The Prognostic-Based Approach in Growth Hormone-Secreting Pituitary Neuroendocrine Tumors (PitNET): Tertiary Reference Center, Single Senior Surgeon, and Long-Term Follow-Up
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Preoperative Evaluation
2.3. Surgical Technique
2.4. Postoperative Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katznelson, L.; Laws, E.R.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A.H. Acromegaly: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S. Acromegaly Pathogenesis and Treatment. J. Clin. Investig. 2009, 119, 3189–3202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abosch, A.; Tyrrell, J.B.; Lamborn, K.R.; Hannegan, L.T.; Applebury, C.B.; Wilson, C.B. Transsphenoidal Microsurgery for Growth Hormone-Secreting Pituitary Adenomas: Initial Outcome and Long-Term Results. J. Clin. Endocrinol. Metab. 1998, 83, 3411–3418. [Google Scholar] [CrossRef] [PubMed]
- Swearingen, B.; Barker, F.G.; Katznelson, L.; Miller, B.M.; Grinspoon, S.; Klibanski, A.; Moayeri, N.; Black, P.M.; Zervas, N.T. Long-Term Mortality after Transsphenoidal Surgery and Adjunctive Therapy for Acromegaly. J. Clin. Endocrinol. Metab. 1998, 83, 3419–3426. [Google Scholar] [CrossRef] [PubMed]
- Taghvaei, M.; Sadrehosseini, S.M.; Ardakani, J.B.; Nakhjavani, M.; Zeinalizadeh, M. Endoscopic Endonasal Approach to the Growth Hormone–Secreting Pituitary Adenomas: Endocrinologic Outcome in 68 Patients. World Neurosurg. 2018, 117, e259–e268. [Google Scholar] [CrossRef] [PubMed]
- Haliloglu, O.; Kuruoglu, E.; Ozkaya, H.M.; Keskin, F.E.; Gunaldi, O.; Oz, B.; Gazioglu, N.; Kadioglu, P.; Tanriover, N. Multidisciplinary Approach for Acromegaly: A Single Tertiary Center’s Experience. World Neurosurg. 2016, 88, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Ku, C.R.; Moon, J.H.; Kim, E.H.; Kim, S.H.; Lee, E.J. Age- and Sex-Specific Differences as Predictors of Surgical Remission Among Patients With Acromegaly. J. Clin. Endocrinol. Metab. 2018, 103, 909–916. [Google Scholar] [CrossRef]
- Sun, H.; Brzana, J.; Yedinak, C.G.; Gultekin, S.H.; Delashaw, J.B.; Fleseriu, M. Factors Associated with Biochemical Remission after Microscopic Transsphenoidal Surgery for Acromegaly. J. Neurol. Surg. B Skull Base 2014, 75, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Starke, R.M.; Raper, D.M.S.; Payne, S.C.; Vance, M.L.; Oldfield, E.H.; Jane, J.A. Endoscopic vs Microsurgical Transsphenoidal Surgery for Acromegaly: Outcomes in a Concurrent Series of Patients Using Modern Criteria For Remission. J. Clin. Endocrinol. Metab. 2013, 98, 3190–3198. [Google Scholar] [CrossRef] [Green Version]
- Minniti, G.; Jaffrain-Rea, M.L.; Esposito, V.; Santoro, A.; Tamburrano, G.; Cantore, G. Evolving Criteria for Post-Operative Biochemical Remission of Acromegaly: Can We Achieve a Definitive Cure? An Audit of Surgical Results on a Large Series and a Review of the Literature. Endocr. Relat. Cancer 2003, 10, 611–619. [Google Scholar] [CrossRef]
- Albarel, F.; Castinetti, F.; Morange, I.; Conte-Devolx, B.; Gaudart, J.; Dufour, H.; Brue, T. Outcome of Multimodal Therapy in Operated Acromegalic Patients, a Study in 115 Patients. Clin. Endocrinol. 2013, 78, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, E.; Ferrante, E.; Locatelli, M.; Rampini, P.; Mantovani, G.; Giavoli, C.; Filopanti, M.; Verrua, E.; Malchiodi, E.; Carrabba, G.; et al. Diagnostic Features and Outcome of Surgical Therapy of Acromegalic Patients: Experience of the Last Three Decades. Hormones 2014, 13, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Jang, H.D.; Kim, O.L. Surgical Results of Growth Hormone-Secreting Pituitary Adenoma. J. Korean Neurosurg. Soc. 2009, 45, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Jane, J.A.; Starke, R.M.; Elzoghby, M.A.; Reames, D.L.; Payne, S.C.; Thorner, M.O.; Marshall, J.C.; Laws, E.R.; Vance, M.L. Endoscopic Transsphenoidal Surgery for Acromegaly: Remission Using Modern Criteria, Complications, and Predictors of Outcome. J. Clin. Endocrinol. Metab. 2011, 96, 2732–2740. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Rajaratnam, S.; Chacko, G.; Chacko, A.G. Endocrinological Outcomes Following Endoscopic and Microscopic Transsphenoidal Surgery in 113 Patients with Acromegaly. Clin. Neurol. Neurosurg. 2014, 126, 190–195. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, X.; Gao, L.; Wang, Z.; Deng, K.; Lian, W.; Wang, R.; Zhu, H.; Xing, B. Surgical Outcome of Growth Hormone–Secreting Pituitary Adenoma with Empty Sella Using a New Classification. World Neurosurg. 2017, 105, 651–658. [Google Scholar] [CrossRef]
- Kaltsas, G.A.; Isidori, A.M.; Florakis, D.; Trainer, P.J.; Camacho-Hubner, C.; Afshar, F.; Sabin, I.; Jenkins, J.P.; Chew, S.L.; Monson, J.P.; et al. Predictors of the Outcome of Surgical Treatment in Acromegaly and the Value of the Mean Growth Hormone Day Curve in Assessing Postoperative Disease Activity. J. Clin. Endocrinol. Metab. 2001, 86, 1645–1652. [Google Scholar] [CrossRef]
- Kreutzer, J.; Vance, M.L.; Lopes, M.B.S.; Laws, E.R. Surgical Management of GH-Secreting Pituitary Adenomas: An Outcome Study Using Modern Remission Criteria. J. Clin. Endocrinol. Metab. 2001, 86, 4072–4077. [Google Scholar] [CrossRef]
- Dutta, P.; Korbonits, M.; Sachdeva, N.; Gupta, P.; Srinivasan, A.; Devgun, J.S.; Bajaj, A.; Mukherjee, K.K. Can Immediate Postoperative Random Growth Hormone Levels Predict Long-Term Cure in Patients with Acromegaly? Neurol. India 2016, 64, 252. [Google Scholar] [CrossRef]
- Hazer, D.B.; Işik, S.; Berker, D.; Güler, S.; Gürlek, A.; Ÿucel, T.; Berker, M. Treatment of Acromegaly by Endoscopic Transsphenoidal Surgery: Surgical Experience in 214 Cases and Cure Rates According to Current Consensus Criteria: Clinical Article. J. Neurosurg. 2013, 119, 1467–1477. [Google Scholar] [CrossRef]
- Fan, Y.; Jiang, S.; Hua, M.; Feng, S.; Feng, M.; Wang, R. Machine Learning-Based Radiomics Predicts Radiotherapeutic Response in Patients With Acromegaly. Front. Endocrinol. 2019, 10, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anthony, J.R.; Alwahab, U.A.; Kanakiya, N.K.; Pontell, D.M.; Veledar, E.; Oyesiku, N.M.; Ioachimescu, A.G. Significant Elevation of Growth Hormone Level Impacts Surgical Outcomes in Acromegaly. Endocr. Pract. 2015, 21, 1001–1009. [Google Scholar] [CrossRef]
- Almeida, J.P.; Ruiz-Treviño, A.S.; Liang, B.; Omay, S.B.; Shetty, S.R.; Chen, Y.N.; Anand, V.K.; Grover, K.; Christos, P.; Schwartz, T.H. Reoperation for Growth Hormone–Secreting Pituitary Adenomas: Report on an Endonasal Endoscopic Series with a Systematic Review and Meta-Analysis of the Literature. J. Neurosurg. 2017, 129, 404–416. [Google Scholar] [CrossRef]
- Asha, M.J.; Takami, H.; Velasquez, C.; Oswari, S.; Almeida, J.P.; Zadeh, G.; Gentili, F. Long-Term Outcomes of Transsphenoidal Surgery for Management of Growth Hormone-Secreting Adenomas: Single-Center Results. J. Neurosurg. 2019, 133, 1360–1370. [Google Scholar] [CrossRef]
- Tindall, G.T.; Oyesiku, N.M.; Watts, N.B.; Clark, R.V.; Christy, J.H.; Adams, D.A. Transsphenoidal Adenomectomy for Growth Hormone-Secreting Pituitary Adenomas in Acromegaly: Outcome Analysis and Determinants of Failure. J. Neurosurg. 1993, 78, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Ku, C.R.; Kim, E.H.; Oh, M.C.; Lee, E.J.; Kim, S.H. Surgical and Endocrinological Outcomes in the Treatment of Growth Hormone-Secreting Pituitary Adenomas According to the Shift of Surgical Paradigm. Neurosurgery 2012, 71, ons192–ons203. [Google Scholar] [CrossRef] [PubMed]
- Babu, H.; Ortega, A.; Nuno, M.; Dehghan, A.; Schweitzer, A.; Bonert, H.V.; Carmichael, J.D.; Cooper, O.; Melmed, S.; Mamelak, A.N. Long-Term Endocrine Outcomes Following Endoscopic Endonasal Transsphenoidal Surgery for Acromegaly and Associated Prognostic Factors. Neurosurgery 2017, 81, 357–366. [Google Scholar] [CrossRef]
- Campbell, P.G.; Kenning, E.; Andrews, D.W.; Yadla, S.; Rosen, M.; Evans, J.J. Outcomes after a Purely Endoscopic Transsphenoidal Resection of Growth Hormone–Secreting Pituitary Adenomas. Neurosurg. Focus 2010, 29, E5. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Hur, K.Y.; Lee, J.H.; Lee, J.H.; Se, Y.B.; Kim, H.I.; Lee, S.H.; Nam, D.H.; Kim, S.Y.; Kim, K.W.; et al. Outcome of Endoscopic Transsphenoidal Surgery for Acromegaly. World Neurosurg. 2017, 104, 272–278. [Google Scholar] [CrossRef]
- Nishioka, H.; Fukuhara, N.; Yamaguchi-Okada, M.; Takeshita, A.; Takeuchi, Y.; Yamada, S. Pitfalls in Early Biochemical Evaluation after Transsphenoidal Surgery in Patients with Acromegaly. Endocr. J. 2017, 64, 1073–1078. [Google Scholar] [CrossRef]
- Shirvani, M.; Motiei-Langroudi, R. Transsphenoidal Surgery for Growth Hormone–Secreting Pituitary Adenomas in 130 Patients. World Neurosurg. 2014, 81, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Buliman, A.; Tataranu, L.G.; Ciubotaru, V.; Cazac, T.L.; Dumitrache, C. The Multimodal Management of GH-Secreting Pituitary Adenomas: Predictive Factors, Strategies and Outcomes. J. Med. Life 2016, 9, 187. [Google Scholar] [PubMed]
- Sheaves, R.; Jenkins, P.; Blackburn, P.; Huneidi, A.H.; Afshar, F.; Medbak, S.; Grossman, A.B.; Besser, G.M.; Wass, J.A.H. Outcome of Transsphenoidal Surgery for Acromegaly Using Strict Criteria for Surgical Cure. Clin. Endocrinol. 1996, 45, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Freda, P.U.; Wardlaw, S.L.; Post, K.D. Long-Term Endocrinological Follow-up Evaluation in 115 Patients Who Underwent Transsphenoidal Surgery for Acromegaly. J. Neurosurg. 1998, 89, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Elsheikh, M.; Stratton, I.M.; Page, R.C.L.; Adams, C.B.T.; Wass, J.A.H. Outcome of Transphenoidal Surgery for Acromegaly and Its Relationship to Surgical Experience. Clin. Endocrinol. 1999, 50, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Anik, I.; Cabuk, B.; Gokbel, A.; Selek, A.; Cetinarslan, B.; Anik, Y.; Ceylan, S. Endoscopic Transsphenoidal Approach for Acromegaly with Remission Rates in 401 Patients: 2010 Consensus Criteria. World Neurosurg. 2017, 108, 278–290. [Google Scholar] [CrossRef]
- Leopoldo, C.M.d.S.; Leopoldo, F.M.d.S.; Santos, A.R.L.d.; Veiga, J.C.E.; Lima Junior, J.V.; Scalissi, N.M.; Lazarini, P.R.; Dolci, R.L.L. Long Term Follow-up of Growth Hormone-Secreting Pituitary Adenomas Submitted to Endoscopic Endonasal Surgery. Arq. Neuropsiquiatr. 2017, 75, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Esposito, F.; Cappabianca, P.; del Basso De Caro, M.; Cavallo, L.M.; Rinaldi, C.; de Divitiis, E. Endoscopic Endonasal Transsphenoidal Removal of an Intra-Suprasellar Schwannoma Mimicking a Pituitary Adenoma. Minim. Invasive Neurosurg. 2004, 47, 230–234. [Google Scholar] [CrossRef]
- Dusek, T.; Kastelan, D.; Melada, A.; Baretic, M.; Skoric Polovina, T.; Perkovic, Z.; Giljevic, Z.; Jelcic, J.; Paladino, J.; Aganovic, I.; et al. Clinical Features and Therapeutic Outcomes of Patients with Acromegaly: Single-Center Experience. J. Endocrinol. Investig. 2011, 34, e382–e385. [Google Scholar] [CrossRef]
- Heck, A.; Emblem, K.E.; Casar-Borota, O.; Bollerslev, J.; Ringstad, G. Quantitative Analyses of T2-Weighted M.R.I. as a Potential Marker for Response to Somatostatin Analogs in Newly Diagnosed Acromegaly. Endocrine 2015, 52, 333–343. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, Q.; Liu, W.; Wang, M.; Zhu, J.; Ma, Z.; He, W.; Li, S.; Shou, X.; Li, Y.; et al. Predictive Value of T2 Relative Signal Intensity for Response to Somatostatin Analogs in Newly Diagnosed Acromegaly. Neuroradiology 2016, 58, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Potorac, I.; Petrossians, P.; Daly, A.F.; Alexopoulou, O.; Borot, S.; Sahnoun-Fathallah, M.; Castinetti, F.; Devuyst, F.; Jaffrain-Rea, M.L.; Briet, C.; et al. T2-Weighted MRI Signal Predicts Hormone and Tumor Responses to Somatostatin Analogs in Acromegaly. Endocr. Relat. Cancer 2016, 23, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, A.; Ringstad, G.; Fougner, S.L.; Casar-Borota, O.; Nome, T.; Ramm-Pettersen, J.; Bollerslev, J. Intensity of Pituitary Adenoma on T2-Weighted Magnetic Resonance Imaging Predicts the Response to Octreotide Treatment in Newly Diagnosed Acromegaly. Clin. Endocrinol. 2012, 77, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Puig-Domingo, M.; Resmini, E.; Gomez-Anson, B.; Nicolau, J.; Mora, M.; Palomera, E.; Martí, C.; Halperin, I.; Webb, S.M. Magnetic Resonance Imaging as a Predictor of Response to Somatostatin Analogs in Acromegaly after Surgical Failure. J. Clin. Endocrinol. Metab. 2010, 95, 4973–4978. [Google Scholar] [CrossRef] [Green Version]
- Kiseljak-Vassiliades, K.; Carlson, N.E.; Borges, M.T.; Kleinschmidt-DeMasters, B.K.; Lillehei, K.O.; Kerr, J.M.; Wierman, M.E. Growth Hormone Tumor Histological Subtypes Predict Response to Surgical and Medical Therapy. Endocrine 2014, 49, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhtiar, Y.; Hirano, H.; Arita, K.; Yunoue, S.; Fujio, S.; Tominaga, A.; Sakoguchi, T.; Sugiyama, K.; Kurisu, K.; Yasufuku-Takano, J.; et al. Relationship between Cytokeratin Staining Patterns and Clinico-Pathological Features in Somatotropinomae. Eur. J. Endocrinol. 2010, 163, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Chacko, A.G.; Chacko, G. An Analysis of Granulation Patterns, MIB-1 Proliferation Indices and P53 Expression in 101 Patients with Acromegaly. Acta Neurochir. 2014, 156, 2221–2230. [Google Scholar] [CrossRef]
- Trouillas, J.; Roy, P.; Sturm, N.; Dantony, E.; Cortet-Rudelli, C.; Brue, T.; Cornelius, A.; Dufour, H.; Jouanneau, E.; François, P.; et al. A New Prognostic Clinicopathological Classification of Pituitary Adenomas: A Multicentric Case-Control Study of 410 Patients with 8 Years Post-Operative Follow-Up. Acta Neuropathol. 2013, 126, 123–135. [Google Scholar] [CrossRef]
- Trouillas, J.; Jaffrain-Rea, M.L.; Vasiljevic, A.; Raverot, G.; Roncaroli, F.; Villa, C.C. How to Classify Pituitary Neuroendocrine Tumors (PitNET)s in 2020. Cancers 2020, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Swanson, A.A.; Erickson, D.; Donegan, D.M.; Jenkins, S.M.; van Gompel, J.J.; Atkinson, J.L.D.; Erickson, B.J.; Giannini, C. Clinical, Biological, Radiological, and Pathological Comparison of Sparsely and Densely Granulated Somatotroph Adenomas: A Single Center Experience from a Cohort of 131 Patients with Acromegaly. Pituitary 2021, 24, 192–206. [Google Scholar] [CrossRef]
- Diri, H.; Ozaslan, E.; Kurtsoy, A.; Tucer, B.; Simsek, Y.; Ozturk, F.; Durak, A.C.; Bayram, F. Prognostic Factors Obtained from Long-Term Follow-up of Pituitary Adenomas and Other Sellar Tumors. Turk. Neurosurg. 2014, 24, 679–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diri, H.; Ozaslan, E.; Kurtsoy, A.; Bayram, F. A Single-Center Observational Study Assessing the Predictive Factors Associated with the Prognosis of Acromegaly. Growth Horm. IGF Res. 2020, 55, 101342. [Google Scholar] [CrossRef]
- Freda, P.U.; Bruce, J.N.; Reyes-Vidal, C.; Singh, S.; DeLeon, Y.; Jin, Z.; Khandji, A.G.; Cremers, S.; Post, K.D. Prognostic Value of Nadir GH Levels for Long-Term Biochemical Remission or Recurrence in Surgically Treated Acromegaly. Pituitary 2021, 24, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Micko, A.S.G.; Wöhrer, A.; Wolfsberger, S.; Knosp, E. Invasion of the Cavernous Sinus Space in Pituitary Adenomas: Endoscopic Verification and Its Correlation with an MRI-Based Classification. J. Neurosurg. 2015, 122, 803–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatzellis, E.; Alexandraki, K.I.; Androulakis, I.I.; Kaltsas, G. Aggressive Pituitary Tumors. Neuroendocrinology 2015, 101, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Cusimano, M.D.; Fenton, R.S. The Technique for Endoscopic Pituitary Tumor Removal. Neurosurg. Focus 1996, 1, E3. [Google Scholar] [CrossRef] [PubMed]
- Carrau, R.L.; Jho, H.D.; Ko, Y. Transnasal-Transsphenoidal Endoscopic Surgery of the Pituitary Gland. Laryngoscope 1996, 106, 914–918. [Google Scholar] [CrossRef]
- Cappabianca, P.; Cavallo, L.M.; Colao, A.; Del Basso De Caro, M.; Esposito, F.; Cirillo, S.; Lombardi, G.; De Divitiis, E. Endoscopic Endonasal Transsphenoidal Approach: Outcome Analysis of 100 Consecutive Procedures. Minim. Invasive Neurosurg. 2002, 45, 193–200. [Google Scholar] [CrossRef]
- Yadav, Y.R.; Sachdev, S.; Parihar, V.; Namdev, H.; Bhatele, P.R. Endoscopic Endonasal Trans-Sphenoid Surgery of Pituitary Adenoma. J. Neurosci. Rural. Pr. 2012, 3, 328. [Google Scholar] [CrossRef]
- Frank, G.; Pasquini, E.; Farneti, G.; Mazzatenta, D.; Sciarretta, V.; Grasso, V.; Fustini, M.F. The Endoscopic versus the Traditional Approach in Pituitary Surgery. Neuroendocrinology 2006, 83, 240–248. [Google Scholar] [CrossRef]
- Dehdashti, A.R.; Ganna, A.; Witterick, I.; Gentili, F. Expanded Endoscopic Endonasal Approach for Anterior Cranial Base and Suprasellar Lesions: Indications and Limitations. Neurosurgery 2009, 64, 677–687. [Google Scholar] [CrossRef] [PubMed]
- De Divitiis, E.; Cappabianca, P.; Cavallo, L.M.; Laws, E.R.; Post, K.D.; Mayberg, M.R.; Ciric, I.S.; Heilman, C.B.; Kryzanski, J.T. Endoscopic Transsphenoidal Approach: Adaptability of the Procedure to Different Sellar Lesions. Neurosurgery 2002, 51, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.R.; Sano, T.; Yoshimoto, K.; Asa, S.L.; Yamada, S.; Mizusawa, N.; Kudo, E. Tumor-Specific Downregulation and Methylation of the CDH13 (H-Cadherin) and CDH1 (E-Cadherin) Genes Correlate with Aggressiveness of Human Pituitary Adenomas. Mod. Pathol. 2007, 20, 1269–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Sano, T.; Yoshimoto, K.; Yamada, S. Downregulation of E-Cadherin and Its Undercoat Proteins in Pituitary Growth Hormone Cell Adenomas with Prominent Fibrous Bodies. Endocr. Pathol. 2002, 13, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.; Sana, T.; Rang, Q.Z.; Kagawa, N.; Yamada, S. Down-Regulation of E-Cadherin and Catenins in Human Pituitary Growth Hormone-Producing Adenomas. Front. Horm. Res. 2004, 32, 127–132. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O. Cytokeratin Profiles in Pituitary Neuroendocrine Tumors. Hum. Pathol. 2021, 107, 87–95. [Google Scholar] [CrossRef]
- Potorac, I.; Beckers, A.; Bonneville, J.F. T2-Weighted MRI Signal Intensity as a Predictor of Hormonal and Tumoral Responses to Somatostatin Receptor Ligands in Acromegaly: A Perspective. Pituitary 2017, 20, 116–120. [Google Scholar] [CrossRef]
- Fernandez-Rodriguez, E.; Casanueva, F.F.; Bernabeu, I. Update on Prognostic Factors in Acromegaly: Is a Risk Score Possible? Pituitary 2015, 18, 431–440. [Google Scholar] [CrossRef]
- Chinezu, L.; Vasiljevic, A.; Jouanneau, E.; François, P.; Borda, A.; Trouillas, J.; Raverot, G. Expression of Somatostatin Receptors, SSTR2A and SSTR5, in 108 Endocrine Pituitary Tumors Using Immunohistochemical Detection with New Specific Monoclonal Antibodies. Hum. Pathol. 2014, 45, 71–77. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Heck, A.; Schulz, S.; Nesland, J.M.; Ramm-Pettersen, J.; Lekva, T.; Alafuzoff, I.; Bollerslev, J. Expression of SSTR2a, but Not of SSTRs 1, 3, or 5 in Somatotroph Adenomas Assessed by Monoclonal Antibodies Was Reduced by Octreotide and Correlated with the Acute and Long-Term Effects of Octreotide. J. Clin. Endocrinol. Metab. 2013, 98, E1730–E1739. [Google Scholar] [CrossRef]
- Gatto, F.; Feelders, R.A.; van der Pas, R.; Kros, J.M.; Waaijers, M.; Sprij-Mooij, D.; Neggers, S.J.C.M.M.; van der Lelij, A.J.; Minuto, F.; Lamberts, S.W.J.; et al. Immunoreactivity Score Using an Anti-Sst2A Receptor Monoclonal Antibody Strongly Predicts the Biochemical Response to Adjuvant Treatment with Somatostatin Analogs in Acromegaly. J. Clin. Endocrinol. Metab. 2013, 98, E66–E71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeffler, J.S.; Shih, H.A. Radiation Therapy in the Management of Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2011, 96, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients (n = 44) |
---|---|
Age (years) | |
Median | 50 |
Range | 30–80 |
Gender n, (%) | |
Male | 26 (59.1) |
Female | 18 (40.9) |
Tumor size n, (%) | |
Microadenoma (<10 mm) | 10 (22.7) |
Macroadenoma (≥10 mm) | 34 (77.3) |
Hardy’s classification | |
Sellar invasion n, (%) | |
0 | 0 |
I | 7 (15.9) |
II | 26 (59.1) |
III | 3 (6.8) |
IV | 8 (18.2) |
Suprasellar/cavernous sinus invasion n, (%) | |
No | 25 (56.8) |
A | 8 (18.2) |
B | 6 (13.6) |
C | 0 |
D | 0 |
E | 5 (11.4) |
Knosp’s classification n, (%) | |
0 | 17 (38.6) |
I | 10 (22.7) |
II | 6 (13.6) |
IIIA | 3 (6.8) |
IIIB | 2 (4.5) |
IV | 5 (11.4) |
Preoperative GH levels (ng/mL) | |
Median | 4.18 |
Range | 0.8–54 |
Preoperative IGF-1 levels (ng/mL) | |
Median | 701 |
Range | 200–1456 |
%ULN IGF-1 | 290.56 |
T2-weighted M.R.I. intensity n, (%) | |
Hypointense | 4 (9.1) |
Isointense | 21 (47.7) |
Hyperintense | 19 (43.2) |
Cytokeratin expression pattern n (%) | |
Densely granulated | 24 (54.5) |
Sparsely granulated | 20 (45.5) |
Ki-67 (%) | |
Median | 1 |
Range | 1–6 |
p53 expression n (%) | 5 (10.9) |
Mitoses (number) | |
Median | 1 |
Range | 1–6 |
Preoperative campimetry n, (%) | |
Normal | 40 (90.9) |
Bitemporal hemianopsia | 3 (6.8) |
PitNET classification n, (%) | |
1a | 26 (59.1) |
1b | 1 (2.3) |
2a | 12 (27.3) |
2b | 5 (11.4) |
3 | 0 |
Hospital length of stay (days) | |
Median | 2 |
Range | 1–15 |
Resection rate n, (%) | |
Gross total resection (>99%) | 29 (65.9) |
Subtotal resection (90–99%) | 13 (29.5) |
Partial resection (<90%) | 2 (4.5) |
Long-term remission (IGF-1 normalization) n, (%) | |
Yes | 31 (70.5) |
No | 13 (29.5) |
Adjuvant therapy (first-line somatostatin receptor analogs) n, (%) | |
Yes | 8 (18.2) |
No | 36 (81.2) |
Recurrence n, (%) | |
Yes | 13 (29.5) |
No | 31 (70.5) |
Need for reintervention n, (%) | |
Yes | 5 (11.4) |
No | 39 (88.6) |
Follow-up campimetry n, (%) | |
Improvement | 1 (2.3%) |
Unchanged | 43 (99.7%) |
Follow-up time (months) | |
Median | 66 |
Range | 26–156 |
Predictive Variable | Subgroup | Outcome Variable | Relative Risk (RR) | p-Value |
---|---|---|---|---|
Clinicopathological classification | 1a | Long-term remission | 2.67 (0.874–1.999) | 0.137 |
Recurrence | 0.298 (0.077–1.145) | 0.072 | ||
Reintervention | 0.417 (0.062–2.791) | 0.325 | ||
1b | Long-term remission | 1.387 (1.152–1.671) | 0.427 | |
Recurrence | 1.433 (1.177–1.745) | 1 | ||
Reintervention | 1.132 (1.015–1.261) | 1 | ||
2a | Long-term remission | 0.1333 (0.092–0.629) | 0.45 | |
Recurrence | 0.733 (0.163–3.304) | 0.733 | ||
Reintervention | 1.933 (0.281-13.295) | 0.417 | ||
2b | Long-term remission | 0.065 (0.006–0.660) | 0.015 | |
Recurrence | 4.875 (2.628–9.042) | 0.001 | ||
Reintervention | 2.188 (0.194–24.679) | 0.47 |
Predictive Variable | Subgroup | Outcome Variable | Relative Risk (RR) | p-Value |
---|---|---|---|---|
MRI T2-weighted intensity | Hyperintensity | Long-term remission | 0.091 (0.017–0.494) | 0.045 |
Recurrence | 13.444 (2.470–73.192) | 0.001 | ||
Reintervention | 1.941 (1.291–12.950) | 0.046 | ||
Cytokeratin expression pattern | Sparsely granulated | Long-term remission | 0.036 (0.004–0.317) | 0.01 |
Recurrence | 34.5 (3.850–350.158) | 0.01 | ||
Reintervention | 1.333 (1.035–1.717) | 0.014 | ||
Densely granulated | Long-term remission | 28.111 (3.154–250.516) | 0.01 | |
Recurrence | 0.029 (0.003–0.260) | 0.01 | ||
Reintervention | 0.750 (0.582–0.966) | 0.014 |
Predictive Variable | Subgroup | Outcome Variable | Relative Risk (RR) | p-Value |
---|---|---|---|---|
AGE | Young | Long-term remission | 0.320 (0.125–0.780) | 0.034 |
Preoperative GH | Elevated | Long-term remission | 1.506 (1.205–4.606) | 0.045 |
Recurrence | 1.700 (1.129–3.808) | 0.043 | ||
Preoperative IGF-1 | Elevated | Long-term remission | 1.490 (1.140–3.650) | 0.024 |
Clinicopathological classification | 2b | Long-term remission | 0.080 (0.020–0.120) | 0.028 |
Reintervention | 2.890 (2.120–4.460) | 0.001 | ||
Knosp’s classification | IV | Reintervention | 4.360; (3.405–8.230) | 0.011 |
MRI T2-weighted intensity | Hyperintensity | Recurrence | 8.704 (4.800–14.350) | 0.026 |
Reintervention | 1.145 (1.032–2.445) | 0.03 | ||
Cytokeratin expression pattern | Sparsely granulated | Long-term remission | 0.200 (0.045–0.776) | 0.042 |
Recurrence | 10.433 (9.321–15.433) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrés, A.; Reyes, L.; Di Somma, A.; Topczewski, T.; Mosteiro, A.; Guizzardi, G.; De Rosa, A.; Halperin, I.; Hanzu, F.; Mora, M.; et al. The Prognostic-Based Approach in Growth Hormone-Secreting Pituitary Neuroendocrine Tumors (PitNET): Tertiary Reference Center, Single Senior Surgeon, and Long-Term Follow-Up. Cancers 2023, 15, 267. https://doi.org/10.3390/cancers15010267
Ferrés A, Reyes L, Di Somma A, Topczewski T, Mosteiro A, Guizzardi G, De Rosa A, Halperin I, Hanzu F, Mora M, et al. The Prognostic-Based Approach in Growth Hormone-Secreting Pituitary Neuroendocrine Tumors (PitNET): Tertiary Reference Center, Single Senior Surgeon, and Long-Term Follow-Up. Cancers. 2023; 15(1):267. https://doi.org/10.3390/cancers15010267
Chicago/Turabian StyleFerrés, Abel, Luís Reyes, Alberto Di Somma, Thomaz Topczewski, Alejandra Mosteiro, Giulia Guizzardi, Andrea De Rosa, Irene Halperin, Felicia Hanzu, Mireia Mora, and et al. 2023. "The Prognostic-Based Approach in Growth Hormone-Secreting Pituitary Neuroendocrine Tumors (PitNET): Tertiary Reference Center, Single Senior Surgeon, and Long-Term Follow-Up" Cancers 15, no. 1: 267. https://doi.org/10.3390/cancers15010267
APA StyleFerrés, A., Reyes, L., Di Somma, A., Topczewski, T., Mosteiro, A., Guizzardi, G., De Rosa, A., Halperin, I., Hanzu, F., Mora, M., Alobid, I., Aldecoa, I., Bargalló, N., & Enseñat, J. (2023). The Prognostic-Based Approach in Growth Hormone-Secreting Pituitary Neuroendocrine Tumors (PitNET): Tertiary Reference Center, Single Senior Surgeon, and Long-Term Follow-Up. Cancers, 15(1), 267. https://doi.org/10.3390/cancers15010267