A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Elaboration
2.2. Feature Extraction and Selection
2.3. Model Building
2.4. Model Evaluation
3. Results
3.1. Dosiomics-Based Models Predicting Overall Recurrence
3.2. Dosiomics-Based Models Predicting in-Field Recurrence
3.3. DVH-Based Models
4. Discussion
4.1. Dosiomics-Based Models Predicting Overall Recurrence
4.2. Dosiomics-Based Models Predicting in-Field Recurrence
4.3. DVH-Based Models and General Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pillai, S.; Govender, S. Sacral Chordoma: A Review of Literature. J. Orthop. 2018, 15, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Barber, S.M.; Sadrameli, S.S.; Lee, J.J.; Fridley, J.S.; Teh, B.S.; Oyelese, A.A.; Telfeian, A.E.; Gokaslan, Z.L. Chordoma—Current Understanding and Modern Treatment Paradigms. J. Clin. Med. 2021, 10, 1054. [Google Scholar] [CrossRef]
- Dial, B.L.; Kerr, D.L.; Lazarides, A.L.; Catanzano, A.A.; Green, C.L.; Risoli, T.; Blazer, D.G.; Goodwin, R.C.; Brigman, B.E.; Eward, W.C.; et al. The Role of Radiotherapy for Chordoma Patients Managed with Surgery: Analysis of the National Cancer Database. Spine 2020, 45, E742–E751. [Google Scholar] [CrossRef] [PubMed]
- Kabolizadeh, P.; Chen, Y.L.; Liebsch, N.; Hornicek, F.J.; Schwab, J.H.; Choy, E.; Rosenthal, D.I.; Niemierko, A.; DeLaney, T.F. Updated Outcome and Analysis of Tumor Response in Mobile Spine and Sacral Chordoma Treated With Definitive High-Dose Photon/Proton Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Yakkioui, Y.; van Overbeeke, J.J.; Santegoeds, R.; van Engeland, M.; Temel, Y. Chordoma: The Entity. In Biochimica et Biophysica Acta—Reviews on Cancer; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1846, pp. 655–669. [Google Scholar]
- Gatfield, E.R.; Noble, D.J.; Barnett, G.C.; Early, N.Y.; Hoole, A.C.F.; Kirkby, N.F.; Jefferies, S.J.; Burnet, N.G. Tumour Volume and Dose Influence Outcome after Surgery and High-Dose Photon Radiotherapy for Chordoma and Chondrosarcoma of the Skull Base and Spine. Clin. Oncol. 2018, 30, 243–253. [Google Scholar] [CrossRef]
- Demizu, Y.; Imai, R.; Kiyohara, H.; Matsunobu, A.; Okamoto, M.; Okimoto, T.; Tsuji, H.; Ohno, T.; Shioyama, Y.; Nemoto, K.; et al. Carbon Ion Radiotherapy for Sacral Chordoma: A Retrospective Nationwide Multicentre Study in Japan. Radiother. Oncol. 2021, 154, 1–5. [Google Scholar] [CrossRef]
- Imai, R.; Kamada, T.; Araki, N.; Abe, S.; Iwamoto, Y.; Ozaki, T.; Kanehira, C.; Kaya, M.; Takahashi, K.; Chuman, H.; et al. Carbon Ion Radiation Therapy for Unresectable Sacral Chordoma: An Analysis of 188 Cases. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 322–327. [Google Scholar] [CrossRef]
- O’Connor, J.P.B.; Robinson, S.P.; Waterton, J.C. Imaging Tumour Hypoxia with Oxygen-Enhanced MRI and BOLD MRI. Br. J. Radiol. 2019, 92, 20180642. [Google Scholar] [CrossRef]
- Gurney-champion, O.J.; Mahmood, F.; Schie, M.V.; Julian, R.; George, B.; Philippens, M.E.P.; Van Der Heide, U.A.; Thorwarth, D.; Redalen, K.R. Quantitative Imaging for Radiotherapy Purposes. Radiother. Oncol. 2020, 146, 66–75. [Google Scholar] [CrossRef]
- Leibfarth, S.; Winter, R.M.; Lyng, H.; Zips, D.; Thorwarth, D. Potentials and Challenges of Diffusion-Weighted Magnetic Resonance Imaging in Radiotherapy. Clin. Transl. Radiat. Oncol. 2018, 13, 29–37. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; De Jong, E.E.C.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Zhang, G.; Qiu, X.; Tan, W.; Yin, X.; Liao, L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front. Oncol. 2022, 12, 1. [Google Scholar] [CrossRef]
- Yin, P.; Mao, N.; Wang, S.; Sun, C.; Hong, N. Clinical-Radiomics Nomograms for Pre-Operative Differentiation of Sacral Chordoma and Sacral Giant Cell Tumor Based on 3D Computed Tomography and Multiparametric Magnetic Resonance Imaging. Br. J. Radiol. 2019, 92, 20190155. [Google Scholar] [CrossRef] [PubMed]
- Fanciullo, C.; Gitto, S.; Carlicchi, E.; Albano, D.; Messina, C.; Sconfienza, L.M. Radiomics of Musculoskeletal Sarcomas: A Narrative Review. J. Imaging 2022, 8, 45. [Google Scholar] [CrossRef]
- Murakami, Y.; Soyano, T.; Kozuka, T.; Ushijima, M.; Koizumi, Y.; Miyauchi, H.; Kaneko, M.; Nakano, M.; Kamima, T.; Hashimoto, T.; et al. Dose-Based Radiomic Analysis (Dosiomics) for Intensity Modulated Radiation Therapy in Patients With Prostate Cancer: Correlation Between Planned Dose Distribution and Biochemical Failure. Int. J. Radiat. Oncol. 2021, 112, 247–259. [Google Scholar] [CrossRef]
- Liang, B.; Yan, H.; Tian, Y.; Chen, X.; Yan, L.; Zhang, T.; Zhou, Z.; Wang, L.; Dai, J. Dosiomics: Extracting 3D Spatial Features from Dose Distribution to Predict Incidence of Radiation Pneumonitis. Front. Oncol. 2019, 9, 269. [Google Scholar] [CrossRef]
- Wu, A.; Li, Y.; Qi, M.; Lu, X.; Jia, Q.; Guo, F.; Dai, Z.; Liu, Y.; Chen, C.; Zhou, L.; et al. Dosiomics Improves Prediction of Locoregional Recurrence for Intensity Modulated Radiotherapy Treated Head and Neck Cancer Cases. Oral Oncol. 2020, 104, 104625. [Google Scholar] [CrossRef]
- Buizza, G.; Paganelli, C.; D’Ippolito, E.; Fontana, G.; Molinelli, S.; Preda, L.; Riva, G.; Iannalfi, A.; Valvo, F.; Orlandi, E.; et al. Radiomics and Dosiomics for Predicting Local Control after Carbon-Ion Radiotherapy in Skull-Base Chordoma. Cancers 2021, 13, 339. [Google Scholar] [CrossRef]
- Matsumoto, S.; Lee, S.H.; Imai, R.; Inaniwa, T.; Matsufuji, N.; Fukahori, M.; Kohno, R.; Yonai, S.; Okonogi, N.; Yamada, S.; et al. Unresectable Chondrosarcomas Treated with Carbon Ion Radiotherapy: Relationship between Dose-Averaged Linear Energy Transfer and Local Recurrence. Anticancer Res. 2020, 40, 6429–6435. [Google Scholar] [CrossRef]
- Molinelli, S.; Magro, G.; Mairani, A.; Allajbej, A.; Mirandola, A.; Chalaszczyk, A.; Imparato, S.; Ciocca, M.; Fiore, M.R.; Orlandi, E. How LEM-Based RBE and Dose-Averaged LET Affected Clinical Outcomes of Sacral Chordoma Patients Treated with Carbon Ion Radiotherapy. Radiother. Oncol. 2021, 163, 209–214. [Google Scholar] [CrossRef]
- Kramer, M.; Scholz, M. Treatment Planning for Heavy-Ion Radiotherapy: Calculation and Optimization of Biologically Effective Dose. Phys. Med. Biol. 2000, 45, 3319–3330. [Google Scholar] [CrossRef] [PubMed]
- Inaniwa, T.; Furukawa, T.; Kase, Y.; Matsufuji, N.; Toshito, T.; Matsumoto, Y.; Furusawa, Y.; Noda, K. Treatment Planning for a Scanned Carbon Beam with a Modified Microdosimetric Kinetic Model. Phys. Med. Biol. 2010, 55, 6721–6737. [Google Scholar] [CrossRef]
- Puttanawarut, C.; Sirirutbunkajorn, N.; Tawong, N.; Jiarpinitnun, C.; Khachonkham, S.; Pattaranutaporn, P.; Wongsawat, Y. Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer. Front. Oncol. 2022, 12, 768152. [Google Scholar] [CrossRef] [PubMed]
- Puttanawarut, C.; Sirirutbunkajorn, N.; Khachonkham, S.; Pattaranutaporn, P.; Wongsawat, Y. Biological Dosiomic Features for the Prediction of Radiation Pneumonitis in Esophageal Cancer Patients. Radiat. Oncol. 2021, 16, 220. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Bijman, R.; Schillemans, W.; Aluwini, S.; Cavedon, C.; Witte, M.; Incrocci, L.; Heijmen, B. Texture Analysis of 3D Dose Distributions for Predictive Modelling of Toxicity Rates in Radiotherapy. Radiother. Oncol. 2018, 129, 548–553. [Google Scholar] [CrossRef]
- Choi, K.; Mein, S.B.; Kopp, B.; Magro, G.; Molinelli, S.; Ciocca, M.; Mairani, A. FRoG—A New Calculation Engine for Clinical Investigations with Proton and Carbon Ion Beams at CNAO. Cancers 2018, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, S.; Fossati, P.; Stacchiotti, S.; Akiyama, T.; Asencio, J.M.; Bandiera, S.; Boglione, A.; Boland, P.; Bolle, S.; Bruland; et al. The Sacral Chordoma Margin. Eur. J. Surg. Oncol. 2020, 46, 1415–1422. [Google Scholar] [CrossRef]
- Burnet, N.G.; Thomas, S.J.; Burton, K.E.; Jefferies, S.J. Defining the Tumour and Target Volumes for Radiotherapy. Cancer Imaging 2004, 4, 153–161. [Google Scholar] [CrossRef]
- Sulewski, P. Equal-Bin-Width Histogram versus Equal-Bin-Count Histogram. J. Appl. Stat. 2021, 48, 2092. [Google Scholar] [CrossRef]
- Freedman, D.; Diaconis, P. On the Histogram as a Density Estimator:L 2 Theory. Z. Für Wahrscheinlichkeitstheorie Verwandte Geb. 1981, 57, 453–476. [Google Scholar] [CrossRef]
- Luo, L.M.; Huang, B.T.; Chen, C.Z.; Wang, Y.; Su, C.H.; Peng, G.B.; Zeng, C.B.; Wu, Y.X.; Wang, R.H.; Huang, K.; et al. A Combined Model to Improve the Prediction of Local Control for Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Based on Radiomic Signature Plus Clinical and Dosimetric Parameters. Front. Oncol. 2022, 11, 819047. [Google Scholar] [CrossRef]
- Gao, X.; Ma, T.; Bai, S.; Liu, Y.; Zhang, Y.; Wu, Y.; Li, H.; Ye, Z. A CT-Based Radiomics Signature for Evaluating Tumor Infiltrating Treg Cells and Outcome Prediction of Gastric Cancer. Ann. Transl. Med. 2020, 8, 469. [Google Scholar] [CrossRef]
- Ebert, M.A.; Gulliford, S.; Acosta, O.; De Crevoisier, R.; McNutt, T.; Heemsbergen, W.D.; Witte, M.; Palma, G.; Rancati, T.; Fiorino, C. Spatial Descriptions of Radiotherapy Dose: Normal Tissue Complication Models and Statistical Associations. Phys. Med. Biol. 2021, 66, 12TR01. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.H.; Liu, L.Z.; Zhang, Z.Z.; Shi, J.Y.; Dong, L.Q.; Tian, L.Y.; Ding, Z.B.; Ji, Y.; Rao, S.X.; Zhou, J.; et al. Radiomics Score: A Potential Prognostic Imaging Feature for Postoperative Survival of Solitary HCC Patients. BMC Cancer 2018, 18, 1148. [Google Scholar] [CrossRef] [PubMed]
- Munger, A.M.; Geddes, B.J.; Lee, F.Y. Defining Preoperative Imaging Findings of Sacral Chordomas Associated with Decreased Overall Survival and Local Recurrence. J. Spine Surg. 2019, 5, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Limkin, E.J.; Reuzé, S.; Carré, A.; Sun, R.; Schernberg, A.; Alexis, A.; Deutsch, E.; Ferté, C.; Robert, C. The Complexity of Tumor Shape, Spiculatedness, Correlates with Tumor Radiomic Shape Features. Sci. Rep. 2019, 9, 4329. [Google Scholar] [CrossRef]
- Placidi, L.; Lenkowicz, J.; Cusumano, D.; Boldrini, L.; Dinapoli, N.; Valentini, V. Stability of Dosomics Features Extraction on Grid Resolution and Algorithm for Radiotherapy Dose Calculation. Phys. Med. 2020, 77, 30–35. [Google Scholar] [CrossRef]
- Placidi, L.; Gioscio, E.; Garibaldi, C.; Rancati, T.; Fanizzi, A.; Maestri, D.; Massafra, R.; Menghi, E.; Mirandola, A.; Reggiori, G.; et al. A Multicentre Evaluation of Dosiomics Features Reproducibility, Stability and Sensitivity. Cancers 2021, 13, 3835. [Google Scholar] [CrossRef]
- Yip, S.S.F.; Aerts, H.J.W.L. Applications and Limitations of Radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef]
- Roach, D.; Holloway, L.C.; Jameson, M.G.; Dowling, J.A.; Kennedy, A.; Greer, P.B.; Krawiec, M.; Rai, R.; Denham, J.; De Leon, J.; et al. Multi-Observer Contouring of Male Pelvic Anatomy: Highly Variable Agreement across Conventional and Emerging Structures of Interest. J. Med. Imaging Radiat. Oncol. 2019, 63, 264–271. [Google Scholar] [CrossRef]
Dosiomics-Based | DVH-Based | ||||||
---|---|---|---|---|---|---|---|
Selection | LETd | DLEM | DMKM | LETd | DLEM | DMKM | |
LC vs. LR | MW | 0.71/0.19 | n.a. | 0.70/0.19 | 0.58/0.29 | 0.45/0.12 | 0.45/0.17 |
LASSO | 0.71/0.18 | 0.70/0.18 | 0.69/0.15 | ||||
LC vs. HD-LR | MW | 0.80/0.21 | 0.80/0.22 | 0.76/0.32 | 0.61/0.18 | 0.65/0.38 | 0.64/0.39 |
LASSO | 0.86/0.22 * | 0.83/0.22 * | 0.80/0.21 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morelli, L.; Parrella, G.; Molinelli, S.; Magro, G.; Annunziata, S.; Mairani, A.; Chalaszczyk, A.; Fiore, M.R.; Ciocca, M.; Paganelli, C.; et al. A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy. Cancers 2023, 15, 33. https://doi.org/10.3390/cancers15010033
Morelli L, Parrella G, Molinelli S, Magro G, Annunziata S, Mairani A, Chalaszczyk A, Fiore MR, Ciocca M, Paganelli C, et al. A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy. Cancers. 2023; 15(1):33. https://doi.org/10.3390/cancers15010033
Chicago/Turabian StyleMorelli, Letizia, Giovanni Parrella, Silvia Molinelli, Giuseppe Magro, Simone Annunziata, Andrea Mairani, Agnieszka Chalaszczyk, Maria Rosaria Fiore, Mario Ciocca, Chiara Paganelli, and et al. 2023. "A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy" Cancers 15, no. 1: 33. https://doi.org/10.3390/cancers15010033
APA StyleMorelli, L., Parrella, G., Molinelli, S., Magro, G., Annunziata, S., Mairani, A., Chalaszczyk, A., Fiore, M. R., Ciocca, M., Paganelli, C., Orlandi, E., & Baroni, G. (2023). A Dosiomics Analysis Based on Linear Energy Transfer and Biological Dose Maps to Predict Local Recurrence in Sacral Chordomas after Carbon-Ion Radiotherapy. Cancers, 15(1), 33. https://doi.org/10.3390/cancers15010033