Locally Performed HRD Testing for Ovarian Cancer? Yes, We Can!
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. DNA Extraction
2.3. HRD Assay
2.4. Evaluation of HRR Pathway Genes Using a Next-Generation Sequencing (NGS) Custom Panel
2.5. Germline BRCA Testing
2.6. FISH Analysis
2.7. Statistical Analyses
3. Results
3.1. Comparison of AmoyDx HRD Focus Panel and Myriad MyChoiceCDx for Assessing HRD Status
3.2. Investigation of HRR Pathway Gene Alterations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, A.N. Natural history of ovarian cancer. J. Cancer Sci. Ther. 2014, 6, 465. [Google Scholar] [CrossRef] [Green Version]
- National Institutes of Health; National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Female Breast Cancer; National Cancer Institute, NIH: Bethesda, MD, USA, 2020. Available online: https://seer.cancer.gov/statfacts/html/ovary.html (accessed on 15 November 2022).
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-C.; Lin, P.-H.; Cheng, W.-F. Homologous Recombination Deficiency Assays in Epithelial Ovarian Cancer: Current Status and Future Direction. Front. Oncol. 2021, 11, 675972. [Google Scholar] [CrossRef]
- George, S.H.L.; Shaw, P. BRCA and early events in the development of serous ovarian cancer. Front. Oncol. 2014, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A.; Etemadmoghadam, D.; Temple, J.; Lynch, A.G.; Riad, M.; Sharma, R.; Stewart, C.; Fereday, S.; Caldas, C.; Defazio, A.; et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 2010, 221, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008, 8, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Watkins, J.A.; Irshad, S.; Grigoriadis, A.; Tutt, A.N.J. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res. 2014, 16, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creeden, J.F.; Nanavaty, N.S.; Einloth, K.R.; Gillman, C.E.; Stanbery, L.; Hamouda, D.M.; Dworkin, L.; Nemunaitis, J. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer 2021, 21, 1154. [Google Scholar] [CrossRef]
- Ngoi, N.Y.L.; Tan, D.S.P. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: Do we need it? ESMO Open 2021, 6, 100144. [Google Scholar] [CrossRef] [PubMed]
- Franzese, E.; Centonze, S.; Diana, A.; Carlino, F.; Guerrera, L.P.; Di Napoli, M.; De Vita, F.; Pignata, S.; Ciardiello, F.; Orditura, M. PARP inhibitors in ovarian cancer. Cancer Treat. Rev. 2019, 73, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Campo, J.M.; Matulonis, U.A.; Malander, S.; Provencher, D.; Mahner, S.; Follana, P.; Waters, J.; Berek, J.S.; Woie, K.; Oza, A.M.; et al. Niraparib maintenance therapy in patients with recurrent ovarian cancer after a partial response to the last platinum-based chemotherapy in the ENGOT-OV16/NOVA trial. J. Clin. Oncol. 2019, 37, 2968–2973. [Google Scholar] [CrossRef] [PubMed]
- Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2416–2428. [Google Scholar] [CrossRef]
- González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.N.; Secord, A.A.; Geller, M.A.; Miller, D.S.; Cloven, N.; Fleming, G.F.; Wahner Hendrickson, A.E.; Azodi, M.; DiSilvestro, P.; Oza, A.M.; et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2019, 20, 636–648. [Google Scholar] [CrossRef]
- Coleman, R.L.; Fleming, G.F.; Brady, M.F.; Swisher, E.M.; Steffensen, K.D.; Friedlander, M.; Okamoto, A.; Moore, K.N.; Efrat Ben-Baruch, N.; Werner, T.L.; et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2403–2415. [Google Scholar] [CrossRef]
- Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): Phase 3 trial. Lancet 2017, 390, 1949–1961. [Google Scholar] [CrossRef] [Green Version]
- Pennington, K.P.; Walsh, T.; Harrell, M.I.; Lee, M.K.; Pennil, C.C.; Rendi, M.H.; Thornton, A.; Norquist, B.M.; Casadei, S.; Nord, A.S.; et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014, 20, 764–775. [Google Scholar] [CrossRef] [Green Version]
- Konstantinopoulos, P.A.; Lacchetti, C.; Annunziata, C.M. Germline and Somatic Tumor Testing in Epithelial Ovarian Cancer: ASCO Guideline Summary. JCO Oncol. Pract. 2020, 16, e835–e838. [Google Scholar] [CrossRef]
- Schiavo Lena, M.; Cangi, M.G.; Pecciarini, L.; Francaviglia, I.; Grassini, G.; Maire, R.; Partelli, S.; Falconi, M.; Perren, A.; Doglioni, C. Evidence of a common cell origin in a case of pancreatic mixed intraductal papillary mucinous neoplasm–neuroendocrine tumor. Virchows Arch. 2021, 478, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Anesthesia Analg. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francaviglia, I.; Magliacane, G.; Lazzari, C.; Grassini, G.; Brunetto, E.; Dal Cin, E.; Girlando, S.; Medicina, D.; Smart, C.E.; Bulotta, A.; et al. Identification and monitoring of somatic mutations in circulating cell-free tumor DNA in lung cancer patients. Lung Cancer 2019, 134, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Redegalli, M.; Grassini, G.; Magliacane, G.; Pecciarini, L.; Lena, M.S.; Smart, C.E.; Johnston, R.L.; Waddell, N.; Maestro, R.; Macchini, M.; et al. Routine molecular profiling in both resectable and unresectable pancreatic adenocarcinoma: Relevance of cytological samples. Clin. Gastroenterol. Hepatol. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Capoluongo, E.D.; Pellegrino, B.; Arenare, L.; Califano, D.; Scambia, G.; Beltrame, L.; Serra, V.; Scaglione, G.L.; Spina, A.; Cecere, S.C.; et al. Alternative academic approaches for testing homologous recombination deficiency in ovarian cancer in the MITO16A/MaNGO-OV2 trial. ESMO Open 2022, 7, 100585. [Google Scholar] [CrossRef] [PubMed]
- Magliacane, G.; Grassini, G.; Bartocci, P.; Francaviglia, I.; Cin, E.D.; Barbieri, G.; Arrigoni, G.; Pecciarini, L.; Doglioni, C.; Cangi, M.G. Rapid targeted somatic mutation analysis of solid tumors in routine clinical diagnostics. Oncotarget 2015, 6, 30592–30603. [Google Scholar] [CrossRef] [Green Version]
- Weichert, W.; Lukashchuk, N.; Yarunin, A.; Riva, L.; Easter, A.; Bannister, H.; Qiu, P.; French, T. An evaluation of the performance of molecular assays to identify homologous recombination deficiency-positive tumors in ovarian cancer. Int. J Gynecol. Cancer 2021, 31, A366. [Google Scholar]
- Fumagalli, C.; Betella, I.; Ranghiero, A.; Guerini-Rocco, E.; Bonaldo, G.; Rappa, A.; Vacirca, D.; Colombo, N.; Barberis, M. In-house testing for homologous recombination repair deficiency (HRD) testing in ovarian carcinoma: A feasibility study comparing AmoyDx HRD Focus panel with Myriad myChoiceCDx assay. Pathologica 2022, 114, 288–294. [Google Scholar] [CrossRef]
- Mendes-Pereira, A.M.; Martin, S.A.; Brough, R.; McCarthy, A.; Taylor, J.R.; Kim, J.; Waldman, T.; Lord, C.J.; Ashworth, A. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 2009, 1, 315–322. [Google Scholar] [CrossRef]
- Dedes, K.J.; Wilkerson, P.M.; Wetterskog, D.; Weigelt, B.; Ashworth, A.; Reis-Filho, J.S. Synthetic lethality of PARP inhibition in cancers lacking BRCA1 and BRCA2 mutations. Cell Cycle 2011, 10, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, P.M.; Dedes, K.J.; Wetterskog, D.; Mackay, A.; Lambros, M.B.; Mansour, M.; Frankum, J.; Lord, C.J.; Natrajan, R.; Ashworth, A.; et al. Functional characterization of EMSY gene amplification in human cancers. J. Pathol. 2011, 225, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Hughes-Davies, L.; Huntsman, D.; Ruas, M.; Fuks, F.; Bye, J.; Chin, S.-F.; Milner, J.; Brown, L.A.; Hsu, F.; Gilks, B.; et al. EMSY Links the BRCA2 Pathway to Sporadic Breast and Ovarian Cancer. Cell 2003, 115, 523–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantinopoulos, P.A.; Ceccaldi, R.; Shapiro, G.I.; D’Andrea, A.D. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov. 2015, 5, 1137–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noordermeer, S.M.; van Attikum, H. PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends Cell Biol. 2019, 29, 820–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giudice, E.; Gentile, M.; Salutari, V.; Ricci, C.; Musacchio, L.; Carbone, M.V.; Ghizzoni, V.; Camarda, F.; Tronconi, F.; Nero, C.; et al. PARP Inhibitors Resistance: Mechanisms and Perspectives. Cancers 2022, 14, 1420. [Google Scholar] [CrossRef]
- Loveday, C.; Breast Cancer Susceptibility Collaboration (UK); Turnbull, C.; Ramsay, E.; Hughes, D.; Ruark, E.; Frankum, J.R.; Bowden, G.; Kalmyrzaev, B.; Warren-Perry, M.; et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011, 43, 879–882. [Google Scholar] [CrossRef]
- Jiang, X.; Li, X.; Li, W.; Bai, H.; Zhang, Z. PARP inhibitors in ovarian cancer: Sensitivity prediction and resistance mechanisms. J. Cell. Mol. Med. 2019, 23, 2303–2313. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Barcia, V.; Muñoz, A.; Castro, E.; Ballesteros, A.I.; Marquina, G.; González-Díaz, I.; Colomer, R.; Romero-Laorden, N. The Homologous Recombination Deficiency Scar in Advanced Cancer: Agnostic Targeting of Damaged DNA Repair. Cancers 2022, 14, 2950. [Google Scholar] [CrossRef]
Pt | Age | Sample | pT | G | pN | Therapy | Maintenance | PFS | Progr | Recur | Currently |
---|---|---|---|---|---|---|---|---|---|---|---|
ID_01 | 47 | SS | 3c | IV | 1a | C + T + B | B + Ola | 13 | NED-maintenance ongoing | ||
ID_02 | 50 | SS | 3c | IV | x | C + T + B | B | FU lost ° | / | ||
ID_03 | 68 | SS | 3b | IV | x | C + T | NO | 5 | yes | under evaluation | |
ID_04 | 59 | SS | 3c | IV | 0 | C + T | Ola | 10 | NED-maintenance ongoing | ||
ID_05 | 36 | Bx | III | C + T + IDS | Nira | 4 | yes | T + B ongoing | |||
ID_06 | 43 | Bx | IV | C + T + IDS | Ola | 4 | yes | T + B ongoing | |||
ID_07 | 61 | Bx | III | C + T + IDS + B | B | 10 | NED-B ongoing | ||||
ID_08 | 39 | Bx | III | C + T + IDS | Nira * | 7 | NED | ||||
ID_09 | 51 | SS | 3c | III/IV | 1a | C + T | Ola | 8 | NED-Ola ongoing | ||
ID_10 | 56 | Bx | III | C + T + IDS | Ola | 6 | NED-Ola ongoing | ||||
ID_11 | 66 | Bx | - | C + T | Nira | 5 | yes | ||||
ID_12 | 69 | Bx | IV | C + T + IDS | starting Ola | ||||||
ID_13 | 67 | SS | 3c | IV | 0 | C + T | Nira | 3 | NED-Nira ongoing | ||
ID_14 | 53 | Bx | III | C + T | NO ^ | 13 | yes | C + T; Nira ongoing | |||
ID_15 | 68 | SS | 2b | III | x | C + T | NO ^ | 5 | NED | ||
ID_16 | 62 | SS | 2b | III | 0 | C + T | NO ^ | 10 | NED |
AmoyDx HRD Focus Panel | Myriad MyChoice CDx | BRCA1/2 Testing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pt | HRD | GIS | BRCA | Significance | HRD | GIS | BRCA | Significance | Somatic $ | Germline |
ID_01 | + | 99.2 | - | All benign | + | 72 | - | All benign | WT | |
ID_02 | + | 100 | - | All benign | + | 51 | - | All benign | WT | |
ID_03 | - | 45.4 | - | All benign | - | 28 | - | All benign | WT | |
ID_04 | + | 98.3 | + | Pathogenic | + | 60 | + | Deleterious | * BRCA2 p.Tyr1739Ter (c.5217_5220del) 89% | yes |
ID_05 | + | 98.3 | - | All benign | + | 66 | - | All benign | WT | |
ID_06 | + | 97.3 | + | Pathogenic | + | 54 | + | Deleterious | * BRCA1 p.Tyr777Ter (c.2331T > G) 76% | yes |
ID_07 | - | 36.1 | - | Likely-benign | - | 36 | - | All benign | WT | |
ID_08 | + | 97.1 | - | All benign | + | 48 | - | All benign | WT | |
ID_09 | + | 97.6 | + | Likely-pathogenic | + | 60 | + | Deleterious | * BRCA2 p.Ala1327ProfsTer8 (c.3979delG) 76% | no |
ID_10 | + | 96.8 | + | Pathogenic | + | 57 | + | Deleterious | * BRCA2 p.Val1283LysfsTer2 (c.3847_3848delGT) 79% | yes |
ID_11 | + | 100 | - | All benign | + | 67 | - | All benign | WT | |
ID_12 | + | 59.1 | + | Likely-pathogenic | + | 36 | + | Deleterious | * BRCA2 p.Asn615ThrfsTer29 (c.1842delT) 24% | no |
ID_13 | - | 14.1 | - | All benign | - | 22 | - | All benign | WT | |
ID_14 | + | 98.9 | - | All benign | na | na | WT | |||
ID_15 | + | 72 | - | All benign | na | na | WT | |||
ID_16 | + | 84 | + | Uncertain | na | na | ^ BRCA2 p.Arg2991Cys (c.8971C > T) 31% |
Pt | HRD | BRCA-Expanded Panel | ||
---|---|---|---|---|
Variant | VAF | Significance | ||
ID_01 | + | TP53 p.Pro190Thr (c.568C > A) | 82% | VUS |
ID_02 | + | WT | ||
ID_03 | - | TP53 p.Arg175His (c.524G > A) | 73% | Pathogenic |
ID_04 | + | BRCA2 p.Tyr1739Ter (c.5217_5220del) | 89% | Pathogenic |
ID_05 | + | ATM p.His2552Asn (c.7654C > A) | 44% | VUS |
ID_06 | + | BRCA1 p.Tyr777Ter (c.2331T > G) | 76% | Pathogenic |
ID_07 | - | TP53 p.Arg175His (c.524G > A) | 64% | Pathogenic |
ID_08 | + | TP53 p.Cys141Tyr (c.422G > A) | 90% | Pathogenic |
ID_09 | + | BRCA2 p.Ala1327ProfsTer8 (c.3979delG) | 76% | Likely-pathogenic |
ID_10 | + | BRCA2 p.Val1283LysfsTer2 (c.3847_3848delGT) | 79% | Pathogenic |
ID_11 | + | TP53 p.Tyr163Cys (c.488A > G) | 48% | Pathogenic |
ID_12 | + | BRCA2 p.Asn615ThrfsTer29 (c.1842delT) | 24% | Likely-pathogenic |
ID_13 | - | TP53 p.Cys182AlafsTer65 (c.544delT) | 72% | Likely-pathogenic |
ID_14 | + | RAD51D p.Cys9Ser (c.26G > C) | 71% | VUS |
ID_15 | + | ATM p.Tyr454His (c.1360T > C) | 40% | VUS |
ID_16 | + | BRCA2 p.Arg2991Cys (c.8971C > T) | 31% | VUS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magliacane, G.; Brunetto, E.; Calzavara, S.; Bergamini, A.; Pipitone, G.B.; Marra, G.; Redegalli, M.; Grassini, G.; Rabaiotti, E.; Taccagni, G.; et al. Locally Performed HRD Testing for Ovarian Cancer? Yes, We Can! Cancers 2023, 15, 43. https://doi.org/10.3390/cancers15010043
Magliacane G, Brunetto E, Calzavara S, Bergamini A, Pipitone GB, Marra G, Redegalli M, Grassini G, Rabaiotti E, Taccagni G, et al. Locally Performed HRD Testing for Ovarian Cancer? Yes, We Can! Cancers. 2023; 15(1):43. https://doi.org/10.3390/cancers15010043
Chicago/Turabian StyleMagliacane, Gilda, Emanuela Brunetto, Silvia Calzavara, Alice Bergamini, Giovanni Battista Pipitone, Giovanna Marra, Miriam Redegalli, Greta Grassini, Emanuela Rabaiotti, Gianluca Taccagni, and et al. 2023. "Locally Performed HRD Testing for Ovarian Cancer? Yes, We Can!" Cancers 15, no. 1: 43. https://doi.org/10.3390/cancers15010043
APA StyleMagliacane, G., Brunetto, E., Calzavara, S., Bergamini, A., Pipitone, G. B., Marra, G., Redegalli, M., Grassini, G., Rabaiotti, E., Taccagni, G., Pecciarini, L., Carrera, P., Mangili, G., Doglioni, C., & Cangi, M. G. (2023). Locally Performed HRD Testing for Ovarian Cancer? Yes, We Can! Cancers, 15(1), 43. https://doi.org/10.3390/cancers15010043