Measuring Tumour Imatinib Concentrations in Gastrointestinal Stromal Tumours: Relevant or Redundant?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Sample Preparation and Quantification
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blay, J.Y.; Kang, Y.K.; Nishida, T.; von Mehren, M. Gastrointestinal stromal tumours. Nat. Rev. Dis. Prim. 2021, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Mathias-Machado, M.C.; de Jesus, V.H.F.; de Carvalho Oliveira, L.J.; Neumann, M.; Peixoto, R.D. Current Molecular Profile of Gastrointestinal Stromal Tumors and Systemic Therapeutic Implications. Cancers 2022, 14, 5330. [Google Scholar] [CrossRef] [PubMed]
- Casali, P.G.; Blay, J.Y.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.; et al. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 20–33. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Summary of Product Characteristics Glivec. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/glivec (accessed on 7 February 2023).
- Demetri, G.D.; Wang, Y.; Wehrle, E.; Racine, A.; Nikolova, Z.; Blanke, C.D.; Joensuu, H.; von Mehren, M. Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J. Clin. Oncol. 2009, 27, 3141–3147. [Google Scholar] [CrossRef]
- Reyners, A.K.L. GIST: Assessment of Tumor Mutations and TKI Plasma Exposure. ClinicalTrials.gov Identifier: NCT02331914. Available online: https://ClinicalTrials.gov/show/NCT02331914 (accessed on 7 February 2023).
- Antonescu, C.R.; Besmer, P.; Guo, T.; Arkun, K.; Hom, G.; Koryotowski, B.; Leversha, M.A.; Jeffrey, P.D.; Desantis, D.; Singer, S.; et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. 2005, 11, 4182–4190. [Google Scholar] [CrossRef]
- Takahashi, T.; Elzawahry, A.; Mimaki, S.; Furukawa, E.; Nakatsuka, R.; Nakamura, H.; Nishigaki, T.; Serada, S.; Naka, T.; Hirota, S.; et al. Genomic and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumors. Genes Chromosom. Cancer 2017, 56, 303–313. [Google Scholar] [CrossRef]
- Alves, R.; Fonseca, A.R.; Goncalves, A.C.; Ferreira-Teixeira, M.; Lima, J.; Abrantes, A.M.; Alves, V.; Rodrigues-Santos, P.; Jorge, L.; Matoso, E.; et al. Drug transporters play a key role in the complex process of Imatinib resistance in vitro. Leuk. Res. 2015, 39, 355–360. [Google Scholar] [CrossRef]
- Shima, T.; Taniguchi, K.; Tokumaru, Y.; Inomata, Y.; Arima, J.; Lee, S.W.; Takabe, K.; Yoshida, K.; Uchiyama, K. Glucose transporter-1 inhibition overcomes imatinib resistance in gastrointestinal stromal tumor cells. Oncol. Rep. 2022, 47, 7. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Xu, K.; Qian, Y.; Chen, M.; Sun, L.; Song, S.; Huang, X.; He, Z.; Li, F.; et al. Intracellular concentration and transporters in imatinib resistance of gastrointestinal stromal tumor. Scand. J. Gastroenterol. 2019, 54, 220–226. [Google Scholar] [CrossRef]
- Rompp, A.; Guenther, S.; Takats, Z.; Spengler, B. Mass spectrometry imaging with high resolution in mass and space (HR(2) MSI) for reliable investigation of drug compound distributions on the cellular level. Anal. Bioanal. Chem. 2011, 401, 65–73. [Google Scholar] [CrossRef]
- Abu Sammour, D.; Marsching, C.; Geisel, A.; Erich, K.; Schulz, S.; Ramallo Guevara, C.; Rabe, J.H.; Marx, A.; Findeisen, P.; Hohenberger, P.; et al. Quantitative Mass Spectrometry Imaging Reveals Mutation Status-Independent Lack of Imatinib in Liver Metastases of Gastrointestinal Stromal Tumors. Sci. Rep. 2019, 9, 10698. [Google Scholar] [CrossRef]
- Bartelink, I.H.; Jones, E.F.; Shahidi-Latham, S.K.; Lee, P.R.E.; Zheng, Y.; Vicini, P.; van ‘t Veer, L.; Wolf, D.; Iagaru, A.; Kroetz, D.L.; et al. Tumor Drug Penetration Measurements Could Be the Neglected Piece of the Personalized Cancer Treatment Puzzle. Clin. Pharmacol. Ther. 2019, 106, 148–163. [Google Scholar] [CrossRef]
- Wardelmann, E.; Haas, R.L.; Bovee, J.V.; Terrier, P.; Lazar, A.; Messiou, C.; LePechoux, C.; Hartmann, W.; Collin, F.; Fisher, C.; et al. Evaluation of response after neoadjuvant treatment in soft tissue sarcomas; the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) recommendations for pathological examination and reporting. Eur. J. Cancer 2016, 53, 84–95. [Google Scholar] [CrossRef]
- van Erp, N.P.; de Wit, D.; Guchelaar, H.J.; Gelderblom, H.; Hessing, T.J.; Hartigh, J. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 937, 33–43. [Google Scholar] [CrossRef]
- Wang, Y.; Chia, Y.L.; Nedelman, J.; Schran, H.; Mahon, F.X.; Molimard, M. A therapeutic drug monitoring algorithm for refining the imatinib trough level obtained at different sampling times. Ther. Drug Monit. 2009, 31, 579–584. [Google Scholar] [CrossRef]
- Hing, J.P.; Woolfrey, S.G.; Greenslade, D.; Wright, P.M. Analysis of toxicokinetic data using NONMEM: Impact of quantification limit and replacement strategies for censored data. J. Pharmacokinet. Pharmacodyn. 2001, 28, 465–479. [Google Scholar] [CrossRef]
- Landovitz, R.J.; Li, S.; Eron, J.J., Jr.; Grinsztejn, B.; Dawood, H.; Liu, A.Y.; Magnus, M.; Hosseinipour, M.C.; Panchia, R.; Cottle, L.; et al. Tail-phase safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in HIV-uninfected adults: A secondary analysis of the HPTN 077 trial. Lancet HIV 2020, 7, e472–e481. [Google Scholar] [CrossRef]
- NS, I.J.; Groenland, S.L.; Koenen, A.M.; Kerst, M.; van der Graaf, W.T.A.; Rosing, H.; Beijnen, J.H.; Huitema, A.D.R.; Steeghs, N. Therapeutic drug monitoring of imatinib in patients with gastrointestinal stromal tumours—Results from daily clinical practice. Eur. J. Cancer 2020, 136, 140–148. [Google Scholar] [CrossRef]
- Groenland, S.L.; van Eerden, R.A.G.; Westerdijk, K.; Meertens, M.; Koolen, S.L.W.; Moes, D.; de Vries, N.; Rosing, H.; Otten, H.; Vulink, A.J.E.; et al. Therapeutic drug monitoring-based precision dosing of oral targeted therapies in oncology: A prospective multicenter study. Ann. Oncol. 2022, 33, 1071–1082. [Google Scholar] [CrossRef]
- Bouchet, S.; Poulette, S.; Titier, K.; Moore, N.; Lassalle, R.; Abouelfath, A.; Italiano, A.; Chevreau, C.; Bompas, E.; Collard, O.; et al. Relationship between imatinib trough concentration and outcomes in the treatment of advanced gastrointestinal stromal tumours in a real-life setting. Eur. J. Cancer 2016, 57, 31–38. [Google Scholar] [CrossRef]
- Farag, S.; Verheijen, R.B.; Martijn Kerst, J.; Cats, A.; Huitema, A.D.; Steeghs, N. Imatinib Pharmacokinetics in a Large Observational Cohort of Gastrointestinal Stromal Tumour Patients. Clin. Pharmacokinet. 2017, 56, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Lankheet, N.A.G.; Desar, I.M.E.; Mulder, S.F.; Burger, D.M.; Kweekel, D.M.; van Herpen, C.M.L.; van der Graaf, W.T.A.; van Erp, N.P. Optimizing the dose in cancer patients treated with imatinib, sunitinib and pazopanib. Br. J. Clin. Pharmacol. 2017, 83, 2195–2204. [Google Scholar] [CrossRef] [PubMed]
- Guilhot, F.; Hughes, T.P.; Cortes, J.; Druker, B.J.; Baccarani, M.; Gathmann, I.; Hayes, M.; Granvil, C.; Wang, Y. Plasma exposure of imatinib and its correlation with clinical response in the Tyrosine Kinase Inhibitor Optimization and Selectivity Trial. Haematologica 2012, 97, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Berglund, E.; Ubhayasekera, S.J.; Karlsson, F.; Akcakaya, P.; Aluthgedara, W.; Ahlen, J.; Frobom, R.; Nilsson, I.L.; Lui, W.O.; Larsson, C.; et al. Intracellular concentration of the tyrosine kinase inhibitor imatinib in gastrointestinal stromal tumor cells. Anti-Cancer Drugs 2014, 25, 415–422. [Google Scholar] [CrossRef]
- Teoh, M.; Narayanan, P.; Moo, K.S.; Radhakrisman, S.; Pillappan, R.; Bukhari, N.I.; Segarra, I. HPLC determination of imatinib in plasma and tissues after multiple oral dose administration to mice. Pak. J. Pharm. Sci. 2010, 23, 35–41. [Google Scholar]
- Labots, M.; Pham, T.V.; Honeywell, R.J.; Knol, J.C.; Beekhof, R.; de Goeij-de Haas, R.; Dekker, H.; Neerincx, M.; Piersma, S.R.; van der Mijn, J.C.; et al. Kinase Inhibitor Treatment of Patients with Advanced Cancer Results in High Tumor Drug Concentrations and in Specific Alterations of the Tumor Phosphoproteome. Cancers 2020, 12, 330. [Google Scholar] [CrossRef]
- Haura, E.B.; Sommers, E.; Song, L.; Chiappori, A.; Becker, A. A pilot study of preoperative gefitinib for early-stage lung cancer to assess intratumor drug concentration and pathways mediating primary resistance. J. Thorac Oncol. 2010, 5, 1806–1814. [Google Scholar] [CrossRef]
- van Linde, M.E.; Labots, M.; Brahm, C.G.; Hovinga, K.E.; De Witt Hamer, P.C.; Honeywell, R.J.; de Goeij-de Haas, R.; Henneman, A.A.; Knol, J.C.; Peters, G.J.; et al. Tumor Drug Concentration and Phosphoproteomic Profiles after Two Weeks of Treatment with Sunitinib in Patients with Newly Diagnosed Glioblastoma. Clin. Cancer Res. 2022, 28, 1595–1602. [Google Scholar] [CrossRef]
- Gerritse, S.L.; Labots, M.; Heine, R.T.; Dekker, H.; Poel, D.; Tauriello, D.V.F.; Nagtegaal, I.D.; Van Den Hombergh, E.; Van Erp, N.; Verheul, H.M.W. High-Dose Intermittent Treatment with the Multikinase Inhibitor Sunitinib Leads to High Intra-Tumor Drug Exposure in Patients with Advanced Solid Tumors. Cancers 2022, 14, 6061. [Google Scholar] [CrossRef]
- Lankheet, N.A.; Schaake, E.E.; Burgers, S.A.; van Pel, R.; Beijnen, J.H.; Huitema, A.D.; Klomp, H.; Group, N.E.L.S. Concentrations of Erlotinib in Tumor Tissue and Plasma in Non-Small-Cell Lung Cancer Patients After Neoadjuvant Therapy. Clin. Lung Cancer 2015, 16, 320–324. [Google Scholar] [CrossRef]
- Molenaar-Kuijsten, L.; van Meekeren, M.; Verheijen, R.B.; Bovee, J.; Fiocco, M.; Thijssen, B.; Rosing, H.; Huitema, A.D.R.; Miah, A.B.; Gelderblom, H.; et al. Intra-Tumoral Pharmacokinetics of Pazopanib in Combination with Radiotherapy in Patients with Non-Metastatic Soft-Tissue Sarcoma. Cancers 2021, 13, 5780. [Google Scholar] [CrossRef]
- Gotink, K.J.; Broxterman, H.J.; Labots, M.; de Haas, R.R.; Dekker, H.; Honeywell, R.J.; Rudek, M.A.; Beerepoot, L.V.; Musters, R.J.; Jansen, G.; et al. Lysosomal sequestration of sunitinib: A novel mechanism of drug resistance. Clin. Cancer Res. 2011, 17, 7337–7346. [Google Scholar] [CrossRef]
- Fu, D.; Zhou, J.; Zhu, W.S.; Manley, P.W.; Wang, Y.K.; Hood, T.; Wylie, A.; Xie, X.S. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 2014, 6, 614–622. [Google Scholar] [CrossRef]
- Krchniakova, M.; Skoda, J.; Neradil, J.; Chlapek, P.; Veselska, R. Repurposing Tyrosine Kinase Inhibitors to Overcome Multidrug Resistance in Cancer: A Focus on Transporters and Lysosomal Sequestration. Int. J. Mol. Sci. 2020, 21, 3157. [Google Scholar] [CrossRef]
- Ruzickova, E.; Skoupa, N.; Dolezel, P.; Smith, D.A.; Mlejnek, P. The Lysosomal Sequestration of Tyrosine Kinase Inhibitors and Drug Resistance. Biomolecules 2019, 9, 675. [Google Scholar] [CrossRef]
- Burger, H.; den Dekker, A.T.; Segeletz, S.; Boersma, A.W.; de Bruijn, P.; Debiec-Rychter, M.; Taguchi, T.; Sleijfer, S.; Sparreboom, A.; Mathijssen, R.H.; et al. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol. Pharmacol. 2015, 88, 477–487. [Google Scholar] [CrossRef]
- Eechoute, K.; Sparreboom, A.; Burger, H.; Franke, R.M.; Schiavon, G.; Verweij, J.; Loos, W.J.; Wiemer, E.A.; Mathijssen, R.H. Drug transporters and imatinib treatment: Implications for clinical practice. Clin. Cancer Res. 2011, 17, 406–415. [Google Scholar] [CrossRef]
- Theou, N.; Gil, S.; Devocelle, A.; Julie, C.; Lavergne-Slove, A.; Beauchet, A.; Callard, P.; Farinotti, R.; Le Cesne, A.; Lemoine, A.; et al. Multidrug resistance proteins in gastrointestinal stromal tumors: Site-dependent expression and initial response to imatinib. Clin. Cancer Res. 2005, 11, 7593–7598. [Google Scholar] [CrossRef]
- Gericke, B.; Wienboker, I.; Brandes, G.; Loscher, W. Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver. Cells 2022, 11, 1556. [Google Scholar] [CrossRef]
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 | Patient 8 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Patient Characteristics | |||||||||||
Gender | Male | Male | Male | Female | Male | Male | Female | Female | |||
Age at time of surgery (years) | 50 | 63 | 55 | 71 | 72 | 61 | 60 | 52 | |||
Length at time of surgery (cm) | 177 | 183 | 185 | 163 | 176 | 165 | 167 | 163 | |||
Weight at time of surgery (kg) | 79 | 127 | 93 | 106 | 84 | 110 | 66 | 68 | |||
ECOG performance status | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | |||
Metastasis | No | No | No | No | No | No | Yes | Yes | |||
Tumour site | Stomach | Rectum | Stomach | Cardia | Stomach | Cardia | Stomach | Liver metastasis | Stomach | Liver metastasis segment 4a | Liver metastasis segment 4b |
Days from diagnosis untill start imatinib | 15 | 62 | 10 | 7 | 15 | 20 | 12 | 24 | |||
Treatment duration (months) | 12 | 8 | 8 | 11 | 11 | 9 | 34 | 19 | |||
Imatinib starting dose (mg/day) | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | |||
Imatinib dose prior to surgery (mg/day) | 600 | 400 | 500 | 400 | 400 | 600 | 600 | 400 | |||
Ctrough level imatinib prior to surgery (μg/L) | 1275 | 2175 | 935 | 950 | 957 | 897 | 1238 | 700 | |||
eGFR at start imatinib (ml/min/1.73 m2) | >90 | 72 | 85 | 65 | 66 | >90 | >90 | 77 | |||
eGFR at time of surgery (ml/min/1.73 m2) | >90 | 55 | 74 | 58 | 71 | 70 | >90 | 79 | |||
Hepatic function at start imatinib ^ | normal | normal | normal | normal | normal | normal | normal | normal | |||
Hepatic function at time of surgery ^ | normal | normal | normal | normal | normal | normal | moderate | normal | |||
Albumin levels at start imatinib (g/L) | 40 | 35 | 36 | 36 | 38 | 39 | 35 | 37 | |||
Albumin levels at time of surgery (g/L) | 40 | 35 | 37 | 38 | 34 | 37 | 24 | 37 | |||
Comorbidities | none | Atrial fibrillation, hypercholesterolaemia, hypertension | Cerebrovascular accident | Type 2 diabetes, hypertension | Prostate carcinoma, hypercholesterolaemia, hypertension | Hypertension, triple vessel disease | none | none | |||
Tumour characteristics | |||||||||||
Tumour diameter at time of diagnosis (cm) | 4.0 | 6.0 | 9.3 | 12.0 | 7.2 | 16.6 | 17.2 | 8.5 | 4.5 | unknown | 12.2 |
Tumour diameter at time of surgery (cm) | 3.0 | 5.0 | 8.5 | 7.7 | 5.5 | 10.5 | 11.0 | 4.5 | 2.0 | unknown | 0.9 |
Mutational status (cKIT) | exon 11 | exon 11 | exon 11 | exon 11 | exon 11 | exon 11 | exon 11 | exon 11 | |||
Treatment response * (%) | 80 | 80 | 100 | 60–70 | 60 | 50–75 | 70–80 | unknown | 90–95 | 100 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giraud, E.L.; de Jong, L.A.W.; van den Hombergh, E.; Kaal, S.E.J.; van Erp, N.P.; Desar, I.M.E. Measuring Tumour Imatinib Concentrations in Gastrointestinal Stromal Tumours: Relevant or Redundant? Cancers 2023, 15, 2875. https://doi.org/10.3390/cancers15112875
Giraud EL, de Jong LAW, van den Hombergh E, Kaal SEJ, van Erp NP, Desar IME. Measuring Tumour Imatinib Concentrations in Gastrointestinal Stromal Tumours: Relevant or Redundant? Cancers. 2023; 15(11):2875. https://doi.org/10.3390/cancers15112875
Chicago/Turabian StyleGiraud, Eline L., Loek A. W. de Jong, Erik van den Hombergh, Suzanne E. J. Kaal, Nielka P. van Erp, and Ingrid M. E. Desar. 2023. "Measuring Tumour Imatinib Concentrations in Gastrointestinal Stromal Tumours: Relevant or Redundant?" Cancers 15, no. 11: 2875. https://doi.org/10.3390/cancers15112875
APA StyleGiraud, E. L., de Jong, L. A. W., van den Hombergh, E., Kaal, S. E. J., van Erp, N. P., & Desar, I. M. E. (2023). Measuring Tumour Imatinib Concentrations in Gastrointestinal Stromal Tumours: Relevant or Redundant? Cancers, 15(11), 2875. https://doi.org/10.3390/cancers15112875