Antibody Response to the SARS-CoV-2 Vaccine and COVID-19 Vulnerability during the Omicron Pandemic in Patients with CLL: Two-Year Follow-Up of a Multicenter Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients and Methods
2.2. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients
3.2. Serological Response and Factors Predicting the Serologic Response to the Vaccine
3.3. Clinical Characteristics and Outcomes of Patients with COVID-19
3.4. Risk Factors of COVID-19
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of Patients with Hematologic Malignancies and COVID-19: A Systematic Review and Meta-Analysis of 3377 Patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Cattaneo, C.; Arcaini, L.; Bruna, R.; Cavo, M.; Merli, F.; Angelucci, E.; Krampera, M.; Cairoli, R.; Della Porta, M.G.; et al. ITA-HEMA-COV Investigators. Clinical Characteristics and Risk Factors Associated with COVID-19 Severity in Patients with Haematological Malignancies in Italy: A Retrospective, Multicentre, Cohort Study. Lancet Haematol. 2020, 7, e737–e745. [Google Scholar] [CrossRef] [PubMed]
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. EPICOVIDEHA working group. COVID-19 Infection in Adult Patients with Hematological Malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Scarfò, L.; Chatzikonstantinou, T.; Rigolin, G.M.; Quaresmini, G.; Motta, M.; Vitale, C.; Garcia-Marco, J.A.; Hernández-Rivas, J.Á.; Mirás, F.; Baile, M.; et al. COVID-19 Severity and Mortality in Patients with Chronic Lymphocytic Leukemia: A Joint Study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia 2020, 34, 2354–2363. [Google Scholar] [CrossRef]
- Mato, A.R.; Roeker, L.E.; Lamanna, N.; Allan, J.N.; Leslie, L.; Pagel, J.M.; Patel, K.; Osterborg, A.; Wojenski, D.; Kamdar, M.; et al. Outcomes of COVID-19 in Patients with CLL: A Multicenter International Experience. Blood 2020, 136, 1134–1143. [Google Scholar] [CrossRef]
- Chatzikonstantinou, T.; Kapetanakis, A.; Scarfò, L.; Karakatsoulis, G.; Allsup, D.; Cabrero, A.A.; Andres, M.; Antic, D.; Baile, M.; Baliakas, P.; et al. COVID-19 Severity and Mortality in Patients with CLL: An Update of the International ERIC and Campus CLL Study. Leukemia 2021, 35, 3444–3454. [Google Scholar] [CrossRef]
- Roeker, L.E.; Knorr, D.A.; Pessin, M.S.; Ramanathan, L.V.; Thompson, M.C.; Leslie, L.A.; Zelenetz, A.D.; Mato, A.R. Anti-SARS-CoV-2 Antibody Response in Patients with Chronic Lymphocytic Leukemia. Leukemia 2020, 34, 3047–3049. [Google Scholar] [CrossRef]
- Herishanu, Y.; Avivi, I.; Aharon, A.; Shefer, G.; Levi, S.; Bronstein, Y.; Morales, M.; Ziv, T.; Shorer Arbel, Y.; Scarfò, L.; et al. Efficacy of the BNT162b2 MRNA COVID-19 Vaccine in Patients with Chronic Lymphocytic Leukemia. Blood 2021, 137, 3165–3173. [Google Scholar] [CrossRef]
- Roeker, L.E.; Knorr, D.A.; Thompson, M.C.; Nivar, M.; Lebowitz, S.; Peters, N.; Deonarine, I.; Momotaj, S.; Sharan, S.; Chanlatte, V.; et al. COVID-19 Vaccine Efficacy in Patients with Chronic Lymphocytic Leukemia. Leukemia 2021, 35, 2703–2705. [Google Scholar] [CrossRef]
- Parry, H.; McIlroy, G.; Bruton, R.; Ali, M.; Stephens, C.; Damery, S.; Otter, A.; McSkeane, T.; Rolfe, H.; Faustini, S.; et al. Antibody Responses after First and Second Covid-19 Vaccination in Patients with Chronic Lymphocytic Leukaemia. Blood Cancer J. 2021, 11, 136. [Google Scholar] [CrossRef]
- Bagacean, C.; Letestu, R.; Al-Nawakil, C.; Brichler, S.; Lévy, V.; Sritharan, N.; Delmer, A.; Dartigeas, C.; Leblond, V.; Roos-Weil, D.; et al. Humoral Response to MRNA Anti-COVID-19 Vaccines BNT162b2 and MRNA-1273 in Patients with Chronic Lymphocytic Leukemia. Blood Adv. 2022, 6, 207–211. [Google Scholar] [CrossRef]
- Benjamini, O.; Rokach, L.; Itchaki, G.; Braester, A.; Shvidel, L.; Goldschmidt, N.; Shapira, S.; Dally, N.; Avigdor, A.; Rahav, G.; et al. Safety and Efficacy of the BNT162b MRNA COVID-19 Vaccine in Patients with Chronic Lymphocytic Leukemia. Haematologica 2022, 107, 625–634. [Google Scholar] [CrossRef]
- Haydu, J.E.; Maron, J.S.; Redd, R.A.; Gallagher, K.M.E.; Fischinger, S.; Barnes, J.A.; Hochberg, E.P.; Johnson, P.C.; Takvorian, R.W.; Katsis, K.; et al. Humoral and Cellular Immunogenicity of SARS-CoV-2 Vaccines in Chronic Lymphocytic Leukemia: A Prospective Cohort Study. Blood Adv. 2022, 6, 1671–1683. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Akhtar, A.; Linderman, S.L.; Lai, L.; Orellana-Noia, V.M.; Valanparambil, R.; Ahmed, H.; Zarnitsyna, V.I.; McCook-Veal, A.A.; Switchenko, J.M.; et al. Humoral Responses Against SARS-CoV-2 and Variants of Concern After MRNA Vaccines in Patients With Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2022, 40, 3020–3031. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. IwCLL Guidelines for Diagnosis, Indications for Treatment, Response Assessment, and Supportive Management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef]
- Shen, Y.; Freeman, J.A.; Holland, J.; Solterbeck, A.; Naidu, K.; Soosapilla, A.; Downe, P.; Tang, C.; Kerridge, I.; Wallman, L.; et al. COVID-19 Vaccine Failure in Chronic Lymphocytic Leukaemia and Monoclonal B-Lymphocytosis; Humoural and Cellular Immunity. Br. J. Haematol. 2022, 197, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Parry, H.; Bruton, R.; Roberts, T.; McIlroy, G.; Damery, S.; Sylla, P.; Dowell, A.C.; Tut, G.; Lancaster, T.; Bone, D.; et al. COVID-19 Vaccines Elicit Robust Cellular Immunity and Clinical Protection in Chronic Lymphocytic Leukemia. Cancer Cell 2022, 40, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Fürstenau, M.; Langerbeins, P.; De Silva, N.; Fink, A.M.; Robrecht, S.; von Tresckow, J.; Simon, F.; Hohloch, K.; Droogendijk, J.; van der Klift, M.; et al. COVID-19 among Fit Patients with CLL Treated with Venetoclax-Based Combinations. Leukemia 2020, 34, 2225–2229. [Google Scholar] [CrossRef]
- Sun, C.; Gao, J.; Couzens, L.; Tian, X.; Farooqui, M.Z.; Eichelberger, M.C.; Wiestner, A. Seasonal Influenza Vaccination in Patients With Chronic Lymphocytic Leukemia Treated With Ibrutinib. JAMA Oncol. 2016, 2, 1656–1657. [Google Scholar] [CrossRef]
- Douglas, A.P.; Trubiano, J.A.; Barr, I.; Leung, V.; Slavin, M.A.; Tam, C.S. Ibrutinib May Impair Serological Responses to Influenza Vaccination. Haematologica 2017, 102, e397–e399. [Google Scholar] [CrossRef]
- Mauro, F.R.; Giannarelli, D.; Galluzzo, C.M.; Vitale, C.; Visentin, A.; Riemma, C.; Rosati, S.; Porrazzo, M.; Pepe, S.; Coscia, M.; et al. Response to the Conjugate Pneumococcal Vaccine (PCV13) in Patients with Chronic Lymphocytic Leukemia (CLL). Leukemia 2021, 35, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Herishanu, Y.; Rahav, G.; Levi, S.; Braester, A.; Itchaki, G.; Bairey, O.; Dally, N.; Shvidel, L.; Ziv-Baran, T.; Polliack, A.; et al. Efficacy of a Third BNT162b2 MRNA COVID-19 Vaccine Dose in Patients with CLL Who Failed Standard 2-Dose Vaccination. Blood 2022, 139, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Sun, C. COVID-19 Vaccine Response in Chronic Lymphocytic Leukaemia Is More than Just Seroconversion. Br. J. Haematol. 2022, 197, 11–12. [Google Scholar] [CrossRef]
- Prevalenza e Distribuzione Delle Varianti di SARS-CoV-2 di Interesse Per la Sanità Pubblica in Italia-Rapporto n. 24 del 29 Settembre. 2022. Available online: https://www.epicentro.iss.it/coronavirus/pdf/sars-cov-2-monitoraggio-varianti-rapporti-periodici-29-settembre-2022.pdf (accessed on 17 March 2023).
- Hachmann, N.P.; Miller, J.; Collier, A.-R.Y.; Ventura, J.D.; Yu, J.; Rowe, M.; Bondzie, E.A.; Powers, O.; Surve, N.; Hall, K.; et al. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5. N. Engl. J. Med. 2022, 387, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Tuekprakhon, A.; Nutalai, R.; Dijokaite-Guraliuc, A.; Zhou, D.; Ginn, H.M.; Selvaraj, M.; Liu, C.; Mentzer, A.J.; Supasa, P.; Duyvesteyn, H.M.E.; et al. Antibody Escape of SARS-CoV-2 Omicron BA.4 and BA.5 from Vaccine and BA.1 Serum. Cell 2022, 185, 2422–2433.e13. [Google Scholar] [CrossRef]
- Callaway, E. What Omicron’s BA.4 and BA.5 Variants Mean for the Pandemic. Nature 2022, 606, 848–849. [Google Scholar] [CrossRef]
- Harford, J.B.; Kim, S.S.; Pirollo, K.F.; Chang, E.H. TP53 Gene Therapy as a Potential Treatment for Patients with COVID-19. Viruses 2022, 14, 739. [Google Scholar] [CrossRef]
- Teodoro, J.G.; Branton, P.E. Regulation of Apoptosis by Viral Gene Products. J. Virol. 1997, 71, 1739–1746. [Google Scholar] [CrossRef]
- Takaoka, A.; Hayakawa, S.; Yanai, H.; Stoiber, D.; Negishi, H.; Kikuchi, H.; Sasaki, S.; Imai, K.; Shibue, T.; Honda, K.; et al. Integration of Interferon-Alpha/Beta Signalling to P53 Responses in Tumour Suppression and Antiviral Defence. Nature 2003, 424, 516–523. [Google Scholar] [CrossRef]
- Ward, I.L.; Bermingham, C.; Ayoubkhani, D.; Gethings, O.J.; Pouwels, K.B.; Yates, T.; Khunti, K.; Hippisley-Cox, J.; Banerjee, A.; Walker, A.S.; et al. Risk of Covid-19 Related Deaths for SARS-CoV-2 Omicron (B.1.1.529) Compared with Delta (B.1.617.2): Retrospective Cohort Study. BMJ 2022, 378, e070695. [Google Scholar] [CrossRef]
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative Analysis of the Risks of Hospitalisation and Death Associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) Variants in England: A Cohort Study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Severity of Disease Associated with Omicron Variant as Compared with Delta Variant in Hospitalized Patients with Suspected or Confirmed SARS-CoV-2 Infection. 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/354794/9789240051829-eng.pdf (accessed on 17 March 2023).
- Bronstein, Y.; Gat, R.; Levi, S.; Cohen, Y.C.; Luttwak, E.; Benyamini, N.; Shragai, T.; Vitkon, R.; Neaman, M.; Eilaty, N.; et al. COVID-19 in Patients with Lymphoproliferative Diseases during the Omicron Variant Surge. Cancer Cell 2022, 40, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Niemann, C.U.; da Cunha-Bang, C.; Helleberg, M.; Ostrowski, S.R.; Brieghel, C. Patients with CLL Have a Lower Risk of Death from COVID-19 in the Omicron Era. Blood 2022, 140, 445–450. [Google Scholar] [CrossRef]
- Mikulska, M.; Testi, D.; Russo, C.; Balletto, E.; Sepulcri, C.; Bussini, L.; Dentone, C.; Magne, F.; Policarpo, S.; Campoli, C.; et al. Outcome of Early Treatment of SARS-CoV-2 Infection in Patients with Haematological Disorders. Br. J. Haematol. 2023, 201, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Infante, M.S.; Salmanton-García, J.; Fernández-Cruz, A.; Marchesi, F.; Jaksic, O.; Weinbergerová, B.; Besson, C.; Duarte, R.F.; Itri, F.; Valković, T.; et al. B-cell malignancies treated with targeted drugs and SARS-CoV-2 infection: A European Hematology Association Survey (EPICOVIDEHA). Front. Oncol. 2022, 12, 992137. [Google Scholar] [CrossRef] [PubMed]
- Roeker, L.E.; Eyre, T.A.; Thompson, M.C.; Lamanna, N.; Coltoff, A.R.; Davids, M.S.; Baker, P.O.; Leslie, L.; Rogers, K.A.; Allan, J.N.; et al. COVID-19 in Patients with CLL: Improved Survival Outcomes and Update on Management Strategies. Blood 2021, 138, 1768–1773. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-García, J.; Marchesi, F.; López-García, A.; Lamure, S.; Itri, F.; Gomes-Silva, M.; Dragonetti, G.; Falces-Romero, I.; van Doesum, J.; et al. COVID-19 in Vaccinated Adult Patients with Hematological Malignancies: Preliminary Results from EPICOVIDEHA. Blood 2022, 139, 1588–1592. [Google Scholar] [CrossRef]
- Piñana, J.L.; López-Corral, L.; Martino, R.; Vazquez, L.; Pérez, A.; Martin-Martin, G.; Gago, B.; Sanz-Linares, G.; Sanchez-Salinas, A.; Villalon, L.; et al. Infectious Complications Subcommittee of the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH-TC). SARS-CoV-2 Vaccine Response and Rate of Breakthrough Infection in Patients with Hematological Disorders. J. Hematol. Oncol. 2022, 15, 54. [Google Scholar] [CrossRef]
N = 200 (%) | |
---|---|
Median age at the time of the anti-SARS-CoV-2 vaccine, years (range, IQR) | 70 (38–90) (61–76) |
Sex M/F | 113/87 |
Median time from CLL to the anti-SARS-CoV-2 vaccine, months, (range) | 92 (1–387) |
Median follow-up from the first dose of anti-SARS-CoV-2 vaccine, months, (range) | 23.4 (4.5–25.7) |
CIRS ≥ 6 | 69 (34.5) |
IgG levels ≤ 550 mg/dL | 70 (35) |
Median lymphocyte count ×109/L, (range) | 3.12 (0.4–218.0) |
Beta2-microglobulin ≥ 3.5 mg/dL | 34/176 (19.3) |
Rai stage III–IV | 16 (8.0) |
Clinical signs of progressive disease | 32 (16.0) |
| 31/175 (17.7) |
| 29/175 (16.6) |
| 30/175 (17.1) |
| 34/175 (19.4) |
TP53 mutation | 50/179 (27.9) |
Del17p and/or TP53 mutation | 58/172 (34) |
| 111/183 (61) |
| 72/183 (39) |
N = 200 (%) | |
---|---|
The median number of prior treatments (range) | 1 (0–8) |
Treatment naïve patients | 33 (16.5) |
Previously treated patients | 167 (83.5) |
Front-line chemoimmunotherapy only | 20 (10.3) |
Targeted agents | 147 (73.5) |
Ibrutinib-based treatment (1) | 72 (36) |
Front-line | 42 (21.0) |
| 28 (14) |
| 14 (7) |
Advanced-line Ibrutinib (1) | 30 (15.0) |
Venetoclax-based treatment | 75 (37.5) |
Front-line venetoclax + rituximab (2) | 27 (13.5) |
Advanced-line venetoclax ± rituximab | 48 (24.0) |
| 21 (10.5) |
| 27 (13.5) |
Median number of months (range) between vaccine and start of: | |
| 54.5 (9–210) |
| 18 (3–90.5) |
| 36 (2–90.3) |
| 13 (0.5–44) |
Patients previously treated with rituximab | 135 (77.5) |
| 33 (16.5) |
| 102 (51–0) |
N = 80 (%) | |
Median age, years (range) | 69.1 (39–89) |
CIRS ≥ 6 | 20 (25) |
IgG levels < 550 mg/dL | 27 (34) |
Rai stage III–IV | 5 (6) |
Unmutated IGHV | 41 (51) |
TP53 mutation/deletion | 15 (19) |
More than one COVID-19 event (1) | 8 (10) |
Treatment naive | 14 (17.5) |
Prior treatment | 66 (82.5) |
| 6 (7.5) |
| 31 (39) |
Venetoclax based (2) | 29 (36) |
Last rituximab administration within six months | 3 (4) |
Number of doses of the vaccine before COVID-19 | |
| 4 (5) |
| 61 (76) |
| 12 (15) |
| 3 (4) |
Known serologic response to the last dose of the vaccine | |
| 42 (52.5) |
| 38 (47.5) |
Pre-exposure prophylaxis with tixagevimab/cilgavimab | 50 (62.5) |
| 19/34 (56) |
| 0/16 (0) |
Pandemic phase of COVID-19 diagnosis (3) | |
| 1 (1) |
| 8 (10) |
| 71 (89) |
Discontinued ibrutinib or venetoclax-based treatment during COVID-19 | 76/80 (95) |
Clinical management of COVID-19 | |
| 59 (74) |
| 21 (26%) [9] |
Treatment | |
| 16 (20) |
| 35 (44) |
| 14 (17.5) |
| 15 (19) |
COVID-19-related deaths | 3 (4) |
Recovered from COVID-19 and resumed targeted therapy | 74/80 (92.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauro, F.R.; Giannarelli, D.; Galluzzo, C.M.; Visentin, A.; Frustaci, A.M.; Sportoletti, P.; Vitale, C.; Reda, G.; Gentile, M.; Levato, L.; et al. Antibody Response to the SARS-CoV-2 Vaccine and COVID-19 Vulnerability during the Omicron Pandemic in Patients with CLL: Two-Year Follow-Up of a Multicenter Study. Cancers 2023, 15, 2993. https://doi.org/10.3390/cancers15112993
Mauro FR, Giannarelli D, Galluzzo CM, Visentin A, Frustaci AM, Sportoletti P, Vitale C, Reda G, Gentile M, Levato L, et al. Antibody Response to the SARS-CoV-2 Vaccine and COVID-19 Vulnerability during the Omicron Pandemic in Patients with CLL: Two-Year Follow-Up of a Multicenter Study. Cancers. 2023; 15(11):2993. https://doi.org/10.3390/cancers15112993
Chicago/Turabian StyleMauro, Francesca R., Diana Giannarelli, Clementina M. Galluzzo, Andrea Visentin, Anna M. Frustaci, Paolo Sportoletti, Candida Vitale, Gianluigi Reda, Massimo Gentile, Luciano Levato, and et al. 2023. "Antibody Response to the SARS-CoV-2 Vaccine and COVID-19 Vulnerability during the Omicron Pandemic in Patients with CLL: Two-Year Follow-Up of a Multicenter Study" Cancers 15, no. 11: 2993. https://doi.org/10.3390/cancers15112993
APA StyleMauro, F. R., Giannarelli, D., Galluzzo, C. M., Visentin, A., Frustaci, A. M., Sportoletti, P., Vitale, C., Reda, G., Gentile, M., Levato, L., Murru, R., Armiento, D., Molinari, M. C., Proietti, G., Pepe, S., De Falco, F., Mattiello, V., Barabino, L., Amici, R., ... Baroncelli, S. (2023). Antibody Response to the SARS-CoV-2 Vaccine and COVID-19 Vulnerability during the Omicron Pandemic in Patients with CLL: Two-Year Follow-Up of a Multicenter Study. Cancers, 15(11), 2993. https://doi.org/10.3390/cancers15112993