Pretreatment Proteinuria Predicts the Prognosis of Patients Receiving Systemic Therapy for Unresectable Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Population and Data Collection
2.2. Underlying Liver Diseases
2.3. Liver Function Assessment
2.4. HCC Diagnosis
2.5. Systemic Therapy
2.6. Statistical Analysis
3. Results
3.1. Patients Characteristics and Proteinuria
3.2. Overall Survival
3.3. Multivariate Analysis of Overall Survival
3.4. Incidence of Proteinuria Based on Pretreatment Proteinuria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular Carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Toyoda, H.; Yasuda, S.; Tada, T.; Kumada, T.; Sone, Y.; Tanaka, J. The Course of Elderly Patients with Persistent Hepatitis C Virus Infection without Hepatocellular Carcinoma. J. Gastroenterol. 2019, 54, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Mathurin, P.; Cortez-Pinto, H.; Loomba, R. Global Epidemiology of Alcohol-Associated Cirrhosis and HCC: Trends, Projections and Risk Factors. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 37–49. [Google Scholar] [CrossRef]
- Shah, P.A.; Patil, R.; Harrison, S.A. NAFLD-Related Hepatocellular Carcinoma: The Growing Challenge. Hepatology 2022, 77, 323–338. [Google Scholar] [CrossRef]
- Loomba, R.; Lim, J.K.; Patton, H.; El-Serag, H.B. AGA Clinical Practice Update on Screening and Surveillance for Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2020, 158, 1822–1830. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; Cosme de Oliveira, A.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Kang, Y.-K.; Chen, Z.; Tsao, C.-J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.-S.; et al. Articles Efficacy and Safety of Sorafenib in Patients in the Asia-Pacific Region with Advanced Hepatocellular Carcinoma: A Phase III Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Bruix, J.; Chan, S.L.; Galle, P.R.; Rimassa, L.; Sangro, B. Systemic Treatment of Hepatocellular Carcinoma: An EASL Position Paper. J. Hepatol. 2021, 75, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. New Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Ito, T.; Ishigami, M.; Ishizu, Y.; Kuzuya, T.; Honda, T.; Kawashima, H.; Inukai, Y.; Toyoda, H.; Yokota, K.; et al. Real World Data of Liver Injury Induced by Immune Checkpoint Inhibitors in Japanese Patients with Advanced Malignancies. J. Gastroenterol. 2020, 55, 653–661. [Google Scholar] [CrossRef]
- Ferrara, N.; Adamis, A.P. Ten Years of Anti-Vascular Endothelial Growth Factor Therapy. Nat. Rev. Drug. Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, S.; Dahut, W.L.; Parikh, C.R. Risks of Proteinuria and Hypertension With Bevacizumab, an Antibody Against Vascular Endothelial Growth Factor: Systematic Review and Meta-Analysis. Am. J. Kidney Dis. 2007, 49, 186–193. [Google Scholar] [CrossRef]
- Izzedine, H.; Ederhy, S.; Goldwasser, F.; Soria, J.C.; Milano, G.; Cohen, A.; Khayat, D.; Spano, J.P. Management of Hypertension in Angiogenesis Inhibitor-Treated Patients. Ann. Oncol. 2009, 20, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Mir, O.; Coriat, R.; Cabanes, L.; Ropert, S.; Billemont, B.; Alexandre, J.; Durand, J.-P.; Treluyer, J.-M.; Knebelmann, B.; Goldwasser, F. An Observational Study of Bevacizumab-Induced Hypertension as a Clinical Biomarker of Antitumor Activity. Oncologist 2011, 16, 1325–1332. [Google Scholar] [CrossRef]
- Quintanilha, J.C.F.; Wang, J.; Sibley, A.B.; Jiang, C.; Etheridge, A.S.; Shen, F.; Jiang, G.; Mulkey, F.; Patel, J.N.; Hertz, D.L.; et al. Bevacizumab-Induced Hypertension and Proteinuria: A Genome-Wide Study of More than 1000 Patients. Br. J. Cancer 2022, 126, 265–274. [Google Scholar] [CrossRef]
- Ikeda, K.; Kudo, M.; Kawazoe, S.; Osaki, Y.; Ikeda, M.; Okusaka, T.; Tamai, T.; Suzuki, T.; Hisai, T.; Hayato, S.; et al. Phase 2 Study of Lenvatinib in Patients with Advanced Hepatocellular Carcinoma. J. Gastroenterol. 2017, 52, 512–519. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE); Version 5.0; US Department of Health and Human Services: Washington, DC, USA, 2017.
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the Oesophagus for Bleeding Oesophageal Varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of Liver Function in Patients with Hepatocellular Carcinoma: A New Evidence-Based Approach—The Albi Grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Hiraoka, A.; Michitaka, K.; Kumada, T.; Izumi, N.; Kadoya, M.; Kokudo, N.; Kubo, S.; Matsuyama, Y.; Nakashima, O.; Sakamoto, M.; et al. Validation and Potential of Albumin-Bilirubin Grade and Prognostication in a Nationwide Survey of 46,681 Hepatocellular Carcinoma Patients in Japan: The Need for a More Detailed Evaluation of Hepatic Function. Liver Cancer 2017, 6, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbé, C.; Maio, M.; Binder, M.; Bohnsack, O.; Nichol, G.; et al. Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria. Clin. Cancer Res. 2009, 15, 7412–7420. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Giobbie-Hurder, A.; Gargano, M.; Suda, M.; Ramaiya, N.H.; Hodi, F.S. Developing a Common Language for Tumor Response to Immunotherapy: Immune-Related Response Criteria Using Unidimensional Measurements. Clin. Cancer Res. 2013, 19, 3936–3943. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software “EZR” for Medical Statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Evans, T.R.J.; Kudo, M.; Finn, R.S.; Han, K.H.; Cheng, A.L.; Ikeda, M.; Kraljevic, S.; Ren, M.; Dutcus, C.E.; Piscaglia, F.; et al. Urine Protein:Creatinine Ratio vs. 24-Hour Urine Protein for Proteinuria Management: Analysis from the Phase 3 REFLECT Study of Lenvatinib vs Sorafenib in Hepatocellular Carcinoma. Br. J. Cancer 2019, 121, 218–221. [Google Scholar] [CrossRef]
- Masaki, C.; Sugino, K.; Kobayashi, S.; Akaishi, J.; Hames, K.Y.; Tomoda, C.; Suzuki, A.; Matsuzu, K.; Uruno, T.; Ohkuwa, K.; et al. Urinalysis by Combination of the Dipstick Test and Urine Protein–Creatinine Ratio (UPCR) Assessment Can Prevent Unnecessary Lenvatinib Interruption in Patients with Thyroid Cancer. Int. J. Clin. Oncol. 2020, 25, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Tanaka, T.; Masumori, N.; Miyamoto, A.; Hirano, T. Evaluation of Proteinuria Using Urine Protein: Creatine Ratio in Treatment with Molecular Targeted Agents for Advanced Renal Cell Carcinoma. Biol. Pharm. Bull. 2020, 43, 1506. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. (2011) 2013, 3, 1–150.
- Eremina, V.; Sood, M.; Haigh, J.; Nagy, A.; Lajoie, G.; Ferrara, N.; Gerber, H.-P.; Kikkawa, Y.; Miner, J.H.; Quaggin, S.E. Glomerular-Specific Alterations of VEGF-A Expression Lead to Distinct Congenital and Acquired Renal Diseases. J. Clin. Investig. 2003, 111, 707–716. [Google Scholar] [CrossRef]
- Dimke, H.; Sparks, M.A.; Thomson, B.R.; Frische, S.; Coffman, T.M.; Quaggin, S.E. Tubulovascular Cross-Talk by Vascular Endothelial Growth Factor a Maintains Peritubular Microvasculature in Kidney. J. Am. Soc. Nephrol. 2015, 26, 1027–1038. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.-P.; LeCouter, J. The Biology of VEGF and Its Receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Eremina, V.; Jefferson, J.A.; Kowalewska, J.; Hochster, H.; Haas, M.; Weisstuch, J.; Richardson, C.; Kopp, J.B.; Golam Kabir, M.; Backx, P.H.; et al. VEGF Inhibition and Renal Thrombotic Microangiopathy. N. Engl. J. Med. 2008, 358, 1129–1136. [Google Scholar] [CrossRef]
- Estrada, C.C.; Maldonado, A.; Mallipattu, S.K. Therapeutic Inhibition of VEGF Signaling and Associated Nephrotoxicities. J. Am. Soc. Nephrol. 2019, 30, 187–200. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Wang, T.; Liu, L.H.; Guo, H.Q. Risks of Proteinuria Associated with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer Patients: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e90135. [Google Scholar] [CrossRef]
- Izzedine, H.; Escudier, B.; Lhomme, C.; Pautier, P.; Rouvier, P.; Gueutin, V.; Baumelou, A.; Derosa, L.; Bahleda, R.; Hollebecque, A.; et al. Kidney Diseases Associated with Anti-Vascular Endothelial Growth Factor (VEGF): An 8-Year Observational Study at a Single Center. Medicine 2014, 93, 333–339. [Google Scholar] [CrossRef]
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver Cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Caraceni, P.; O’Brien, A.; Gines, P. Long-Term Albumin Treatment in Patients with Cirrhosis and Ascites. J. Hepatol. 2022, 76, 1306–1317. [Google Scholar] [CrossRef]
- Agrawal, S.; Zaritsky, J.J.; Fornoni, A.; Smoyer, W.E. Dyslipidaemia in Nephrotic Syndrome: Mechanisms and Treatment. Nat. Rev. Nephrol. 2017, 14, 57–70. [Google Scholar] [CrossRef]
- Ono, A.; Aikata, H.; Yamauchi, M.; Kodama, K.; Ohishi, W.; Kishi, T.; Ohya, K.; Teraoka, Y.; Osawa, M.; Fujino, H.; et al. Circulating Cytokines and Angiogenic Factors Based Signature Associated with the Relative Dose Intensity during Treatment in Patients with Advanced Hepatocellular Carcinoma Receiving Lenvatinib. Ther. Adv. Med. Oncol. 2020, 12, 1758835920922051. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tsuchiya, K.; Kurosaki, M.; Yasui, Y.; Inada, K.; Kirino, S.; Yamashita, K.; Sekiguchi, S.; Hayakawa, Y.; Osawa, L.; et al. Sorafenib-Regorafenib Sequential Therapy in Japanese Patients with Unresectable Hepatocellular Carcinoma—Relative Dose Intensity and Post-Regorafenib Therapies in Real World Practice. Cancers 2019, 11, 1517. [Google Scholar] [CrossRef] [PubMed]
Total (n = 190) | Pretreatment Proteinuria | p Value | |||
---|---|---|---|---|---|
Negative (n = 141) | Positive (n = 49) | ||||
Age (years) | 72 [66, 78] | 72 [66, 78] | 72 [66, 77] | 0.800 | |
Sex | |||||
Female | 34 (17.9) | 29 (20.7) | 5 (10.0) | 0.131 | |
Male | 156 (82.1) | 111 (79.9) | 45 (90.0) | ||
Barcelona Clinic Liver Cancer stage | |||||
A | 4 (2.1) | 3 (2.1) | 1 (2.0) | 0.782 | |
B | 67 (35.3) | 52 (36.9) | 15 (30.6) | ||
C | 119 (62.6) | 86 (61.0) | 33 (67.3) | ||
Child-Pugh classification | |||||
A5 | 84 (44.2) | 66 (46.8) | 18 (36.7) | 0.123 | |
A6 | 78 (41.1) | 54 (38.3) | 24 (49.0) | ||
B7 | 20 (10.5) | 14 (9.9) | 6 (12.2) | ||
B8 | 7 (3.7) | 7 (5.0) | 0 (0.0) | ||
B9 | 1 (0.5) | 0 (0.0) | 1 (2.0) | ||
Etiology of chronic liver disease | |||||
Hepatitis B | 28 (14.7) | 25 (17.7) | 3 (6.1) | 0.030 | |
Hepatitis C | 55 (28.9) | 44 (31.2) | 11 (22.4) | ||
Nonviral | 107 (56.3) | 72 (51.1) | 35 (71.4) | ||
Modified ALBI grade | |||||
1 | 38 (20.0) | 34 (24.1) | 4 (8.2) | 0.049 | |
2a | 61 (32.1) | 40 (28.4) | 21 (42.9) | ||
2b | 86 (45.3) | 63 (44.7) | 23 (46.9) | ||
3 | 5 (2.6) | 4 (2.8) | 1 (2.0) | ||
First line treatment | |||||
Atezolizumab plus bevicizumab | 43 (22.6) | 31 (22.0) | 12 (24.5) | 0.755 | |
Lenvatinib | 72 (37.9) | 52 (36.9) | 20 (40.8) | ||
Sorafenib | 75 (39.5) | 58 (41.1) | 17 (34.7) | ||
AFP (ng/mL) | 72.5 [6.0, 978.5] | 68.5 [6.0, 921.5] | 74.0 [5.0, 1159.0] | 0.754 | |
ALB (g/dL) | 3.6 [3.2, 3.9] | 3.6 [3.2, 4.0] | 3.5 [3.1, 3.8] | 0.073 | |
ALT (U/L) | 30 [20, 43] | 30 [21, 45] | 28 [19, 38] | 0.374 | |
AST (U/L) | 40 [30, 64] | 40 [31, 64] | 38 [30, 55] | 0.802 | |
CRE (mg/dL) | 0.80 [0.66, 1.02] | 0.76 [0.64, 0.96] | 0.94 [0.72, 1.10] | 0.004 | |
PT (%) | 89.9 [78.9, 96.2] | 88.5 [76.0, 96.1] | 91.5 [83.7, 97.1] | 0.311 | |
TBIL (mg/dL) | 0.9 [0.7, 1.1] | 0.9 [0.7, 1.1] | 0.7 [0.60, 1.0] | 0.023 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Factor | Hazard Ratio (95%CI) | p Value | Hazard Ratio (95%CI) | p Value |
Age (per year) | 1.012 (0.985-1.039) | 0.388 | 1.013 (0.981-1.046) | 0.43 |
Male sex | 1.673 (0.839–3.339) | 0.144 | 1.586 (0.779–3.230) | 0.204 |
Etiology of chronic liver disease | ||||
Hepatitis B | Reference | Reference | ||
Hepatitis C | 1.123 (0.467–2.698) | 0.795 | 0.577 (0.225–1.482) | 0.253 |
Nonviral | 1.267 (0.556–2.887) | 0.573 | 0.568 (0.226–1.430) | 0.23 |
ALBI score (per 1 increase) | 4.005 (0.556–2.887) | <0.001 | 4.956 (2.300–10.69) | <0.001 |
Child-Pugh classification | ||||
A5 | Reference | |||
A6 | 1.670 (0.909–3.070) | 0.098 | ||
B7 | 3.503 (1.614–7.605) | 0.002 | ||
B8 | 13.96 (4.415–44.13) | <0.001 | ||
B9 | 52.44 (5.585–492.3) | <0.001 | ||
Barcelona Clinic Liver Cancer stage | ||||
A | Reference | Reference | ||
B | 1.839 (0.247–13.68) | 0.552 | 2.089 (0.265–16.49) | 0.485 |
C | 2.534 (0.345–18.64) | 0.361 | 2.686 (0.350–20.63) | 0.342 |
Ratio of urinary protein to creatinine | 1.709 (1.226–2.383) | 0.002 | 1.697 (1.162–2.481) | 0.006 |
(per 1 g/gCr increase) | ||||
First-line regimen | ||||
Aterolizumab+bevacizumab | Reference | Reference | ||
Lenvatinib | 1.110 (0.582–2.119) | 0.751 | 1.026 (0.523–2.013) | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuno, K.; Imai, N.; Yamamoto, T.; Yokoyama, S.; Yamamoto, K.; Ito, T.; Ishizu, Y.; Honda, T.; Kuzuya, T.; Ishigami, M.; et al. Pretreatment Proteinuria Predicts the Prognosis of Patients Receiving Systemic Therapy for Unresectable Hepatocellular Carcinoma. Cancers 2023, 15, 2853. https://doi.org/10.3390/cancers15102853
Mizuno K, Imai N, Yamamoto T, Yokoyama S, Yamamoto K, Ito T, Ishizu Y, Honda T, Kuzuya T, Ishigami M, et al. Pretreatment Proteinuria Predicts the Prognosis of Patients Receiving Systemic Therapy for Unresectable Hepatocellular Carcinoma. Cancers. 2023; 15(10):2853. https://doi.org/10.3390/cancers15102853
Chicago/Turabian StyleMizuno, Kazuyuki, Norihiro Imai, Takafumi Yamamoto, Shinya Yokoyama, Kenta Yamamoto, Takanori Ito, Yoji Ishizu, Takashi Honda, Teiji Kuzuya, Masatoshi Ishigami, and et al. 2023. "Pretreatment Proteinuria Predicts the Prognosis of Patients Receiving Systemic Therapy for Unresectable Hepatocellular Carcinoma" Cancers 15, no. 10: 2853. https://doi.org/10.3390/cancers15102853
APA StyleMizuno, K., Imai, N., Yamamoto, T., Yokoyama, S., Yamamoto, K., Ito, T., Ishizu, Y., Honda, T., Kuzuya, T., Ishigami, M., & Kawashima, H. (2023). Pretreatment Proteinuria Predicts the Prognosis of Patients Receiving Systemic Therapy for Unresectable Hepatocellular Carcinoma. Cancers, 15(10), 2853. https://doi.org/10.3390/cancers15102853