, J.; Kuo, Y.; Gradishar, W.J.; Klimberg, V.S. Adjuvant chemotherapy in patients with invasive lobular carcinoma and use of the 21-gene recurrence score: A National Cancer Database analysis. Cancer 2022, 128, 1738–1747. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.; Li, T.; Lv, J.; Feng, G.; Tan, N.; Wang, J.; Cheng, X. Oncotype DX 21-gene test has a low recurrence score in both pure and mixed mucinous breast carcinoma. Oncol. Lett. 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Hanna, M.G.; Bleiweiss, I.J.; Nayak, A.; Jaffer, S. Correlation of Oncotype DX Recurrence Score with Histomorphology and Immunohistochemistry in over 500 Patients. Int. J. Breast Cancer 2017, 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Davey, M.G.; Davey, C.M.; Bouz, L.; Kerin, E.; McFeetors, C.; Lowery, A.J.; Kerin, M.J. Relevance of the 21-gene expression assay in male breast cancer: A systematic review and meta-analysis. Breast 2022, 64, 41–46. [Google Scholar] [CrossRef]
- Massarweh, S.A.; Sledge, G.W.; Miller, D.; McCullough, D.; Petkov, V.I.; Shak, S. Molecular Characterization and Mortality From Breast Cancer in Men. J. Clin. Oncol. 2018, 36, 1396–1404. [Google Scholar] [CrossRef]
- Wang, F.; Reid, S.; Zheng, W.; Pal, T.; Meszoely, I.; Mayer, I.A.; Bailey, C.E.; Park, B.H.; Shu, X.-O. Sex Disparity Observed for Oncotype DX Breast Recurrence Score in Predicting Mortality Among Patients with Early Stage ER-Positive Breast Cancer. Clin. Cancer Res. 2020, 26, 101–109. [Google Scholar] [CrossRef]
- Piscuoglio, S.; Ng, C.K.; Murray, M.P.; Guerini-Rocco, E.; Martelotto, L.G.; Geyer, F.C.; Bidard, F.-C.; Berman, S.; Fusco, N.; Sakr, R.A.; et al. The Genomic Landscape of Male Breast Cancers. Clin. Cancer Res. 2016, 22, 4045–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, S.H. Breast cancer in men. Cmaj 2013, 185, 1247. [Google Scholar]
- De Amicis, F.; Thirugnansampanthan, J.; Cui, Y.; Selever, J.; Beyer, A.; Parra, I.; Weigel, N.L.; Herynk, M.H.; Tsimelzon, A.; Lewis, M.T.; et al. Androgen receptor overexpression induces tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat. 2010, 121, 1–11. [Google Scholar] [CrossRef] [PubMed]
- de Gagliato, D.M.; Gonzalez-Angulo, A.M.; Lei, X.; Theriault, R.L.; Giordano, S.H.; Valero, V.; Hortobagyi, G.N.; Chavez-Macgregor, M. Clinical impact of delaying initiation of adjuvant chemotherapy in patients with breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Farolfi, A.; Scarpi, E.; Rocca, A.; Mangia, A.; Biglia, N.; Gianni, L.; Tienghi, A.; Valerio, M.R.; Gasparini, G.; Amaducci, L.; et al. Time to initiation of adjuvant chemotherapy in patients with rapidly proliferating early breast cancer. Eur. J. Cancer 2015, 51, 1874–1881. [Google Scholar] [CrossRef]
- Guarneri, V.; Pronzato, P.; Bertetto, O.; Roila, F.; Amunni, G.; Bortolami, A.; Tognazzo, S.; Griguolo, G.; Pagano, E.; Stracci, F.; et al. Use of Electronic Administrative Databases to Measure Quality Indicators of Breast Cancer Care: Experience of Five Regional Oncology Networks in Italy. JCO Oncol. Pract. 2020, 16, e211–e220. [Google Scholar] [CrossRef]
- Yoo, S.H.; Kim, T.-Y.; Kim, M.; Lee, K.-H.; Lee, E.; Lee, H.-B.; Moon, H.-G.; Han, W.; Noh, D.-Y.; Han, S.-W.; et al. Development of a Nomogram to Predict the Recurrence Score of 21-Gene Prediction Assay in Hormone Receptor–Positive Early Breast Cancer. Clin. Breast Cancer 2020, 20, 98–107.e1. [Google Scholar] [CrossRef]
- Orucevic, A.; Bell, J.L.; McNabb, A.; Heidel, R.E. Oncotype DX breast cancer recurrence score can be predicted with a novel nomogram using clinicopathologic data. Breast Cancer Res. Treat. 2017, 163, 51–61. [Google Scholar] [CrossRef]
- Losk, K.; Freedman, R.A.; Laws, A.; Kantor, O.; Mittendorf, E.A.; Tan-Wasielewski, Z.; Trippa, L.; Lin, N.U.; Winer, E.P.; King, T.A. Oncotype DX testing in node-positive breast cancer strongly impacts chemotherapy use at a comprehensive cancer center. Breast Cancer Res. Treat. 2021, 185, 215–227. [Google Scholar] [CrossRef]
- Losk, K.; Freedman, R.A.; Lin, N.U.; Golshan, M.; Pochebit, S.M.; Lester, S.C.; Natsuhara, K.; Camuso, K.; King, T.A.; Bunnell, C.A. Implementation of Surgeon-Initiated Gene Expression Profile Testing (Oncotype DX) Among Patients with Early-Stage Breast Cancer to Reduce Delays in Chemotherapy Initiation. J. Oncol. Pract. 2017, 13, e815–e820. [Google Scholar] [CrossRef] [Green Version]
- Orozco, J.I.J.; Chang, S.-C.; Matsuba, C.; Ensenyat-Mendez, M.; Grunkemeier, G.L.; Marzese, D.M.; Grumley, J.G. Is the 21-Gene Recurrence Score on Core Needle Biopsy Equivalent to Surgical Specimen in Early-Stage Breast Cancer? A Comparison of Gene Expression Between Paired Core Needle Biopsy and Surgical Specimens. Ann. Surg. Oncol. 2021, 28, 5588–5596. [Google Scholar] [CrossRef] [PubMed]
- Burstein, H.; Curigliano, G.; Thürlimann, B.; Weber, W.; Poortmans, P.; Regan, M.; Senn, H.; Winer, E.; Gnant, M.; Aebi, S.; et al. Customizing local and systemic therapies for women with early breast cancer: The St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann. Oncol. 2021, 32, 1216–1235. Available online: https://www.sciencedirect.com/science/article/pii/S0923753421021049 (accessed on 1 August 2022). [CrossRef] [PubMed]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef] [PubMed]
Patient of 40 yo, N0, 1 cm, Grade 1 | ||||
---|---|---|---|---|
RS 24 | RS 27 | Delta CT | ||
RS alone | 9y DR ET | 10% | 16% | |
CT benefit | <1% | >15% | 15% | |
RS + CP (low) | 9y DR ET | 11.5% | 16% | |
CT benefit | 6.5% | >15% | 8.5% | |
RS Clin | 10y DR TAM | 7% | 7% | |
CT benefit | 3% | 4% | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, F.; Gaudio, M.; Benvenuti, C.; De Sanctis, R.; Santoro, A.; Zambelli, A. Controversies and Opportunities in the Clinical Daily Use of the 21-Gene Assay for Prognostication and Prediction of Chemotherapy Benefit in HR+/HER2- Early Breast Cancer. Cancers 2023, 15, 148. https://doi.org/10.3390/cancers15010148
Jacobs F, Gaudio M, Benvenuti C, De Sanctis R, Santoro A, Zambelli A. Controversies and Opportunities in the Clinical Daily Use of the 21-Gene Assay for Prognostication and Prediction of Chemotherapy Benefit in HR+/HER2- Early Breast Cancer. Cancers. 2023; 15(1):148. https://doi.org/10.3390/cancers15010148
Chicago/Turabian StyleJacobs, Flavia, Mariangela Gaudio, Chiara Benvenuti, Rita De Sanctis, Armando Santoro, and Alberto Zambelli. 2023. "Controversies and Opportunities in the Clinical Daily Use of the 21-Gene Assay for Prognostication and Prediction of Chemotherapy Benefit in HR+/HER2- Early Breast Cancer" Cancers 15, no. 1: 148. https://doi.org/10.3390/cancers15010148
APA StyleJacobs, F., Gaudio, M., Benvenuti, C., De Sanctis, R., Santoro, A., & Zambelli, A. (2023). Controversies and Opportunities in the Clinical Daily Use of the 21-Gene Assay for Prognostication and Prediction of Chemotherapy Benefit in HR+/HER2- Early Breast Cancer. Cancers, 15(1), 148. https://doi.org/10.3390/cancers15010148