Single Fraction and Hypofractionated Radiation Cause Cochlear Damage, Hearing Loss, and Reduced Viability of Merlin-Deficient Schwann Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Cultures
2.2. Animals
2.3. Custom Restrainer
2.4. Cochlear Irradiation Protocols
2.5. Auditory Brainstem Response Testing
2.6. Auditory Hair Cell Viability Counts
2.7. Immunohistochemistry and Immunofluorescence
2.8. Polymerase Chain Reaction for Cell Death Genes
2.9. Cell Death Assay
2.10. Live Cell Imaging and Viability Assays for Schwann Cells and Merlin-Deficient Schwann Cells
2.11. Statistical Analysis
3. Results
3.1. Validation of Cochlear Irradiation Protocols Using MOSFET Probes
3.2. Auditory Brainstem Response Testing after Single Fraction Cochlear Irradiation
3.3. Auditory Hair Cell Viability Counts after Single Fraction Cochlear Irradiation
3.4. Cell-Based Assay for Apoptosis, Necrosis, and Viability after Single Fraction Cochlear Irradiation
3.5. PCR for Cell Death Genes after Single Fraction Cochlear Irradiation
3.6. Auditory Brainstem Response Testing after Hypofractionated Cochlear Irradiation
3.7. Auditory Hair Cell Viability Counts after Hypofractionated Cochlear Irradiation
3.8. Spiral Ganglion Neurons and Spiral Ligaments after Hypofractionated Cochlear Irradiation
3.9. Live Cell Imaging and Viability of Normal and Merlin-Deficient Schwann Cells after Hypofractionated Radiation
3.10. p21 and γ-H2AX Expression in Normal and Merlin-Deficient Schwann Cells after Hypofractionated Radiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, D.G.R.; Moran, A.; King, A.; Saeed, S.; Gurusinghe, N.; Ramsden, R. Incidence of Vestibular Schwannoma and Neurofibromatosis 2 in the North West of England over a 10-year Period: Higher Incidence than Previously Thought. Otol. Neurotol. 2005, 26, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Dinh, C.T.; Nisenbaum, E.; Chyou, D.; Misztal, C.; Yan, D.; Mittal, R.; Young, J.; Tekin, M.; Telischi, F.; Fernandez-Valle, C.; et al. Genomics, Epigenetics, and Hearing Loss in Neurofibromatosis Type 2. Otol. Neurotol. 2020, 41, e529–e537. [Google Scholar] [CrossRef] [PubMed]
- Thielhelm, T.P.; Goncalves, S.; Welford, S.M.; Mellon, E.A.; Cohen, E.R.; Nourbakhsh, A.; Fernandez-Valle, C.; Telischi, F.; Ivan, M.E.; Dinh, C.T. Understanding the Radiobiology of Vestibular Schwannomas to Overcome Radiation Resistance. Cancers 2021, 13, 4575. [Google Scholar] [CrossRef]
- Ghaderi, N.; Jung, J.; Brüningk, S.C.; Subramanian, A.; Nassour, L.; Peacock, J. A Century of Fractionated Radiotherapy: How Mathematical Oncology Can Break the Rules. Int. J. Mol. Sci. 2022, 23, 1316. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, T.M.; Keyomarsi, K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 928–942. [Google Scholar] [CrossRef]
- Tsao, M.N.; Sahgal, A.; Xu, W.; De Salles, A.; Hayashi, M.; Levivier, M.; Ma, L.; Martinez, R.; Régis, J.; Ryu, S.; et al. Stereotactic radiosurgery for vestibular schwannoma: International Stereotactic Radiosurgery Society (ISRS) Practice Guideline. J. Radiosurg. SBRT 2017, 5, 5–24. [Google Scholar]
- Soltys, S.G.; Milano, M.T.; Xue, J.; Tomé, W.A.; Yorke, E.; Sheehan, J.; Ding, G.X.; Kirkpatrick, J.P.; Ma, L.; Sahgal, A.; et al. Stereotactic Radiosurgery for Vestibular Schwannomas: Tumor Control Probability Analyses and Recommended Reporting Standards. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 100–111. [Google Scholar] [CrossRef]
- Watanabe, S.; Yamamoto, M.; Kawabe, T.; Koiso, T.; Yamamoto, T.; Matsumura, A.; Kasuya, H. Stereotactic radiosurgery for vestibular schwannomas: Average 10-year follow-up results focusing on long-term hearing preservation. J. Neurosurg. 2016, 125, 64–72. [Google Scholar] [CrossRef]
- Frischer, J.M.; Gruber, E.; Schöffmann, V.; Ertl, A.; Höftberger, R.; Mallouhi, A.; Wolfsberger, S.; Arnoldner, C.; Eisner, W.; Knosp, E.; et al. Long-term outcome after Gamma Knife radiosurgery for acoustic neuroma of all Koos grades: A single-center study. J. Neurosurg. 2019, 130, 388–397. [Google Scholar] [CrossRef]
- Langenhuizen, P.P.J.H.; Zinger, S.; Hanssens, P.E.J.; Kunst, H.P.M.; Mulder, J.J.S.; Leenstra, S.; de With, P.H.N.; Verheul, J.B. Influence of pretreatment growth rate on Gamma Knife treatment response for vestibular schwannoma: A volumetric analysis. J. Neurosurg. 2019, 131, 1405–1412. [Google Scholar] [CrossRef]
- Marston, A.P.; Jacob, J.T.; Carlson, M.L.; Pollock, B.E.; Driscoll, C.L.W.; Link, M.J. Pretreatment growth rate as a predictor of tumor control following Gamma Knife radiosurgery for sporadic vestibular schwannoma. J. Neurosurg. 2017, 127, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Niu, N.N.; Niemierko, A.; Larvie, M.; Curtin, H.; Loeffler, J.S.; McKenna, M.J.; Shih, H.A. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, A. Long-term follow-up studies of Gamma Knife surgery for patients with neurofibromatosis Type 2. J. Neurosurg. 2014, 121, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kruyt, I.J.; Verheul, J.B.; Hanssens, P.E.J.; Kunst, H.P.M. Gamma Knife radiosurgery for treatment of growing vestibular schwannomas in patients with neurofibromatosis Type 2: A matched cohort study with sporadic vestibular schwannomas. J. Neurosurg. 2018, 128, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.S.; Singh, R.; Kale, S.S.; Agrawal, D.; Sharma, B.S.; Mahapatra, A.K. Tumor control and hearing preservation after Gamma Knife radiosurgery for vestibular schwannomas in neurofibromatosis type 2. J. Neuro-Oncol. 2010, 98, 265–270. [Google Scholar] [CrossRef]
- Klijn, S.; Verheul, J.B.; Beute, G.N.; Leenstra, S.; Mulder, J.J.S.; Kunst, H.P.M.; Hanssens, P.E.J. Gamma Knife radiosurgery for vestibular schwannomas: Evaluation of tumor control and its predictors in a large patient cohort in The Netherlands. J. Neurosurg. 2016, 124, 1619–1626. [Google Scholar] [CrossRef]
- Savardekar, A.R.; Terrell, D.; Lele, S.J.; Diaz, R.; Keesari, P.R.; Trosclair, K.; Kosty, J.; Wang, C.J.; Gardner, G.; Guthikonda, B. Primary Treatment of Small to Medium (<3 cm) Sporadic Vestibular Schwannomas: A Systematic Review and Meta-Analysis on Hearing Preservation and Tumor Control Rates for Microsurgery versus Radiosurgery. World Neurosurg. 2022, 160, 102–113.e12. [Google Scholar] [CrossRef]
- Yang, I.; Sughrue, M.E.; Han, S.J.; Aranda, D.; Pitts, L.H.; Cheung, S.W.; Parsa, A.T.; Barnes, C.J.; Bush, D.A.; Grove, R.I.; et al. A comprehensive analysis of hearing preservation after radiosurgery for vestibular schwannoma. J. Neurosurg. 2010, 112, 851–859. [Google Scholar] [CrossRef]
- Carlson, M.L.; Jacob, J.T.; Pollock, B.E.; Neff, B.A.; Tombers, N.M.; Driscoll, C.L.W.; Link, M.J. Long-term hearing outcomes following stereotactic radiosurgery for vestibular schwannoma: Patterns of hearing loss and variables influencing audiometric decline. J. Neurosurg. 2013, 118, 579–587. [Google Scholar] [CrossRef]
- Massager, N.; Nissim, O.; Delbrouck, C.; Delpierre, I.; Devriendt, D.; Desmedt, F.; Wikler, D.; Brotchi, J.; Levivier, M. Irradiation of cochlear structures during vestibular schwannoma radiosurgery and associated hearing outcome. J. Neurosurg. 2007, 107, 733–739. [Google Scholar] [CrossRef]
- Yang, I.; Sughrue, M.E.; Han, S.J.; Fang, S.; Aranda, D.; Cheung, S.W.; Pitts, L.H.; Parsa, A.T. Facial nerve preservation after vestibular schwannoma Gamma Knife radiosurgery. J. Neuro-Oncol. 2009, 93, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Germano, I.M.; Sheehan, J.; Parish, J.; Atkins, T.; Asher, A.; Hadjipanayis, C.G.; Burri, S.H.; Green, S.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Radiosurgery and Radiation Therapy in the Management of Patients with Vestibular Schwannomas. Neurosurgery 2018, 82, E49–E51. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Kim, D.G.; Han, J.H.; Chung, H.-T.; Kim, I.K.; Song, S.W.; Park, J.-H.; Kim, J.W.; Kim, Y.H.; Park, C.-K.; et al. Hearing Outcomes After Stereotactic Radiosurgery for Unilateral Intracanalicular Vestibular Schwannomas: Implication of Transient Volume Expansion. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Kida, Y.; Kato, T.; Iizuka, H.; Yamamoto, T.; Hunter, J.B.; Dowling, E.M.; Lohse, C.M.; O’connell, B.P.; Tombers, N.M.; et al. Factors associated with hearing preservation after Gamma Knife surgery for vestibular schwannomas in patients who retain serviceable hearing. J. Neurosurg. 2011, 115, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.; Ayre, G.; Ma, R.; Hsu, F.; Akagami, R.; McKenzie, M.; Valev, B.; Gete, E.; Vallieres, I.; Nichol, A. Population-Based Study of Stereotactic Radiosurgery or Fractionated Stereotactic Radiation Therapy for Vestibular Schwannoma: Long-Term Outcomes and Toxicities. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 443–451. [Google Scholar] [CrossRef]
- Chopra, R.; Kondziolka, D.; Niranjan, A.; Lunsford, L.D.; Flickinger, J.C. Long-Term Follow-up of Acoustic Schwannoma Radiosurgery with Marginal Tumor Doses of 12 to 13 Gy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 845–851. [Google Scholar] [CrossRef]
- Coughlin, A.R.; Willman, T.J.; Gubbels, S.P. Systematic Review of Hearing Preservation After Radiotherapy for Vestibular Schwannoma. Otol. Neurotol. 2018, 39, 273–283. [Google Scholar] [CrossRef]
- Carlson, M.L.; Vivas, E.X.; McCracken, D.J.; Sweeney, A.D.; Neff, B.A.; Shepard, N.T.; Olson, J.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Hearing Preservation Outcomes in Patients with Sporadic Vestibular Schwannomas. Neurosurgery 2018, 82, E35–E39. [Google Scholar] [CrossRef]
- Horiba, A.; Hayashi, M.; Chernov, M.; Kawamata, T.; Okada, Y. Hearing Preservation after Low-dose Gamma Knife Radiosurgery of Vestibular Schwannomas. Neurol. Med. Chir. 2016, 56, 186–192. [Google Scholar] [CrossRef]
- Schumacher, A.J.; Lall, R.R.; Lall, R.R.; Nanney, A., III; Ayer, A.; Sejpal, S.; Liu, B.P.; Marymont, M.; Lee, P.; Bendok, B.R.; et al. Low-Dose Gamma Knife Radiosurgery for Vestibular Schwannomas: Tumor Control and Cranial Nerve Function Preservation After 11 Gy. J. Neurol. Surg. B Skull Base 2017, 78, 002–010. [Google Scholar] [CrossRef]
- Kirkpatrick, J.P.; Soltys, S.G.; Lo, S.S.; Beal, K.; Shrieve, D.C.; Brown, P.D. The radiosurgery fractionation quandary: Single fraction or hypofractionation? Neuro-Oncol. 2017, 19, ii38–ii49. [Google Scholar] [CrossRef] [PubMed]
- Kranzinger, M.; Zehentmayr, F.; Fastner, G.; Oberascher, G.; Merz, F.; Nairz, O.; Rahim, H.; Sedlmayer, F. Hypofractionated stereotactic radiotherapy of acoustic neuroma. Strahlenther. Onkol. 2014, 190, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Teo, M.; Zhang, M.; Li, A.; Thompson, P.A.; Tayag, A.T.; Wallach, J.; Gibbs, I.C.; Soltys, S.G.; Hancock, S.L.; Chang, S.D. The Outcome of Hypofractionated Stereotactic Radiosurgery for Large Vestibular Schwannomas. World Neurosurg. 2016, 93, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Duong, C.; Sheppard, J.P.; Lee, S.J.; Kishan, A.U.; Lee, P.; Tenn, S.; Chin, R.; Kaprealian, T.B.; Yang, I. Hypo-fractionated stereotactic radiotherapy of five fractions with linear accelerator for vestibular schwannomas: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2018, 166, 116–123. [Google Scholar] [CrossRef]
- Chen, Z.; Takehana, K.; Mizowaki, T.; Uto, M.; Ogura, K.; Sakanaka, K.; Arakawa, Y.; Mineharu, Y.; Miyabe, Y.; Mukumoto, N.; et al. Five-year outcomes following hypofractionated stereotactic radiotherapy delivered in five fractions for acoustic neuromas: The mean cochlear dose may impact hearing preservation. Int. J. Clin. Oncol. 2018, 23, 608–614. [Google Scholar] [CrossRef]
- Diaz, L.S.; Hallqvist, A. LINAC-based stereotactic radiosurgery versus hypofractionated stereotactic radiotherapy delivered in 3 or 5 fractions for vestibular schwannomas: Comparative assessment from a single institution. J. Neuro-Oncol. 2020, 147, 351–359. [Google Scholar] [CrossRef]
- Monje, P.V.; Sant, D.; Wang, G. Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ. Mol. Neurobiol. 2018, 55, 6637–6660. [Google Scholar] [CrossRef]
- Peng, K.; Sant, D.; Andersen, N.; Silvera, R.; Camarena, V.; Piñero, G.; Graham, R.; Khan, A.; Xu, X.-M.; Wang, G.; et al. Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts: An immunochemical and transcriptomics approach. Sci. Rep. 2020, 10, 18433. [Google Scholar] [CrossRef]
- Petrilli, A.M.; Fuse, M.A.; Donnan, M.S.; Bott, M.; Sparrow, N.A.; Tondera, D.; Huffziger, J.; Frenzel, C.; Malany, C.S.; Echeverri, C.J.; et al. A chemical biology approach identified PI3K as a potential therapeutic target for neurofibromatosis type 2. Am. J. Transl. Res. 2014, 6, 471–493. [Google Scholar]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Dinh, C.T.; Chen, S.; Dinh, J.; Goncalves, S.; Bas, E.; Padgett, K.; Johnson, P.; Elsayyad, N.; Telischi, F.; Van De Water, T. Effects of Intratympanic Dexamethasone on High-Dose Radiation Ototoxicity In Vivo. Otol. Neurotol. 2017, 38, 180–186. [Google Scholar] [CrossRef]
- Bas, E.; Bohorquez, J.; Goncalves, S.; Perez, E.; Dinh, C.T.; Garnham, C.; Hessler, R.; Eshraghi, A.A.; Van De Water, T.R. Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study. Hear. Res. 2016, 337, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Cannan, W.J.; Pederson, D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J. Cell Physiol. 2016, 231, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Laine, H.; Doetzlhofer, A.; Mantela, J.; Ylikoski, J.; Laiho, M.; Roussel, M.F.; Segil, N.; Pirvola, U. p19Ink4dand p21Cip1Collaborate to Maintain the Postmitotic State of Auditory Hair Cells, Their Codeletion Leading to DNA Damage and p53-Mediated Apoptosis. J. Neurosci. 2007, 27, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Dilwali, S.; Landegger, L.D.; Soares, V.Y.R.; Deschler, D.G.; Stankovic, K.M. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage. Sci. Rep. 2015, 5, 18599. [Google Scholar] [CrossRef] [PubMed]
- Nisenbaum, E.; Misztal, C.; Szczupak, M.; Thielhelm, T.; Peña, S.; Mei, C.; Goncalves, S.; Bracho, O.; Ma, R.; Ivan, M.E.; et al. Tumor-Associated Macrophages in Vestibular Schwannoma and Relationship to Hearing. OTO Open 2021, 5, 2473974X211059111. [Google Scholar] [CrossRef] [PubMed]
- Govindaraj, R.; Khong, J.; Byrne, A.; Zacest, A.; Roos, D. The Effect of Cochlear Dose on Hearing Preservation After Low-Dose Stereotactic Radiosurgery for Vestibular Schwannomas: A Systematic Review. Adv. Radiat. Oncol. 2022, 7, 101059. [Google Scholar] [CrossRef]
- Pollock, B.E.; Link, M.J.; Foote, R.L.; Stafford, S.L.; Brown, P.D.; Schomberg, P.J. Radiosurgery as Primary Management for Meningiomas Extending into the Internal Auditory Canal. Ster. Funct. Neurosurg. 2004, 82, 98–103. [Google Scholar] [CrossRef]
- Dinh, C.T.; Bracho, O.; Mei, C.; Bas, E.; Fernandez-Valle, C.; Telischi, F.; Liu, X.-Z. A Xenograft Model of Vestibular Schwannoma and Hearing Loss. Otol. Neurotol. 2018, 39, e362–e369. [Google Scholar] [CrossRef]
- Gehlhausen, J.R.; Park, S.-J.; Hickox, A.E.; Shew, M.; Staser, K.; Rhodes, S.D.; Menon, K.; Lajiness, J.D.; Mwanthi, M.; Yang, X.; et al. A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Hum. Mol. Genet. 2015, 24, 1–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinh, C.T.; Chen, S.; Nourbakhsh, A.; Padgett, K.; Johnson, P.; Goncalves, S.; Bracho, O.; Bas, E.; Bohorquez, J.; Monje, P.V.; et al. Single Fraction and Hypofractionated Radiation Cause Cochlear Damage, Hearing Loss, and Reduced Viability of Merlin-Deficient Schwann Cells. Cancers 2023, 15, 2818. https://doi.org/10.3390/cancers15102818
Dinh CT, Chen S, Nourbakhsh A, Padgett K, Johnson P, Goncalves S, Bracho O, Bas E, Bohorquez J, Monje PV, et al. Single Fraction and Hypofractionated Radiation Cause Cochlear Damage, Hearing Loss, and Reduced Viability of Merlin-Deficient Schwann Cells. Cancers. 2023; 15(10):2818. https://doi.org/10.3390/cancers15102818
Chicago/Turabian StyleDinh, Christine T., Si Chen, Aida Nourbakhsh, Kyle Padgett, Perry Johnson, Stefania Goncalves, Olena Bracho, Esperanza Bas, Jorge Bohorquez, Paula V. Monje, and et al. 2023. "Single Fraction and Hypofractionated Radiation Cause Cochlear Damage, Hearing Loss, and Reduced Viability of Merlin-Deficient Schwann Cells" Cancers 15, no. 10: 2818. https://doi.org/10.3390/cancers15102818
APA StyleDinh, C. T., Chen, S., Nourbakhsh, A., Padgett, K., Johnson, P., Goncalves, S., Bracho, O., Bas, E., Bohorquez, J., Monje, P. V., Fernandez-Valle, C., Elsayyad, N., Liu, X., Welford, S. M., & Telischi, F. (2023). Single Fraction and Hypofractionated Radiation Cause Cochlear Damage, Hearing Loss, and Reduced Viability of Merlin-Deficient Schwann Cells. Cancers, 15(10), 2818. https://doi.org/10.3390/cancers15102818