Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of the Sorting Nexin Family of Proteins
3. Structure and Function of SNX27
3.1. SNX27 and Its Special Domains
3.2. SNX27 Mediated Endosomal Recycling of Proteins
3.3. SNX27 and Activation of T-cells
3.4. SNX27 in Neurodegenerative Disorders
4. Identifying the Novel Role of SNX27 in Cancer
Target | Type of Cancer | Ref. |
---|---|---|
β2-ar | Breast, gastric, pancreatic, squamous cell carcinoma | [95] |
GIRK2 | Breast, lung, hepatocellular carcinoma | [91] |
PTHR | Breast, colorectal, prostate cancer | [96] |
mGluR5 | Gliomas, melanoma, prostate, hepatocellular carcinoma | [97] |
FZD7 | Prostate, glioma, gastric, lung, hepatocellular carcinoma | [94] |
ASCT2 | Breast, lung, prostate cancer | [98] |
MRP4 | Leukemia, liver, lung cancer | [99] |
SSTR5 | Pituitary adenomas, prostate cancer | [100] |
CASP | Breast, pancreatic, hepatocellular carcinoma | [101] |
NR2C | Pancreatic cancer | [102] |
AQP2 | Renal cancer | [103] |
β-Pix | Breast and colorectal cancer | [104] |
mTOR | Several cancers: mediates cancer cell survival under stress | [105] |
GLUT1 | Several cancers: mediates nutrition uptake in cancer cells | [106] |
DGKζ | Several cancers: mediates immune checkpoint in cells | [107] |
5. Roles of other SNX Members in Solid Cancers
6. Discovering SNX Proteins in Liquid Cancers
Member | Type of Cancer | Associated Protein | Mechanism of Action | Ref. |
---|---|---|---|---|
SNX27 | Acute myeloid leukemia | Unknown | SNX27 deletion reduces tumor cell viability and proliferation | [130] |
Adult T-cell leukemia | Tax1 | Tax-1 interacts with SNX27 to regulate GLUT-1 and pathogenesis of ATL causing virus HTLV-1 | [131] | |
Breast cancer | MT1-MMP | SNX27 directly recycles MT1-MMP and enhances tumor invasiveness | [50] | |
Breast cancer | E-cadherin, Vimentin | SNX27 deletion regulates EMT markers and reduces tumor cell viability and proliferation | [87] | |
SNX1 | Gastric cancer | E-cadherin | Upregulation of SNX1 reduces tumor cell invasion and aggressiveness | [109,110] |
SNX5 | Thyroid cancer | Unknown | SNX5 expression decreases with tumor progression | [111,112] |
Head and neck squamous cell carcinoma | Mcl-1 | SNX5 deletion induces apoptosis | [113] | |
SNX6 | Pancreatic cancer | ZEB-1, E-cadherin, N-cadherin | SNX6 deletion regulates EMT markers and reduces tumor cell aggressiveness | [115] |
SNX9 | Breast cancer | MT1-MMP | Upregulation of SNX9 promotes MT1-MMP endocytosis and reduces tumor invasiveness | [117] |
[ADAM9 implicated in leukemia and lymphoma] | ADAM9 | SNX9 negatively regulates ADAM9 surface levels | [128] | |
SNX2 | Acute myeloid leukemia | FBP17, EGFR | SNX2 interacts with prognostic FBP17/MLL fusion protein and regulates EGFR signaling | [121] |
B-cell acute lymphoblastic leukemia | ABL1 | Expression of SNX2/ABL1 fusion protein reduces drug sensitivity | [123] | |
SNX10 | B-cell non-Hodgkin lymphoma | Unknown | Deletion of SNX10 reduces drug sensitivity | [127] |
Colorectal Cancer | p21, SRC | Overall downregulated; loss of SNX10 decreases p21 tumor suppressor and increases SRC | [118,119] | |
Hepatocellular carcinoma | miR-30d | SNX10 is silenced by miR-30d oncomir which promotes cancer progression | [120] |
7. Future Perspectives and Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Temkin, P.; Lauffer, B.; Jäger, S.; Cimermancic, P.; Krogan, N.J.; von Zastrow, M. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signaling receptors. Nat. Cell Biol. 2011, 13, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teasdale, R.D.; Collins, B.M. Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: Structures, functions, and roles in disease. Biochem. J. 2012, 441, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, F.; Gallon, M.; Winfield, M.; Thomas, E.C.; Bell, A.J.; Heesom, K.J.; Tavaré, J.M.; Cullen, P.J. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat. Cell Biol. 2013, 15, 461–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, R.; Kametaka, S.; Haft, C.R.; Bonifacino, J.S. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol. Cell Biol. 2007, 25, 1112–1124. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Follett, J.; Kerr, M.C.; Clairfeuille, T.; Chandra, M.; Collins, B.M.; Teasdale, R.D. Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2. J. Biol. Chem. 2018, 293, 6802–6811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheff, D.R.; Daro, E.A.; Hull, M.; Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 1999, 145, 123–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Huang, T.; Hong, Y.; Yang, W.; Zhang, X.; Luo, H.; Xu, H.; Wang, X. The retromer complex and sorting nexins in neurodegenerative diseases. Front. Aging Neurosci. 2018, 10, 79. [Google Scholar] [CrossRef]
- Seaman, M.N.; McCaffery, J.M.; Emr, S.D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 1998, 142, 665–681. [Google Scholar] [CrossRef] [Green Version]
- Hierro, A.; Rojas, A.L.; Rojas, R.; Murthy, N.; Effantin, G.; Kajava, A.V.; Steven, A.C.; Bonifacino, J.S.; Hurley, J.H. Functional architecture of the retromer cargo-recognition complex. Nature 2007, 449, 1063–1067. [Google Scholar] [CrossRef] [Green Version]
- Burd, C.; Cullen, P.J. Retromer: A master conductor of endosome sorting. Cold Spring Harb Perspect Biol. 2014, 6, a016774. [Google Scholar] [CrossRef]
- Harrison, M.S.; Hung, C.S.; Liu, T.T.; Christiano, R.; Walther, T.C.; Burd, C.G. A mechanism for retromer endosomal coat complex assembly with cargo. Proc. Natl. Acad. Sci. USA 2014, 111, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clague, M.J.; Jones, A.T.; Mills, I.G.; Walker, D.M.; Urbé, S. Regulation of early-endosome dynamics by phosphatidylinositol 3-phosphate binding proteins. Biochem. Soc. Trans. 1999, 27, 662–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, P.J. Endosomal sorting and signaling: An emerging role for sorting nexins. Nat. Rev. Mol. Cell Biol. 2008, 9, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Seet, L.F.; Hanson, B.; Hong, W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem. J. 2001, 360, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Haft, C.R.; de la Luz Sierra, M.; Barr, V.A.; Haft, D.H.; Taylor, S.I. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell Biol. 1998, 18, 7278–7287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elwell, C.; Engel, J. Emerging role of retromer in modulating pathogen growth. Trends Microbiol. 2018, 26, 769–780. [Google Scholar] [CrossRef]
- McNally KE and Cullen, P.J. Endosomal retrieval of cargo: Retromer is not alone. Trends Cell Biol. 2018, 28, 807–822. [Google Scholar] [CrossRef] [Green Version]
- Wassmer, T.; Attar, N.; Bujny, M.V.; Oakley, J.; Traer, C.J.; Cullen, P.J. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J. Cell Sci. 2007, 120 Pt 1, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.; Gershlick, D.C.; Vidaurrazaga, A.; Rojas, A.L.; Bonifacino, J.S.; Hierro, A. Structural Mechanism for Cargo Recognition by the Retromer Complex. Cell 2016, 167, 1623–1635. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wu, Y.; Belenkaya, T.Y.; Lin, X. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res. 2011, 21, 1677–1690. [Google Scholar] [CrossRef]
- Tabuchi, M.; Yanatori, I.; Kawai, Y.; Kishi, F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J. Cell Sci. 2010, 123, 756–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, X.; Zhao, L.; Deng, W.; Sun, H.; Zhou, X.; Mao, L.; Hu, W.; Shen, X.; Sun, Q.; Billadeau, D.D.; et al. Mechanism of cargo recognition by retromer-linked SNX-BAR proteins. PLoS Biol. 2020, 18, e3000631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurten, R.C.; Cadena, D.L.; Gill, G.N. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 1996, 272, 1008–1110. [Google Scholar] [CrossRef] [PubMed]
- Kvainickas, A.; Jimenez-Orgaz, A.; Nägele, H.; Hu, Z.; Dengjel, J.; Steinberg, F. Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J. Cell Biol. 2017, 216, 3677–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghai, R.; Mobli, M.; Norwood, S.J.; Bugarcic, A.; Teasdale, R.D.; King, G.F.; Collins, B.M. Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc. Natl. Acad. Sci. USA 2011, 108, 7763–7768. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Chang, J.; Blackstone, C. FAM21 directs SNX27-retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus. Nat. Commun. 2016, 7, 10939. [Google Scholar] [CrossRef] [Green Version]
- Soulet, F.; Yarar, D.; Leonard, M.; Schmid, S.L. SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol. Biol. Cell. 2005, 16, 2058–2067. [Google Scholar] [CrossRef] [Green Version]
- Bendris, N.; Schmid, S.L. Endocytosis, metastasis and beyond: Multiple facets of SNX9. Trends Cell Biol. 2017, 27, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Fuster, J.J.; González, J.M.; Edo, M.D.; Viana, R.; Boya, P.; Cervera, J.; Verges, M.; Rivera, J.; Andrés, V. Tumor suppressor p27(Kip1) undergoes endolysosomal degradation through its interaction with sorting nexin 6. FASEB J. 2010, 24, 2998–3009. [Google Scholar] [CrossRef]
- Li, C.; Ma, W.; Yin, S.; Liang, X.; Shu, X.; Pei, D.; Egan, T.M.; Huang, J.; Pan, A.; Li, Z. Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane TRPV3. Traffic 2016, 17, 500–514. [Google Scholar] [CrossRef]
- Yong, X.; Zhao, L.; Hu, W.; Sun, Q.; Ham, H.; Liu, Z.; Ren, J.; Zhang, Z.; Zhou, Y.; Yang, Q.; et al. SNX27-FERM-SNX1 complex structure rationalizes divergent trafficking pathways by SNX17 and SNX27. Proc. Natl. Acad. Sci. USA 2021, 118, e2105510118. [Google Scholar] [CrossRef] [PubMed]
- Joubert, L.; Hanson, B.; Barthet, G.; Sebben, M.; Claeysen, S.; Hong, W.; Marin, P.; Dumuis, A.; Bockaert, J. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: Roles in receptor targeting. J. Cell Sci. 2004, 117 Pt 22, 5367–5379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunn, M.L.; Nassirpour, R.; Arrabit, C.; Tan, J.; Mcleod, I.; Arias, C.M.; Sawchenko, P.E.; Yates, J.R.; Slesinger, P.A. A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat. Neurosci. 2007, 10, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Rincon, E.; Santos, T.; Avila-Flores, A.; Albar, J.P.; Lalioti, V.; Lei, C.; Hong, W.; Merida, I. Proteomics identification of sorting nexin 27 as a diacylglycerol kinase zeta-associated protein: New diacylglycerol kinase roles in endocytic recycling. Mol. Cell Proteom. 2007, 6, 1073–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clairfeuille, T.; Mas, C.; Chan, A.S.; Yang, Z.; Tello-Lafoz, M.; Chandra, M.; Widagdo, J.; Kerr, M.C.; Paul, B.; Mérida, I.; et al. Molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat. Struct Mol. Biol. 2016, 23, 921–932. [Google Scholar] [CrossRef]
- Lauffer, B.E.; Melero, C.; Temkin, P.; Lei, C.; Hong, W.; Kortemme, T.; von Zastrow, M. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J. Cell Biol. 2010, 190, 565–574. [Google Scholar] [CrossRef] [Green Version]
- van Weering, J.R.; Sessions, R.B.; Traer, C.J.; Kloer, D.P.; Bhatia, V.K.; Stamou, D.; Carlsson, S.R.; Hurley, J.H.; Cullen, P.J. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J. 2012, 31, 4466–4480. [Google Scholar] [CrossRef] [Green Version]
- Derivery, E.; Sousa, C.; Gautier, J.J.; Lombard, B.; Loew, D.; Gautreau, A. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev. Cell. 2009, 17, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Harbour, M.E.; Breusegem, S.Y.; Seaman, M.N. Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem. J. 2012, 442, 209–220. [Google Scholar] [CrossRef]
- Seaman, M.N.; Gautreau, A.; Billadeau, D.D. Retromer-mediated endosomal protein sorting: All WASHed up! Trends Cell Biol. 2013, 23, 522–528. [Google Scholar] [CrossRef]
- Temkin, P.; Morishita, W.; Goswami, D.; Arendt, K.; Chen, L.; Malenka, R. The Retromer Supports AMPA Receptor Trafficking During LTP. Neuron 2017, 94, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stangl, A.; Elliott, P.R.; Pinto-Fernandez, A.; Bonham, S.; Harrison, L.; Schaub, A.; Kutzner, K.; Keusekotten, K.; Pfluger, P.T.; El Oualid, F.; et al. Regulation of the endosomal SNX27-retromer by OTULIN. Nat. Commun. 2019, 10, 4320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Yang, J.; Cha, B.; Chen, T.E.; Sarker, R.; Yin, J.; Avula, L.R.; Tse, M.; Donowitz, M. Sorting nexin 27 regulates basal and stimulated brush border trafficking of NHE3. Mol. Biol. Cell. 2015, 26, 2030–2043. [Google Scholar] [CrossRef]
- Bannert, K.; Berlin, P.; Reiner, J.; Lemcke, H.; David, R.; Engelmann, R.; Lamprecht, G. SNX27 regulates DRA activity and mediates its direct recycling by PDZ-interaction in early endosomes at the apical pole of Caco2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G854–G869. [Google Scholar] [CrossRef] [PubMed]
- Balana, B.; Maslennikov, I.; Kwiatkowski, W.; Stern, K.M.; Bahima, L.; Choe, S.; Slesinger, P.A. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc. Natl. Acad. Sci. USA 2011, 108, 5831–5836. [Google Scholar] [CrossRef] [Green Version]
- Munoz, M.B.; Slesinger, P.A. Sorting nexin 27 regulation of G protein-gated inwardly rectifying K(+) channels attenuates in vivo cocaine response. Neuron 2014, 82, 659–669. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.S.; Clairfeuille, T.; Landao-Bassonga, E.; Kinna, G.; Ng, P.Y.; Loo, L.S.; Cheng, T.S.; Zheng, M.; Hong, W.; Teasdale, R.D.; et al. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol. Biol. Cell. 2016, 27, 1367–1382. [Google Scholar] [CrossRef]
- Lin, T.B.; Lai, C.Y.; Hsieh, M.C.; Wang, H.H.; Cheng, J.K.; Chau, Y.P.; Chen, G.D.; Peng, H.Y. VPS26A-SNX27 interaction-dependent mGluR5 recycling in dorsal horn neurons mediates neuropathic pain in rats. J. Neurosci. 2015, 35, 14943–14955. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Hu, X.; Chen, W.; He, W.; Zhang, Z.; Wang, T. Sorting nexin 27 interacts with Fzd7 and mediates Wnt signalling. Biosci. Rep. 2016, 36, e00296. [Google Scholar] [CrossRef]
- Sharma, P.; Parveen, S.; Shah, L.; Mukherjee, M.; Kalaidzidis, Y.; Kozielski, A.; Rosato, R.; Chang, J.; Datta, S. SNX27–retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J. Cell Biol. 2020, 219, e201812098. [Google Scholar] [CrossRef]
- Zimmerman, S.P.; Hueschen, C.L.; Malide, D.; Milgram, S.L.; Playford, M.P. Sorting nexin 27 (SNX27) associates with zonula occludens-2 (ZO-2) and modulates the epithelial tight junction. Biochem. J. 2013, 455, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, N.K.; Diering, G.H.; Sole, J.; Anggono, V.; Huganir, R.L. Sorting nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc. Natl. Acad. Sci. USA 2014, 111, 11840–11845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, T.; Asahi, M. β1-adrenergic receptor recycles via a membranous organelle, recycling endosome, by binding with sorting nexin27. J. Membr Biol. 2013, 246, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauch, C.; Koliwer, J.; Buck, F.; Hönck, H.H.; Kreienkamp, H.J. Subcellular sorting of the G-protein coupled mouse somatostatin receptor 5 by a network of PDZ-domain containing proteins. PLoS ONE 2014, 9, e88529. [Google Scholar] [CrossRef] [Green Version]
- MacNeil, A.J.; Mansour, M.; Pohajdak, B. Sorting nexin 27 interacts with the cytohesin associated scaffolding protein (CASP) in lymphocytes. Biochem. Biophys. Res. Commun. 2007, 359, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Loo, L.S.; Atlashkin, V.; Hanson, B.J.; Hong, W. Deficiency of sorting nexin 27 (SNX27) leads to growth retardation and elevated levels of N-methyl-D-aspartate (NMDA) receptor 2C (NR2C). Mol. Cell Biol. 2011, 31, 1734–1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Jang, H.J.; Park, E.; Tingskov, S.J.; Nørregaard, R.; Jung, H.J.; Kwon, T.H. Sorting Nexin 27 Regulates the Lysosomal Degradation of Aquaporin-2 Protein in the Kidney Collecting Duct. Cells 2020, 9, 1208. [Google Scholar] [CrossRef] [PubMed]
- Valdes, J.L.; Tang, J.; McDermott, M.I.; Kuo, J.C.; Zimmerman, S.P.; Wincovitch, S.M.; Waterman, C.M.; Milgram, S.L.; Playford, M.P. Sorting nexin 27 protein regulates trafficking of a p21-activated kinase [2] interacting exchange factor (β-Pix)-G protein-coupled receptor kinase interacting protein (GIT) complex via a PDZ domain interaction. J. Biol. Chem. 2011, 286, 39403–39416. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, H.; Naoi, S.; Nakagawa, T.; Nishikawa, T.; Fukuda, H.; Imajoh-Ohmi, S.; Kondo, A.; Kubo, K.; Yabuki, T.; Hattori, A.; et al. Sorting nexin 27 interacts with multidrug resistance-associated protein 4 (MRP4) and mediates internalization of MRP4. J Biol. Chem. 2012, 287, 15054–15065. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.Y.; Zhao, Y.; Li, X.; Wang, X.; Tseng, I.C.; Thompson, R.; Tu, S.; Willnow, T.E.; Zhang, Y.W.; Xu, H. SNX27 and SORLA Interact to Reduce Amyloidogenic Subcellular Distribution and Processing of Amyloid Precursor Protein. J. Neurosci. 2016, 36, 7996–8011. [Google Scholar] [CrossRef]
- Meraviglia, V.; Ulivi, A.F.; Boccazzi, M.; Valenza, F.; Fratangeli, A.; Passafaro, M.; Lecca, D.; Stagni, F.; Giacomini, A.; Bartesaghi, R.; et al. SNX27, a protein involved in down syndrome, regulates GRP17 trafficking and oligodendrocyte differentiation. Glia 2016, 64, 1437–1460. [Google Scholar] [CrossRef] [PubMed]
- Nourry, C.; Grant, S.G.N.; and Borg, J.P. PDZ domain proteins: Plug and play! Sci. STKE 2003, 179, re7. [Google Scholar] [CrossRef] [PubMed]
- Damseh, N.; Danson, C.M.; Al-Ashhab, M.; Abu-Libdeh, B.; Gallon, M.; Sharma, K.; Yaacov, B.; Coulthard, E.; Caldwell, M.A.; Edvardson, S.; et al. A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration. Neurogenetics 2015, 16, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tello-Lafoz, M.; Ghai, R.; Collins, B.; Mérida, I. A role for novel lipid interactions in the dynamic recruitment of SNX27 to the T-cell immune synapse. Bioarchitecture 2014, 4, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunzer, M.; Weishaupt, C.; Hillmer, A.; Basoglu, Y.; Friedl, P.; Dittmar, K.E.; Kolanus, W.; Varga, G.; Grabbe, S. A spectrum of biophysical interaction modes between T cells and different antigen-presenting cells during priming in 3-D collagen and in vivo. Blood 2004, 104, 2801–2809. [Google Scholar] [CrossRef] [Green Version]
- Onnis, A.; Finetti, F.; Baldari, C.T. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front. Immunol. 2016, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Monks, C.R.F.; Freiberg, B.A.; Kupfer, H.; Sciaky, N.; Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998, 395, 82–86. [Google Scholar] [CrossRef]
- Monjas, A.; Alcover, A.; Alarcón, B. Engaged and bystander T cell receptors are down-modulated by different endocytotic pathways. J. Biol. Chem. 2004, 279, 55376–55384. [Google Scholar] [CrossRef] [Green Version]
- Soares, H.; Lasserre, R.; Alcover, A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol. Rev. 2013, 256, 118–132. [Google Scholar] [CrossRef]
- Rincon, E.; de Guinoa, J.S.; Gharbi, S.I.; Sorzano, C.O.S.; Carrasco, Y.R.; Merida, I. Translocation dynamics of sorting nexin 27 in activated T cells. J. Cell Sci. 2011, 124, 776–788. [Google Scholar] [CrossRef]
- Ghai, R.; Tello-Lafoz, M.; Norwood, S.J.; Yang, Z.; Clairfeuille, T.; Teasdale, R.D.; Merida, I.; Collins, B.M. Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells. J. Cell Sci. 2015, 128, 553–565. [Google Scholar] [PubMed] [Green Version]
- Tello-Lafoz, M.; Martínez-Martínez, G.; Rodríguez-Rodríguez, C.; Albar, J.P.; Huse, M.; Gharbi, S.; Merida, I. Sorting nexin 27 interactome in T-lymphocytes identifies zona occludens-2 dynamic redistribution at the immune synapse. Traffic 2017, 18, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almena, M.; Mérida, I. Shaping up the membrane: Diacylglycerol coordinates spatial orientation of signaling. Trends Biochem. Sci. 2011, 36, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Flores, A.; Arranz-Nicolás, J.; Andrada, E.; Soutar, D.; Mérida, I. Predominant contribution of DGKζ over DGKα in the control of PKC/PDK-1-regulated functions in T cells. Immunol. Cell Biol. 2017, 95, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Tello-Lafoz, M.; Rodríguez-Rodríguez, C.; Kinna, G.; Loo, L.S.; Hong, W.; Collins, B.M.; Teasdale, R.D.; Mérida, I. SNX27 links DGKζ to the control of transcriptional and metabolic programs in T lymphocytes. Sci. Rep. 2017, 7, 16361. [Google Scholar] [CrossRef] [Green Version]
- McMillan, K.J.; Korswagen, H.C.; Cullen, P.J. The emerging role of retromer in neuroprotection. Curr. Opin. Cell Biol. 2017, 47, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, Y.; Zhang, X.; Badie, H.; Zhou, Y.; Mu, Y.; Loo, L.S.; Cai, L.; Thompson, R.C.; Yang, B.; et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down’s syndrome. Nat. Med. 2013, 19, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Loo, L.S.; Tang, N.; Al-Haddawi, M.; Dawe, G.S.; Hong, W. A role for sorting nexin 27 in AMPA receptor trafficking. Nat. Commun. 2014, 5, 3176. [Google Scholar] [CrossRef] [Green Version]
- Fujiyama, K.; Kajii, Y.; Hiraoka, S.; Nishikawa, T. Differential regulation by stimulants of neocortical expression of mrt1, arc, and homer1a mRNA in the rats treated with repeated methamphetamine. Synapse 2003, 49, 143–149. [Google Scholar] [CrossRef]
- Willén, K.; Sroka, A.; Takahashi, R.H.; Gouras, G.K. Heterogeneous Association of Alzheimer’s Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses. J. Alzheimers Dis. 2017, 60, 511–524. [Google Scholar] [CrossRef]
- Cataldo, A.; Rebeck, G.W.; Ghetri, B.; Hulette, C.; Lippa, C.; Van Broeckhoven, C.; van Duijn, C.; Cras, P.; Bogdanovic, N.; Bird, T.; et al. Endocytic disturbances distinguish among subtypes of Alzheimer’s disease and related disorders. Ann. Neurol. 2001, 50, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, T.; Zhao, Y.; Zheng, Q.; Thompson, R.C.; Bu, G.; Zhang, Y.W.; Hong, W.; Xu, H. Sorting nexin 27 regulates Aβ production through modulating γ-secretase activity. Cell Rep. 2014, 9, 1023–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.S.; Gustafsen, C.; Madsen, P.; Nyengaard, J.R.; Hermey, G.; Bakke, O.; Mari, M.; Schu, P.; Pohlmann, R.; Dennes, A.; et al. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol. Cell Biol. 2007, 27, 6842–6851. [Google Scholar] [CrossRef] [Green Version]
- Olmos-Serrano, J.L.; Kang, H.J.; Tyler, W.A.; Silbereis, J.C.; Cheng, F.; Zhu, Y.; Pletikos, M.; Jankovic-Rapan, L.; Cramer, N.P.; Galdzicki, Z.; et al. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 2016, 89, 1208–1222. [Google Scholar] [CrossRef] [Green Version]
- Niciu, M.J.; Kelmendi, B.; Sanacora, G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav. 2012, 100, 656–664. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.; Zhou, S.; Zhou, H. Sorting Nexin 27 as a potential target in G protein coupled receptor recycling for cancer therapy. Oncol. Rep. 2020, 44, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, K.; Zhang, Y.; Lu, R.; Wu, S.; Tang, J.; Xia, Y.; Sun, J. Deletion of sorting nexin 27 suppresses proliferation in highly aggressive breast cancer MDA-MB-231 cells in vitro and in vivo. BMC Cancer 2019, 19, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Zheng, J.J. PDZ domains and their binding partners: Structure, specificity, and modification. Cell Commun. Signal 2010, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Li, X.H.; Li, Y.J. Glutamate in peripheral organs: Biology and pharmacology. Eur. J. Pharmacol. 2016, 784, 42–48. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, S.; Qi, C.; Zhao, X.; Liu, B.; Hao, F.; Zhao, Z. Inhibition of metabotropic glutamate receptor 5 facilitates hypoxia-induced glioma cell death. Brain Res. 2019, 1704, 241–248. [Google Scholar] [CrossRef]
- Takanami, I.; Inoue, Y.; Gika, M. G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer. BMC Cancer 2004, 4, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.C.; Wang, C.; Xie, N.; Zhuang, Z.; Liu, X.; Hou, J.; Huang, H. Activation of adrenergic receptor β2 promotes tumor progression and epithelial mesenchymal transition in tongue squamous cell carcinoma. Int. J. Mol. Med. 2018, 41, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Calvo, N.; Martin, M.J.; de Boland, A.R.; Gentili, C. Involvement of ERK1/2, p38 MAPK, and PI3K/Akt signaling pathways in the regulation of cell cycle progression by PTHrP in colon adenocarcinoma cells. Biochem. Cell Biol. 2014, 92, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.M.; Chen, Z.; Fu, L. Frizzled receptors as potential therapeutic targets in human cancers. Int. J. Mol. Sci. 2018, 19, 1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, S.W.; Sood, A.K. Molecular pathways: Beta-adrenergic signaling in cancer. Clin. Cancer Res. 2012, 18, 1201–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupp, A.; Klenk, C.; Röcken, C.; Evert, M.; Mawrin, C.; Schulz, S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur. J. Endocrinol. 2010, 162, 979–986. [Google Scholar] [CrossRef] [Green Version]
- Prickett, T.D.; Samuels, Y. Molecular pathways: Dysregulated glutamatergic signaling pathways in cancer. Clin. Cancer Res. 2012, 18, 4240–4246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, R.; Shuai, Y.; Huang, Y.; Jin, R.; Wang, X.; Luo, J. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br. J. Cancer 2020, 122, 82–93. [Google Scholar] [CrossRef]
- Sahores, A.; Carozzo, A.; May, M.; Gomez, N.; Di Siervi, N.; De Sousa Serro, M.; Yaneff, A. Multidrug transporter MRP4/ABCC4 as a key determinant of pancreatic cancer aggressiveness. Sci. Rep. 2020, 10, 14217. [Google Scholar] [CrossRef]
- Barbieri, F.; Bajetto, A.; Pattarozzi, A.; Gatti, M.; Würth, R.; Thellung, S.; Corsaro, A.; Villa, V.; Nizzari, M.; Florio, T. Peptide receptor targeting in cancer: The somatostatin paradigm. Int. J. Pept. 2013, 2013, 926295. [Google Scholar] [CrossRef]
- Hong, W.; Gu, Y.; Guan, R.; Xie, D.; Zhou, H.; Yu, M. Pan-cancer analysis of the CASP gene family in relation to survival, tumor-infiltrating immune cells and therapeutic targets. Genomics 2020, 112, 4304–4315. [Google Scholar] [CrossRef] [PubMed]
- North, W.G.; Liu, F.; Lin, L.Z.; Tian, R.; Akerman, B. NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment. Clin. Pharmacol. 2017, 9, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; He, M.; Xu, F.; Guan, Y.; Tian, J.; Wan, Z.; Zhou, H.; Gao, M.; Chong, T. Abnormal expression and the significant prognostic value of aquaporins in clear cell renal cell carcinoma. PLoS ONE 2022, 17, e0264553. [Google Scholar] [CrossRef] [PubMed]
- Keum, S.; Yang, S.J.; Park, E.; Kang, T.; Choi, J.H.; Jeong, J.; Hwang, Y.E.; Kim, J.W.; Park, D.; Rhee, S. Beta-Pix-dynamin 2 complex promotes colorectal cancer progression by facilitating membrane dynamics. Cell Oncol. 2021, 44, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, K.C.; Cunha, I.W.; Rocha, R.M.; Ayala, F.R.; Cajaíba, M.M.; Begnami, M.D.; Vilela, R.S.; Paiva, G.R.; Andrade, R.G.; Soares, F.A. GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics 2011, 66, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Riese, M.J.; Moon, E.K.; Johnson, B.D.; Albelda, S.M. Diacylglycerol Kinases (DGKs): Novel Targets for Improving T Cell Activity in Cancer. Front. Cell Dev. Biol. 2016, 4, 108. [Google Scholar] [CrossRef] [Green Version]
- Cullen, P.J.; Korswagen, H.C. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat. Cell Biol. 2011, 14, 29–37. [Google Scholar] [CrossRef]
- Zhan, X.Y.; Zhang, Y.; Zhai, E.; Zhu, Q.Y.; He, Y. Sorting nexin-1 is a candidate tumor suppressor and potential prognostic marker in gastric cancer. PeerJ 2018, 29, e4829. [Google Scholar] [CrossRef] [Green Version]
- Bryant, D.M.; Kerr, M.C.; Hammond, L.A.; Joseph, S.R.; Mostov, K.E.; Teasdale, R.D.; Stow, J.L. EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin. J. Cell Sci. 2007, 120 Pt 10, 1818–1828. [Google Scholar] [CrossRef]
- Ara, S.; Kikuchi, T.; Matsumiya, H.; Kojima, T.; Kubo, T.; Ye, R.C.; Sato, A.; Kon, S.I.; Honma, T.; Asakura, K.; et al. Sorting nexin 5 of a new diagnostic marker of papillary thyroid carcinoma regulates Caspase-2. Cancer Sci. 2012, 103, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Jitsukawa, S.; Kamekura, R.; Kawata, K.; Ito, F.; Sato, A.; Matsumiya, H.; Nagaya, T.; Yamashita, K.; Kubo, T.; Kikuchi, T.; et al. Loss of sorting nexin 5 stabilizes internalized growth factor receptors to promote thyroid cancer progression. J. Pathol. 2017, 243, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Sun, M.; Hu, B.; Windle, B.; Ge, X.; Li, G.; Sun, Y. Sorting Nexin 5 Controls Head and Neck Squamous Cell Carcinoma Progression by Modulating FBW7. J. Cancer 2019, 10, 2942–2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Torres-Lockhart, K.; Forster, N.; Ramakrishnan, S.; Greninger, P.; Garnett, M.J.; McDermott, U.; Rothenberg, S.M.; Benes, C.H.; Ellisen, L.W. Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Discov. 2013, 3, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Liang, Y.; Hu, Q.; Wang, H.; Cai, Z.; He, J.; Cai, J.; Liu, M.; Qin, Y.; Yu, X.; et al. SNX6 predicts poor prognosis and contributes to the metastasis of pancreatic cancer cells via activating epithelial-mesenchymal transition. Acta Biochim. Biophys. Sin. 2018, 50, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Bendris, N.; Stearns, C.J.; Reis, C.R.; Rodriguez-Canales, J.; Liu, H.; Witkiewicz, A.W.; Schmid, S.L. Sorting nexin 9 negatively regulates invadopodia formation and function in cancer cells. J. Cell Sci. 2016, 129, 2804–2816. [Google Scholar] [CrossRef] [Green Version]
- Linder, S. The matrix corroded: Podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 2007, 17, 107–117. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, B.; You, Y.; Yang, Z.; Liu, L.; Tang, H.; Bao, W.; Guan, Y.; Shen, X. Sorting nexin 10 acts as a tumor suppressor in tumorigenesis and progression of colorectal cancer through regulating chaperone mediated autophagy degradation of p21Cip1/WAF1. Cancer Lett. 2018, 419, 116–127. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Z.; Bao, W.; Liu, L.; You, Y.; Wang, X.; Shao, L.; Fu, W.; Kou, X.; Shen, W.; et al. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy 2020, 16, 735–749. [Google Scholar] [CrossRef]
- Cervantes-Anaya, N.; Ponciano-Gómez, A.; López-Álvarez, G.S.; Gonzalez-Reyes, C.; Hernández-Garcia, S.; Cabañas-Cortes, M.A.; Garrido-Guerrero, J.E.; Villa-Treviño, S. Downregulation of sorting nexin 10 is associated with overexpression of miR-30d during liver cancer progression in rats. Tumour. Biol. 2017, 39, 1010428317695932. [Google Scholar] [CrossRef]
- Fuchs, U.; Rehkamp, G.; Haas, O.A.; Slany, R.; Kōnig, M.; Bojesen, S.; Bohle, R.M.; Damm-Welk, C.; Ludwig, W.D.; Harbott, J.; et al. The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc. Natl. Acad. Sci. USA 2001, 98, 8756–8761. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, H.; Kornblau, S.M.; Ter Elst, A.; Scherpen, F.J.; Qiu, Y.H.; Coombes, K.R.; de Bont, E.S. Epidermal growth factor receptor is expressed and active in a subset of acute myeloid leukemia. J. Hematol. Oncol. 2016, 9, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, T.; Score, J.; Deininger, M.; Hidalgo-Curtis, C.; Lackie, P.; Ershler, W.B.; Goldman, J.M.; Cross, N.C.; Grand, F. Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia. Br. J. Haematol. 2011, 153, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Guo, L.; Hu, Y.; Sheng, L.; Zhang, Y.; Wu, N.; Chen, Y.; Shi, C.; Shi, S.; Wu, Y.; et al. SNX2-ABL1-positive acute lymphoblastic leukemia possibly has a poor prognosis. Leuk. Lymphoma. 2017, 58, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Masuzawa, A.; Kiyotani, C.; Osumi, T.; Shioda, Y.; Iijima, K.; Tomita, O.; Nakabayashi, K.; Oboki, K.; Yasuda, K.; Sakamoto, H.; et al. Poor responses to tyrosine kinase inhibitors in a child with precursor B-cell acute lymphoblastic leukemia with SNX2-ABL1 chimeric transcript. Eur. J. Haematol. 2014, 92, 263–267. [Google Scholar] [CrossRef]
- Tomita, O.; Iijima, K.; Ishibashi, T.; Osumi, T.; Kobayashi, K.; Okita, H.; Saito, M.; Mori, T.; Shimizu, T.; Kiyokawa, N. Sensitivity of SNX2-ABL1 toward tyrosine kinase inhibitors distinct from that of BCR-ABL1. Leuk. Res. 2014, 38, 361–370. [Google Scholar] [CrossRef]
- Gayle, S.; Landrette, S.; Beeharry, N.; Conrad, C.; Hernandez, M.; Beckett, P.; Ferguson, S.M.; Mandelkern, T.; Zheng, M.; Xu, T.; et al. Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma. Blood 2017, 129, 1768–1778. [Google Scholar] [CrossRef]
- Mygind, K.J.; Störiko, T.; Freiberg, M.L.; Samsøe-Petersen, J.; Schwarz, J.; Andersen, O.M.; Kveiborg, M. Sorting nexin 9 (SNX9) regulates levels of the transmembrane ADAM9 at the cell surface. J. Biol. Chem. 2018, 293, 8077–8088. [Google Scholar] [CrossRef] [Green Version]
- Karadag, A.; Zhou, M.; Croucher, P.I. ADAM-9 (MDC-9/meltrin-gamma), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin. Blood 2006, 107, 3271–3278. [Google Scholar] [CrossRef] [Green Version]
- Wermke, M.; Camgoz, A.; Paszkowski-Rogacz, M.; Thieme, S.; von Bonin, M.; Dahl, A.; Platzbecker, U.; Theis, M.; Ehninger, G.; Brenner, S.; et al. RNAi profiling of primary human AML cells identifies ROCK1 as a therapeutic target and nominates fasudil as an antileukemic drug. Blood 2015, 125, 3760–3768. [Google Scholar] [CrossRef]
- Al-Saleem, J.; Dirksen, W.P.; Martinez, M.P.; Shkriabai, N.; Kvaratskhelia, M.; Ratner, L.; Green, P.L. HTLV-1 Tax-1 interacts with SNX27 to regulate cellular localization of the HTLV-1 receptor molecule, GLUT1. PLoS ONE 2019, 14, e0214059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akagi, T.; Ono, H.; Shimotohno, K. Characterization of T cells immortalized by Tax1 of human T-cell leukemia virus type 1. Blood 1995, 86, 4243–4249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.S.; Lambert, S.; Bouttier, M.; Bénit, L.; Ruscetti, F.W.; Hermine, O.; Pique, C. Molecular aspects of HTLV-1 entry: Functional domains of the HTLV-1 surface subunit (SU) and their relationships to the entry receptors. Viruses 2011, 3, 794–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Wu, S.; Zhang, Y.; Playford, M.P.; Sun, J. Depletion of Endosome-Associated Protein SNX27 Inhibits Autophage in Human Colonic Cancer Cells. Gastroenterology 2015, 148, S952. [Google Scholar] [CrossRef]
Subfamily | Members | Primary Roles | Links to Processes Indicated in Health and Disease Regulation |
---|---|---|---|
SNX-PX | SNX3 | Assists in the recruitment of the retromer complex to early endosomes | SNX3-retromer complex distinctly carries out cargo recognition, |
SNX10 | binding, and retrograde recycling to the TGN and | ||
SNX11 | SNX3 is also important for neurite development | ||
SNX12 | |||
SNX16 | SNX10 regulates autophagy | ||
SNX20 | |||
SNX21 | SNX11 mediates lysosomal degradation of EGFR and TRPV3 | ||
SNX22 | |||
SNX24 | SNX16 regulates endosomal membrane dynamics and mediates | ||
SNX29 | trafficking between early and late endosomes | ||
SNX-BAR | SNX1 | Additional C-terminal BAR domain comprising three α- helices | SNX9 and SNX18 carry an additional SH3 domain and |
SNX2 | regulate clathrin-mediated endocytosis of cargoes | ||
SNX4 | |||
SNX5 | SNX1 mediates trafficking of mGluR1 in hippocampus and | ||
SNX6 | SNX1 SNPs are found in brains of Alzheimer’s patients | ||
SNX7 | Heterodimer of SNX1:SNX2 and SNX5:SNX6 is involved in retromer mediated trafficking | ||
SNX8 | SNX2 is overexpressed in the hypothalamus of aging mice | ||
SNX9 | |||
SNX18 | SNX4, 6, 7, 8 regulate Aβ generation by mediating APP and | ||
SNX30 | BACE1 trafficking and lysosomal degradation | ||
SNX32 | Involved in membrane tubulation | ||
SNX33 | SNX5 is associated with trafficking of Dopamine receptor 1 | ||
SNX-FERM | SNX17 SNX27 SNX31 | C-terminal FERM domain assists in endocytic traffickingand lysosomal degradation | SNX17 and 31 target cargoes carrying a NPxY/NxxY motif and |
cause lysosomal degradation in a FERM-dependent manner | |||
SNX27-FERM domain binds with SNX1/2 homodimer to form | |||
SNX27 carries an additional N-terminal PDZ domain that helps to sort and recycle proteins to the cell surface | the SNX27/SNX-BAR/Retromer complex | ||
SNX27 modulates synaptic plasticity in the brain and is | |||
associated with Epilepsy, Alzheimer’s, and Down’s Syndrome |
Target ID | Target Name | Ref. |
---|---|---|
β2-ar | β2 adrenergic receptor | [1] |
5-HT4.a/R | 5-hydroxytryptamine type 4 receptor | [32] |
GIRK2 | G protein-gated inwardly rectifying potassium 2 | [45] |
GIRK3 | G protein-gated inwardly rectifying potassium 3 | [46] |
PTHR | Parathyroid hormone 1 receptor | [47] |
mGluR5 | Metabotropic glutamate receptor 5 | [48] |
FZD7 | Frizzled receptor 7 | [49] |
GLUT1 | Glucose transporter 1 | [3] |
ATP7A | ATPase copper transporting alpha | [3] |
ASCT2 | Alanine-, serine-, cysteine-preferring transporter 2 | [5] |
Ras | Ras GTPase | [25] |
OTULIN | OTU Deubiquitinase With Linear Linkage Specificity | [42] |
NHE3 | Sodium (Na+)/hydrogen (H+) exchanger 3 | [43] |
DRA | Downregulated in adenoma | [44] |
MT1-MMP | Membrane type 1 matrix metalloproteinase | [50] |
DGKζ | Diacylglycerol kinase zeta | [34] |
ZO-2 | Zonula occludens 2 | [51] |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor | [52] |
β1-ar | β1 adrenergic receptor | [53] |
SSTR5 | mouse Somatostatin receptor subtype 5 | [54] |
CASP | Cytohesin associated scaffolding protein | [55] |
NR2C | N-methyl-D-aspartate (NMDA) receptor 2C | [56] |
AQP2 | Aquaporin 2 | [57] |
β-Pix | β-PAK-interacting exchange factor | [58] |
Git | G-protein receptor kinase interacting target | [58] |
MRP4 | Multidrug resistance-associated protein 4 | [59] |
SorLA | Sorting-related receptor with A-type repeats | [60] |
GRP17 | Gadd related protein, 17 kDa | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deb, S.; Sun, J. Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers. Cancers 2023, 15, 70. https://doi.org/10.3390/cancers15010070
Deb S, Sun J. Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers. Cancers. 2023; 15(1):70. https://doi.org/10.3390/cancers15010070
Chicago/Turabian StyleDeb, Shreya, and Jun Sun. 2023. "Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers" Cancers 15, no. 1: 70. https://doi.org/10.3390/cancers15010070
APA StyleDeb, S., & Sun, J. (2023). Endosomal Sorting Protein SNX27 and Its Emerging Roles in Human Cancers. Cancers, 15(1), 70. https://doi.org/10.3390/cancers15010070