Prevalence of Homologous Recombination Deficiency in First-Line PARP Inhibitor Maintenance Clinical Trials and Further Implication of Personalized Treatment in Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. HRD in Ovarian Cancer and PARP Inhibitor
3. First-Line Maintenance PARP Inhibitor Treatment RCTs in Ovarian Cancer
4. HRD Assays in Ovarian Cancer RCTs and HRD Prevalence
5. Subset Data/Real-World Data of PARP Inhibitors Maintenance RCTs and HRD Prevalence
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Karam, A.; Ledermann, J.A.; Kim, J.W.; Sehouli, J.; Lu, K.; Gourley, C.; Katsumata, N.; Burger, R.A.; Nam, B.H.; Bacon, M.; et al. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup: First-line interventions. Ann. Oncol. 2017, 28, 711–717. [Google Scholar] [CrossRef]
- Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 2011, 365, 2484–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, K.; Colombo, N.; Scambia, G.; Kim, B.G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.L.; Fleming, G.F.; Brady, M.F.; Swisher, E.M.; Steffensen, K.D.; Friedlander, M.; Okamoto, A.; Moore, K.N.; Efrat Ben-Baruch, N.; Werner, T.L.; et al. Veliparib with First-Line Chemotherapy and as Maintenance Therapy in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2403–2415. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.J.; Parkinson, C.; Lim, M.C.; O’Malley, D.M.; Oaknin, A.; Wilson, M.K.; Coleman, R.L.; Lorusso, D.; Bessette, P.; Ghamande, S.; et al. A Randomized, Phase III Trial to Evaluate Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J. Clin. Oncol. 2022, 40, 3952–3964. [Google Scholar] [CrossRef]
- Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [CrossRef] [PubMed] [Green Version]
- Eoh, K.J.; Kim, H.M.; Lee, J.Y.; Kim, S.; Kim, S.W.; Kim, Y.T.; Nam, E.J. Mutation landscape of germline and somatic BRCA1/2 in patients with high-grade serous ovarian cancer. BMC Cancer 2020, 20, 204. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, T.; Zhang, Z.; Payne, S.H.; Zhang, B.; McDermott, J.E.; Zhou, J.Y.; Petyuk, V.A.; Chen, L.; Ray, D.; et al. Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell 2016, 166, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Hirasawa, A. Homologous Recombination Deficiencies and Hereditary Tumors. Int. J. Mol. Sci. 2021, 23, 348. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.J. Targeting the DNA Damage Response in Cancer. Mol. Cell. 2015, 60, 547–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngoi, N.Y.L.; Tan, D.S.P. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: Do we need it? ESMO Open 2021, 6, 100144. [Google Scholar] [CrossRef]
- Abkevich, V.; Timms, K.M.; Hennessy, B.T.; Potter, J.; Carey, M.S.; Meyer, L.A.; Smith-McCune, K.; Broaddus, R.; Lu, K.H.; Chen, J.; et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br. J. Cancer 2012, 107, 1776–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkbak, N.J.; Wang, Z.C.; Kim, J.Y.; Eklund, A.C.; Li, Q.; Tian, R.; Bowman-Colin, C.; Li, Y.; Greene-Colozzi, A.; Iglehart, J.D.; et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2012, 2, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popova, T.; Manié, E.; Rieunier, G.; Caux-Moncoutier, V.; Tirapo, C.; Dubois, T.; Delattre, O.; Sigal-Zafrani, B.; Bollet, M.; Longy, M.; et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 2012, 72, 5454–5462. [Google Scholar] [CrossRef] [Green Version]
- Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008, 8, 193–204. [Google Scholar] [CrossRef]
- Denkert, C.; Romey, M.; Swedlund, B.; Hattesohl, A.; Teply-Szymanski, J.; Kommoss, S.; Kaiser, K.; Staebler, A.; du Bois, A.; Grass, A.; et al. Homologous Recombination Deficiency as an Ovarian Cancer Biomarker in a Real-World Cohort: Validation of Decentralized Genomic Profiling. J. Mol. Diagn. 2022, 24, 1254–1263. [Google Scholar] [CrossRef]
- Robson, M.E.; Tung, N.; Conte, P.; Im, S.A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2416–2428. [Google Scholar] [CrossRef]
- Stewart, M.D.; Merino Vega, D.; Arend, R.C.; Baden, J.F.; Barbash, O.; Beaubier, N.; Collins, G.; French, T.; Ghahramani, N.; Hinson, P.; et al. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist 2022, 27, 167–174. [Google Scholar] [CrossRef]
- Telli, M.L.; Timms, K.M.; Reid, J.; Hennessy, B.; Mills, G.B.; Jensen, K.C.; Szallasi, Z.; Barry, W.T.; Winer, E.P.; Tung, N.M.; et al. Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin. Cancer Res. 2016, 22, 3764–3773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stronach, E.A.; Paul, J.; Timms, K.M.; Hughes, E.; Brown, K.; Neff, C.; Perry, M.; Gutin, A.; El-Bahrawy, M.; Steel, J.H.; et al. Biomarker Assessment of HR Deficiency, Tumor BRCA1/2 Mutations, and CCNE1 Copy Number in Ovarian Cancer: Associations with Clinical Outcome Following Platinum Monotherapy. Mol. Cancer Res. 2018, 16, 1103–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulet, L.; Trecourt, A.; Leary, A.; Peron, J.; Descotes, F.; Devouassoux-Shisheboran, M.; Leroy, K.; You, B.; Lopez, J. Cracking the homologous recombination deficiency code: How to identify responders to PARP inhibitors. Eur. J. Cancer 2022, 166, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Ito, K.; Nakai, H.; Kato, H.; Kamiura, S.; Ushijima, K.; Nagao, S.; Takano, H.; Okadome, M.; Takekuma, M.; et al. Veliparib with frontline chemotherapy and as maintenance in Japanese women with ovarian cancer: A subanalysis of efficacy, safety, and antiemetic use in the phase 3 VELIA trial. Int. J. Clin. Oncol. 2023, 28, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Fujiwara, H.; Yoshida, H.; Satoh, T.; Yonemori, K.; Nagao, S.; Matsumoto, T.; Kobayashi, H.; Bourgeois, H.; Harter, P.; et al. Olaparib plus bevacizumab as maintenance therapy in patients with newly diagnosed, advanced ovarian cancer: Japan subset from the PAOLA-1/ENGOT-ov25 trial. J. Gynecol. Oncol. 2021, 32, e82. [Google Scholar] [CrossRef]
- Li, N.; Zhu, J.; Yin, R.; Wang, J.; Pan, L.; Kong, B.; Zheng, H.; Liu, J.; Wu, X.; Wang, L.; et al. Efficacy and safety of niraparib as maintenance treatment in patients with newly diagnosed advanced ovarian cancer using an individualized starting dose (PRIME Study): A randomized, double-blind, placebo-controlled, phase 3 trial (LBA 5). Gynecol. Oncol. 2022, 166, S50–S51. [Google Scholar] [CrossRef]
- Ni, J.; Guo, W.; Zhao, Q.; Cheng, X.; Xu, X.; Zhou, R.; Gu, H.; Chen, C.; Chen, X. Homologous Recombination Deficiency Associated With Response to Poly (ADP-ribose) Polymerase Inhibitors in Ovarian Cancer Patients: The First Real-World Evidence From China. Front. Oncol. 2021, 11, 746571. [Google Scholar] [CrossRef]
Study Design | Maintenance Therapy/PARP Inhibitor | Inclusion Criteria | Stratification Factors | Primary Endpoint | Results | BRCA Mutation Prevalence | HRD Prevalence | HRD Definition | Central Testing Method | |
---|---|---|---|---|---|---|---|---|---|---|
PRIMA/ENGOT-OV26/GOG-3012 (NCT02655016) [5] | Randomized, double-blind, placebo-controlled phase 3 trial, a 2:1 ratio to receive niraparib or placebo once daily after a response to platinum-based chemotherapy | niraparib | Newly diagnosed, histologically confirmed advanced cancer of the ovary, high-grade, stage III or IV, stage III disease with visible residual tumor after primary debulking surgery, inoperable stage III disease, or any stage IV disease, as well as those who had received neoadjuvant chemotherapy | Myriad tumor HRD status cut-off 42 | PFS | HRD cohort, HR 0.43; 95% CI 0.31–0.59; p < 0.001 Overall population HR 0.62; 95% CI 0.50 to 0.76; p < 0.001 | 30% (223/733) | 50.9% (373/733) | the presence of a BRCA deleterious mutation, a score of at least 42 on the my Choice test, or both. | Myriad myChoice test |
VELIA/GOG-3005 trial (NCT02470585) [6] | Randomly assigned in a 1:1:1 ratio to receive chemotherapy plus placebo followed by placebo maintenance (control), chemotherapy plus veliparib followed by placebo maintenance (veliparib combination only), or chemotherapy plus veliparib followed by veliparib maintenance (veliparib throughout) | veliparib | Initial histologic diagnosis of high-grade serous epithelial ovarian, carcinoma of stage III or IV | BRCA mutation status, Myriad tumor HRD status cut-off 33 | Investigator-assessed PFS | BRCA-mutation cohort HR 0.44; 95% CI 0.28 to 0.68; p < 0.001. HRD cohort HR 0.57; 95% CI 0.43 to 0.76; p < 0.001 Intention-to treat population, HR 0.68; 95% CI 0.56 to 0.83; p < 0.001 | 26% (298/1140), -gBRCAm 19% -sBRCAm 7% | 55% (627/1140) -BRCAm 26% -non BRCAm 29% | a score of ≥33 was considered to indicate HRD status, and a score of <33 was considered to indicate non-HRD status the threshold score was revised from 42, after several retrospective analyses of previous clinical trials, to increase the sensitivity of detecting a response to PARP inhibitors | Myriad BRACAnalysis CDx or myChoice HRD CDx assay |
PAOLA-1/ENGOT-ov25 trial (NCT02477644) [21] | Randomly assigned in a 2:1 ratio to receive olaparib tablets (300 mg twice daily) or placebo for up to 24 months; all the patients received bevacizumab at a dose of 15 mg per kilogram of body weight every 3 weeks for up to 15 months in total. | olaparib + bevacizumab | Newly diagnosed, stage III or IV, high-grade serous or endometrioid ovarian cancer, and were having a response after first-line platinum–taxane chemotherapy | BRCA mutation status, Myriad tumor HRD status cut-off 42 | Investigator-assessed PFS | BRCA-mutation cohort HR 0.31; 95% CI, 0.20 to 0.47. HRD cohort HR 0.33; 95% CI 0.25 to 0.45 Investigator-assessed, HR 0.59; 95% CI, 0.49 to 0.72; p < 0.001 | 30% (241/806) | 48% (387/806) | HRD score of ≥42 (positive test) provided evidence of defects in homologous recombination | Myriad myChoice® HRD Plus assay |
ATHENA/GOG-3020/ENGOT-ov45 (NCT03522246) [7] | Randomly assigned 4:1 to oral rucaparib + intravenous (IV) placebo or oral placebo + IV placebo | rucaparib | Newly diagnosed, histologically confirmed, advanced (stage III-IV), high-grade epithelial ovarian cancer who had completed cytoreductive surgery (R0/complete resection was permitted) before chemotherapy or following neoadjuvant chemotherapy; and achieved an investigator-assessed response | HRD classification (BRCA mutation, BRCA wild-type/LOH high [LOH > 16%], BRCA wild-type/LOH low [LOH < 16%], and BRCA wild-type/LOH indeterminate), disease status after chemotherapy, timing of surgery | Investigator-assessed PFS | HRD cohort, HR 0.47; 95% CI 0.31 to 0.72; p = 0.0004. Intend-to-treat population HR 0.52; 95% CI 0.40 to 0.68; p < 0.0001 | 22% (115/538) | 43% (234/538) | BRCA-mutant or BRCA wild-type/LOH high carcinoma | FoundationOne CDx next-generation sequencing assay |
Study Design | Number of Patients | Results | BRCA Mutation Prevalance | HRD Prevalence | Central Testing Method | |
---|---|---|---|---|---|---|
VELIA Japan subgroup [26] | Subgroup data of VELIA study | n = 78
| In Japan subgroup, median progression-free survival was 27.4 months in the veliparib-throughout arm compared with 19.1 months in the control arm (HR, 0.46; 95% CI 0.18–1.16; p = 0.1 [not significant]). | 36% (17/47) vs. non-Japanese subgroup 28% (183/652) * | 73% (33/45) vs. non-Japanese subgroup 62% (388/625) * | Myriad BRACAnalysis CDx or myChoice HRD CDx assay (HRD score of ≥33) |
Japan subset from the PAOLA-1/ENGOT-ov25 trial [27] | Subgroup data of PAOLA-1 study | n = 24
| Investigator-assessed PFS was significantly longer in the olaparib plus bevacizumab group than in the placebo plus bevacizumab group (median 27.4 vs. 19.4 months; HR = 0.34; 95% CI 0.11–1.00) | 21% (5/24) | 67% (16/24) | Myriad myChoice® HRD Plus assay (score of ≥42) |
PRIME (NCT03709316), China [28] | Double-blind, placebo-controlled, multi-center phase 3 study
| n = 384
|
Intended-to-treat population, median PFS: 24.8 vs. 8.3 months; HR 0.45; 95% CI 0.34–0.60; p < 0.001 HRD population (HR 0.48) | 33% (125/384) | 67% (257/384) | BGI Genomics, Shenzhen, China |
Real-world data, China, (NCT:05044091) ** [29] | Real-world data collected (2018~2021, data of ovarian cancer patients were treated with PAPRi for more than four weeks, including olaparib and niraparib in the Affiliated Cancer Hospital of Nanjing Medical University) | n = 67 | PFS among HRD positive patients was significantly longer than those HRD negative patients (medium PFS 9.4 months vs. 4.1 months, HR: 0.52; 95% CI 0.38–0.71; p < 0.001) | 36% (24/67) | 69% (46/67) | AmoyDx® HRD panel (HRD score ≥ 42 or BRCA mutation positive) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paik, E.S.; Chang, H.K.; Lee, S. Prevalence of Homologous Recombination Deficiency in First-Line PARP Inhibitor Maintenance Clinical Trials and Further Implication of Personalized Treatment in Ovarian Cancer. Cancers 2023, 15, 3095. https://doi.org/10.3390/cancers15123095
Paik ES, Chang HK, Lee S. Prevalence of Homologous Recombination Deficiency in First-Line PARP Inhibitor Maintenance Clinical Trials and Further Implication of Personalized Treatment in Ovarian Cancer. Cancers. 2023; 15(12):3095. https://doi.org/10.3390/cancers15123095
Chicago/Turabian StylePaik, E Sun, Ha Kyun Chang, and Sanghoon Lee. 2023. "Prevalence of Homologous Recombination Deficiency in First-Line PARP Inhibitor Maintenance Clinical Trials and Further Implication of Personalized Treatment in Ovarian Cancer" Cancers 15, no. 12: 3095. https://doi.org/10.3390/cancers15123095
APA StylePaik, E. S., Chang, H. K., & Lee, S. (2023). Prevalence of Homologous Recombination Deficiency in First-Line PARP Inhibitor Maintenance Clinical Trials and Further Implication of Personalized Treatment in Ovarian Cancer. Cancers, 15(12), 3095. https://doi.org/10.3390/cancers15123095