Biological Biomarkers of Response and Resistance to Immune Checkpoint Inhibitors in Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Biology of Immune Checkpoints
3. Biological Biomarkers of ICIs Response
3.1. miRNA Signature
3.2. TDO and IDO1 Status
3.3. Circulating Cytokine Levels
3.4. Circulating Tumor DNA
3.5. CDKN2A Tumor Suppressor Gene Genetic Status
3.6. PBRM1 Tumor Suppressor Gene Genetic Status
3.7. Impact of AXL Expression
3.8. CTLA-4 Genetic Status
3.9. Soluble Molecules
3.10. Tumor Content of T Cells
3.11. Soluble Immune Checkpoint-Related Proteins
3.12. Microbiota
3.13. ccRCC Molecular Subgroups
3.14. The Tumor Microenvironment
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.F.; Regan, M.M.; Clark, J.I.; Flaherty, L.E.; Weiss, G.R.; Logan, T.F.; Kirkwood, J.M.; Gordon, M.S.; Sosman, J.A.; Ernstoff, M.S.; et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2005, 23, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Warren, A.Y.; Harrison, D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: Standards and controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figlin, R.; Sternberg, C.; Wood, C.G. Novel agents and approaches for advanced renal cell carcinoma. J. Urol. 2012, 188, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger, M.; Santos, C.R.; Spencer-Dene, B.; Martinez, P.; Endesfelder, D.; Burrell, R.A.; Vetter, M.; Jiang, M.; Saunders, R.E.; Kelly, G.; et al. Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as aWarburg effect metabolic target. J. Pathol. 2012, 227, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Davis, I.D.; Mardiak, J.; Szczylik, C.; Lee, E.; Wagstaff, J.; Barrios, C.H.; Salman, P.; Gladkov, O.A.; Kavina, A.; et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. J. Clin. Oncol. 2010, 28, 1061–1068, Corrected and republished in: J. Clin. Oncol. 2023, 41, 1957–1964. [Google Scholar] [CrossRef]
- Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomized phase 3 trial. Lancet 2011, 378, 1931–1939, Erratum in Lancet 2012, 380, 1818. [Google Scholar] [CrossRef]
- Escudier, B.; Bellmunt, J.; Negrier, S.; Bajetta, E.; Melichar, B.; Bracarda, S.; Ravaud, A.; Golding, S.; Jethwa, S.; Sneller, V. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final analysis of overall survival. J. Clin. Oncol. 2010, 28, 2144–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maj-Hes, A.; Medioni, J.; Scotte, F.; Schmidinger, M.; Kramer, G.; Combe, P.; Gornadha, Y.; Elaidi, R.; Oudard, S. Rechallenge with mTOR inhibitors in metastatic renal cell carcinoma patients who progressed on previous mTOR inhibitor therapy. Oncology 2013, 85, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Schmidinger, M.; Eto, M.; Suarez, C.; Figlin, R.; Liu, Y.; Perini, R.; Zhang, Y.; Heng, D.Y. LITESPARK-011: Belzutifan plus lenvatinib vs cabozantinib in advanced renal cell carcinoma after anti-PD-1/PD-L1 therapy. Future Oncol. 2023, 19, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Ganguly, A.; Chatterjee, K.; Spada, S.; Mukherjee, S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. Biology 2023, 12, 218. [Google Scholar] [CrossRef]
- Thouvenin, J.; Masson, C.; Boudier, P.; Maillet, D.; Kuchler-Bopp, S.; Barthélémy, P.; Massfelder, T. Complete Response in Metastatic Clear Cell Renal Cell Carcinoma Patients Treated with Immune-Checkpoint Inhibitors: Remission or Healing? How to Improve Patients’ Outcomes? Cancers 2023, 15, 793. [Google Scholar] [CrossRef]
- Powles, T.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Symeonides, S.N.; Hajek, J.; Gurney, H.; Chang, Y.H.; Lee, J.L.; et al. KEYNOTE-564 Investigators. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1133–1144, Erratum in: Lancet Oncol. 2023, 24, e10. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Nirschl, C.J.; Drake, C.G. Molecular pathways: Coexpression of immune checkpoint molecules: Signaling pathways and implications for cancer immunotherapy. Clin. Cancer Res. 2013, 19, 4917–4924. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef]
- Cai, X.; Zhan, H.; Ye, Y.; Yang, J.; Zhang, M.; Li, J.; Zhuang, Y. Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases. Front. Genet. 2021, 12, 785153. [Google Scholar] [CrossRef]
- Moon, J.; Oh, Y.M.; Ha, S.J. Perspectives on immune checkpoint ligands: Expression, regulation, and clinical implications. BMB Rep. 2021, 54, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Kraehenbuehl, L.; Weng, C.H.; Eghbali, S.; Wolchok, J.D.; Merghoub, T. Enhancing mmunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 2022, 19, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Denis, M.; Duruisseaux, M.; Brevet, M.; Dumontet, C. How Can Immune Checkpoint Inhibitors Cause Hyperprogression in Solid Tumors? Front. Immunol. 2020, 11, 492. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.H.; Osborn, M.J.; Tolar, J.; Kim, C.J. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T. Int. J. Mol. Sci. 2018, 19, 340. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Cheng, X.X.; Xue, J.Z.; Xue, S.A. Emerging Strategies in TCR-Engineered T Cells. Front. Immunol. 2022, 13, 850358. [Google Scholar] [CrossRef]
- Skouteris, N.; Papageorgiou, G.; Fioretzaki, R.; Charalampakis, N.; Schizas, D.; Kykalos, S.; Tolia, M. Immune checkpoint inhibitors and combinations with other agents in cholangiocarcinoma. Immunotherapy 2023, 15, 487–502. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discoverv. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
- Incorvaia, L.; Fanale, D.; Badalamenti, G.; Brando, C.; Bono, M.; De Luca, I.; Algeri, L.; Bonasera, A.; Corsini, L.R.; Scurria, S.; et al. A “Lymphocyte MicroRNA Signature” as Predictive Biomarker of Immunotherapy Response and Plasma PD-1/PD-L1 Expression Levels in Patients with Metastatic Renal Cell Carcinoma: Pointing towards Epigenetic Reprogramming. Cancers 2020, 12, 3396. [Google Scholar] [CrossRef]
- Sumitomo, M.; Takahara, K.; Zennami, K.; Nagakawa, T.; Maeda, Y.; Shiogama, K.; Yamamoto, Y.; Muto, Y.; Nukaya, T.; Takenaka, M.; et al. Tryptophan 2,3-Dioxygenase in Tumor Cells Is Associated with Resistance to Immunotherapy in Renal Cell Carcinoma. Cancer Sci. 2021, 112, 1038–1047. [Google Scholar] [CrossRef]
- Chehrazi-Raffle, A.; Meza, L.; Alcantara, M.; Dizman, N.; Bergerot, P.; Salgia, N.; Hsu, J.; Ruel, N.; Salgia, S.; Malhotra, J.; et al. Circulating Cytokines Associated with Clinical Response to Systemic Therapy in Metastatic Renal Cell Carcinoma. J. Immunother. Cancer 2021, 9, e002009. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kang, Y.; Kim, J.S.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Park, D.; et al. Potential of Circulating Tumor DNA as a Predictor of Therapeutic Responses to Immune Checkpoint Blockades in Metastatic Renal Cell Carcinoma. Sci. Rep. 2021, 11, 5600. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.; Nakano, K.; Katayama, K.; Yamamichi, G.; Yumiba, S.; Tomiyama, E.; Matsushita, M.; Hayashi, Y.; Yamamoto, Y.; Kato, T.H.; et al. Early Dynamics of Circulating Tumor DNA Predict Clinical Response to Immune Checkpoint Inhibitors in Metastatic Renal Cell Carcinoma. Int. J. Urol. 2022, 29, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Chehrazi-Raffle, A.; Muddasani, R.; Dizman, N.; Hsu, J.; Meza, L.; Zengin, Z.B.; Malhotra, J.; Chawla, N.; Dorff, T.; Contente-Cuomo, T.; et al. Ultrasensitive Circulating Tumor DNA Pilot Study Distinguishes Complete Response and Partial Response with Immunotherapy in Patients with Metastatic Renal Cell Carcinoma. JCO Precis Oncol. 2023, 7, e2200543. [Google Scholar] [CrossRef] [PubMed]
- Adib, E.; Nassar, A.H.; Akl, E.W.; Abou Alaiwi, S.; Nuzzo, P.V.; Mouhieddine, T.H.; Sonpavde, G.; Haddad, R.I.; Mouw, K.W.; Giannakis, M.; et al. CDKN2A Alterations and Response to Immunotherapy in Solid Tumors. Clin. Cancer Res. 2021, 27, 4025–4035. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Anwaier, A.; Liu, W.; Wei, G.; Su, J.; Tian, X.; Xia, J.; Qu, Y.; Zhao, J.; Zhang, H.; et al. Genomic alteration of MTAP/CDKN2A predicts sarcomatoid differentiation and poor prognosis and modulates response to immune checkpoint blockade in renal cell carcinoma. Front. Immunol. 2022, 13, 953721. [Google Scholar] [CrossRef]
- Miao, D.; Margolis, C.A.; Gao, W.; Voss, M.H.; Li, W.; Martini, D.J.; Norton, C.; Bossé, D.; Wankowicz, S.M.; Cullen, D.; et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 2018, 359, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Braun, D.A.; Ishii, Y.; Walsh, A.M.; Van Allen, E.M.; Wu, C.J.; Shukla, S.A.; Choueiri, T.K. Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. JAMA Oncol. 2019, 5, 1631–1633. [Google Scholar] [CrossRef]
- Terry, S.; Dalban, C.; Rioux-Leclercq, N.; Adam, J.; Meylan, M.; Buart, S.; Bougoüin, A.; Lespagnol, A.; Dugay, F.; Moreno, I.C.; et al. Association of AXL and PD-L1 Expression with Clinical Outcomes in Patients with Advanced Renal Cell Carcinoma Treated with PD-1 Blockade. Clin. Cancer Res. 2021, 27, 6749–6760. [Google Scholar] [CrossRef]
- Klümper, N.; Ralser, D.J.; Zarbl, R.; Schlack, K.; Schrader, A.J.; Rehlinghaus, M.; Hoffmann, M.J.; Niegisch, G.; Uhlig, A.; Trojan, L.; et al. CTLA4 Promoter Hypomethylation Is a Negative Prognostic Biomarker at Initial Diagnosis but Predicts Response and Favorable Outcome to Anti-PD-1 Based Immunotherapy in Clear Cell Renal Cell Carcinoma. J. Immunother. Cancer 2021, 9, e002949. [Google Scholar] [CrossRef]
- Simonetti, S.; Iuliani, M.; Stellato, M.; Cavaliere, S.; Vincenzi, B.; Tonini, G.; Santini, D.; Pantano, F. Extensive Plasma Proteomic Profiling Revealed Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL) as Emerging Biomarker of Nivolumab Clinical Benefit in Patients with Metastatic Renal Cell Carcinoma. J. Immunother. Cancer 2022, 10, e005136. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, G.H.; Ryu, Y.-M.; Kim, S.-Y.; Kim, H.-D.; Yoon, S.K.; Cho, Y.M.; Lee, J.L. Clinical Implications of the Tumor Microenvironment Using Multiplexed Immunohistochemistry in Patients with Advanced or Metastatic Renal Cell Carcinoma Treated with Nivolumab plus Ipilimumab. Front. Oncol. 2022, 12, 969569. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, J.; Tu, H.; Liang, D.; Chang, D.W.; Ye, Y.; Wu, X. Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. J. Immunother. Cancer 2019, 7, 334. [Google Scholar] [CrossRef] [PubMed]
- Derosa, L.; Routy, B.; Fidelle, M.; Iebba, V.; Alla, L.; Pasolli, E.; Segata, N.; Desnoyer, A.; Pietrantonio, F.; Ferrere, G.; et al. Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients. Eur. Urol. 2020, 78, 195–206. [Google Scholar] [CrossRef]
- Salgia, N.J.; Bergerot, P.G.; Maia, M.C.; Dizman, N.; Hsu, J.; Gillece, J.D.; Folkerts, M.; Reining, L.; Trent, J.; Highlander, S.K.; et al. Stool Microbiome Profiling of Patients with Metastatic Renal Cell Carcinoma Receiving Anti-PD-1 Immune Checkpoint Inhibitors. Eur. Urol. 2020, 78, 498–502. [Google Scholar] [CrossRef]
- Thompson, N.A.; Stewart, G.D.; Welsh, S.J.; Doherty, G.J.; Robinson, M.J.; Neville, B.A.; Vervier, K.; Harris, S.R.; Adams, D.J.; Dalchau, K.; et al. The MITRE trial protocol: A study to evaluate the microbiome as a biomarker of efficacy and toxicity in cancer patients receiving immune checkpoint inhibitor therapy. BMC Cancer 2022, 22, 99. [Google Scholar] [CrossRef] [PubMed]
- Mollica, V.; Santoni, M.; Matrana, M.R.; Basso, U.; De Giorgi, U.; Rizzo, A.; Maruzzo, M.; Marchetti, A.; Rosellini, M.; Bleve, S.; et al. Concomitant Proton Pump Inhibitors and Outcome of Patients Treated with Nivolumab Alone or Plus Ipilimumab for Advanced Renal Cell Carcinoma. Target Oncol. 2022, 17, 61–68. [Google Scholar] [CrossRef]
- Vano, Y.A.; Elaidi, R.; Bennamoun, M.; Chevreau, C.; Borchiellini, D.; Pannier, D.; Maillet, D.; Gross-Goupil, M.; Tournigand, C.; Laguerre, B.; et al. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): A biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol. 2022, 23, 612–624. [Google Scholar] [CrossRef]
- Pal, S.K.; McDermott, D.F.; Atkins, M.B.; Escudier, B.; Rini, B.I.; Motzer, R.J.; Fong, L.; Joseph, R.W.; Oudard, S.; Ravaud, A.; et al. Patient-reported outcomes in a phase 2 study comparing atezolizumab alone or with bevacizumab vs sunitinib in previously untreated metastatic renal cell carcinoma. BJU Int. 2020, 126, 73–82. [Google Scholar] [CrossRef]
- Motzer, R.J.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Alekseev, B.Y.; Lee, J.L.; Suarez, C.; Stroyakovskiy, D.; De Giorgi, U.; et al. Final Overall Survival and Molecular Analysis in IMmotion151, a Phase 3 Trial Comparing Atezolizumab Plus Bevacizumab vs Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma. JAMA Oncol. 2022, 8, 275–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Narayanan, S.P.; Mannan, R.; Raskind, G.; Wang, X.; Vats, P.; Su, F.; Hosseini, N.; Cao, X.; Kumar-Sinha, C.; et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc. Natl. Acad. Sci. USA 2021, 118, e2103240118. [Google Scholar] [CrossRef]
- Bi, K.; He, M.X.; Bakouny, Z.; Kanodia, A.; Napolitano, S.; Wu, J.; Grimaldi, G.; Braun, D.A.; Cuoco, M.S.; Mayorga, A.; et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell. 2021, 39, 649–661.e5. [Google Scholar] [CrossRef] [PubMed]
- Trott, J.F.; Kim, J.; Abu Aboud, O.; Wettersten, H.; Stewart, B.; Berryhill, G.; Uzal, F.; Hovey, R.C.; Chen, C.H.; Anderson, K.; et al. Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer. Oncotarget 2016, 7, 66540–66557. [Google Scholar] [CrossRef] [Green Version]
- Hornigold, N.; Dunn, K.R.; Craven, R.A.; Zougman, A.; Trainor, S.; Shreeve, R.; Brown, J.; Sewell, H.; Shires, M.; Knowles, M.; et al. Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: Implications for tumour immune evasion. Br. J. Cancer 2020, 123, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; LoRusso, P.; Burris, H.; Gordon, M.; Bang, Y.-J.; Hellmann, M.D.; Cervantes, A.; Ochoa de Olza, M.; Marabelle, A.; Hodi, F.S.; et al. Phase I Study of the Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Navoximod (GDC-0919) Administered with PD-L1 Inhibitor (Atezolizumab) in Advanced Solid Tumors. Clin. Cancer Res. 2019, 25, 3220–3228. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Dummer, R.; Hamid, O.; Gajewski, T.F.; Caglevic, C.; Dalle, S.; Arance, A.; Carlino, M.S.; Grob, J.-J.; Kim, T.M.; et al. Epacadostat plus Pembrolizumab versus Placebo plus Pembrolizumab in Patients with Unresectable or Metastatic Melanoma (ECHO-301/KEYNOTE-252): A Phase 3, Randomised, Double-Blind Study. Lancet Oncol. 2019, 20, 1083–1097. [Google Scholar] [CrossRef]
- Bakouny, Z.; Choueiri, T.K. IL-8 and Cancer Prognosis on Immunotherapy. Nat. Med. 2020, 26, 650–651. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xie, S.; Wang, L.; Li, J.; Han, L.; Qin, B.; Zhang, G.; Wu, Q.; Gao, W.; Zhang, L.; et al. The Ratio of IP10 to IL-8 in Plasma Reflects and Predicts the Response of Patients with Lung Cancer to Anti-PD-1 Immunotherapy Combined with Chemotherapy. Front. Immunol. 2021, 12, 665147. [Google Scholar] [CrossRef]
- Bergerot, P.G.; Hahn, A.W.; Bergerot, C.D.; Jones, J.; Pal, S.K. The Role of Circulating Tumor DNA in Renal Cell Carcinoma. Curr. Treat. Options Oncol. 2018, 19, 10. [Google Scholar] [CrossRef]
- Baietti, M.F.; Zhao, P.; Crowther, J.; Sewduth, R.N.; De Troyer, L.; Debiec-Rychter, M.; Sablina, A.A. Loss of 9p21 Regulatory Hub Promotes Kidney Cancer Progression by Upregulating HOXB13. Mol. Cancer Res. 2021, 6, 979–990. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xu, H.; Zhou, L.; Yang, X.; Wang, C. Exploration of Morphological Features of Clear Cell Renal Cell Carcinoma with PBRM1, SETD2, BAP1, or KDM5C Mutations. Int. J. Surg. Pathol. 2023, 13, 10668969231157317. [Google Scholar] [CrossRef]
- Liu, X.D.; Kong, W.; Peterson, C.B.; McGrail, D.J.; Hoang, A.; Zhang, X.; Lam, T.; Pilie, P.G.; Zhu, H.; Beckermann, K.E.; et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 2020, 11, 2135. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Yao, C.; Qiao, N.; Ge, Y.; Li, J.; Lin, Y.; Yao, S. Development and validation of a PBRM1-associated immune prognostic model for clear cell renal cell carcinoma. Cancer Med. 2021, 10, 6590–6609. [Google Scholar] [CrossRef] [PubMed]
- Schoumacher, M.; Burbridge, M. Key Roles of AXL and MER Receptor Tyrosine Kinases in Resistance to Multiple Anticancer Therapies. Curr. Oncol. Rep. 2017, 19, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landolt, L.; Eikrem, Ø.; Strauss, P.; Scherer, A.; Lovett, D.H.; Beisland, C.; Finne, K.; Osman, T.; Ibrahim, M.M.; Gausdal, G.; et al. Clear Cell Renal Cell Carcinoma is linked to Epithelial-to-Mesenchymal Transition and to Fibrosis. Physiol. Rep. 2017, 5, e13305. [Google Scholar] [CrossRef] [Green Version]
- Goltz, D.; Gevensleben, H.; Vogt, T.J.; Dietrich, J.; Golletz, C.; Bootz, F.; Kristiansen, G.; Landsberg, J.; Dietrich, D. CTLA4 Methylation Predicts Response to Anti-PD-1 and Anti-CTLA-4 Immunotherapy in Melanoma Patients. JCI Insight 2018, 3, e96793. [Google Scholar] [CrossRef] [Green Version]
- Fietz, S.; Zarbl, R.; Niebel, D.; Posch, C.; Brossart, P.; Gielen, G.H.; Strieth, S.; Pietsch, T.; Kristiansen, G.; Bootz, F.; et al. CTLA4 Promoter Methylation Predicts Response and Progression-Free Survival in Stage IV Melanoma Treated with Anti-CTLA-4 Immunotherapy (Ipilimumab). Cancer Immunol. Immunother. 2021, 70, 1781–1788. [Google Scholar] [CrossRef]
- Derosa, L.; Hellmann, M.D.; Spaziano, M.; Halpenny, D.; Fidelle, M.; Rizvi, H.; Long, N.; Plodkowski, A.J.; Arbour, K.C.; Chaft, J.E.; et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 2018, 29, 1437–1444. [Google Scholar] [CrossRef]
- Lalani, A.A.; Xie, W.; Braun, D.A.; Kaymakcalan, M.; Bossé, D.; Steinharter, J.A.; Martini, D.J.; Simantov, R.; Lin, X.; Wei, X.X.; et al. Effect of Antibiotic Use on Outcomes with Systemic Therapies in Metastatic Renal Cell Carcinoma. Eur. Urol. Oncol. 2020, 3, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Yonekura, S.; Ogasawara, N.; Matsunaga, Y.; Hoshino, R.; Kurose, H.; Chikui, K.; Uemura, K.; Nakiri, M.; Nishihara, K.; et al. The Impact of Antibiotics on Prognosis of Metastatic Renal Cell Carcinoma in Japanese Patients Treated with Immune Checkpoint Inhibitors. Anticancer Res. 2019, 39, 6265–6271. [Google Scholar] [CrossRef]
- Desilets, A.; Elkrief, A.; Routy, B. The Link Between the Gut Microbiome and Response to Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Eur. Urol. 2021, 79, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mjaess, G.; Karam, A.; Aoun, F.; Albisinni, S.; Roumeguère, T. Fecal microbiota transplantation for immunotherapy-resistant urological tumors: Is it time? An update of the recent literature. Cancer 2022, 128, 14–19. [Google Scholar] [CrossRef]
- Piao, X.M.; Byun, Y.J.; Zheng, C.M.; Song, S.J.; Kang, H.W.; Kim, W.T.; Yun, S.J. A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC. Cancers 2023, 15, 935. [Google Scholar] [CrossRef]
- Beuselinck, B.; Job, S.; Becht, E.; Karadimou, A.; Verkarre, V.; Couchy, G.; Giraldo, N.; Rioux-Leclercq, N.; Molinié, V.; Sibony, M.; et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 2015, 21, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Banchereau, R.; Hamidi, H.; Powles, T.; McDermott, D.; Atkins, M.B.; Escudier, B.; Liu, L.F.; Leng, N.; Abbas, A.R.; et al. Molecular Subsets in Renal Cancer Determine Outcome to Checkpoint and Angiogenesis Blockade. Cancer Cell. 2020, 38, 803–817.e4. [Google Scholar] [CrossRef]
- Havel, J.J.; Chowell, D.; Chan, T.A. The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Kalbasi, A.; Ribas, A. Tumour-Intrinsic Resistance to Immune Checkpoint Blockade. Nat. Rev. Immunol. 2020, 20, 25–39. [Google Scholar] [CrossRef]
- McGranahan, N.; Furness, A.J.S.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; et al. Clonal Neoantigens Elicit T Cell Immunoreactivity and Sensitivity to Immune Checkpoint Blockade. Science 2016, 351, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Gejman, R.S.; Chang, A.Y.; Jones, H.F.; DiKun, K.; Hakimi, A.A.; Schietinger, A.; Scheinberg, D.A. Rejection of Immunogenic Tumor Clones Is Limited by Clonal Fraction. Elife 2018, 7, e41090. [Google Scholar] [CrossRef] [PubMed]
- Milo, I.; Bedora-Faure, M.; Garcia, Z.; Thibaut, R.; Périé, L.; Shakhar, G.; Deriano, L.; Bousso, P. The Immune System Profoundly Restricts Intratumor Genetic Heterogeneity. Sci. Immunol. 2018, 3, eaat1435. [Google Scholar] [CrossRef] [PubMed]
Biomarker Studied/Alteration Reference(s) | Number of Patients | RCC Stage | ICI Treatment and Outcome |
---|---|---|---|
Lymphocyte miRNA signature | |||
[28] | 23 | mccRCC (n = 23) | Nivolumab Subset of miRNAs specifically induced in long-responder patients |
Status of tryptophan 2,3-dioxygenase (TDO) and of indoleamine 2,3-dioxygenase 1 (IDO1) | |||
[29] | 40 | mccRCC (n = 36) mRCC (Other than ccRCC) (n = 4) | Nivolumab (n = 32) Nivolumab + Ipilimumab (n = 6) TKIs + PD-L1 antibody (n = 2) Expression of TDO, but not of IDO1 in tumor cells is strongly associated with tumor progression with ICIs suggesting its potential as a predictive biomarker of resistance to ICIs |
Circulating cytokine levels | |||
[30] | 56 | mccRCC (n = 47) mRCC (Other than ccRCC) (n = 9) | Nivolumab (n = 25) Cabozantinib (n = 10) Nivolumab + Ipilimumab (n = 8) Sunitinib (n = 7) Lenvatinib + Everolimus (n = 5) Axitinib (n = 1) Clinical benefit for patients with lower levels of IL-1RA, IL-6, and G-CSF at pretreatment and of IL-12, IL-13, IFN-γ, GM-CSF, and VEGF during treatment |
Circulating tumor DNA | |||
[31] | 20 | mRCC (n = 10) non mRCC (n = 10) | Nivolumab + Ipilimumab (in 4 mRCC only) Levels of ctDNA could be an early negative predictor of treatment response to ICIs in patients with mRCC who receive ICI therapy |
[32] | 14 | mccRCC (n = 14) | Nivolumab (n = 10) Nivolumab+ Ipilimumab (n = 4) Better PFS for mRCC patients with decreasing ctDNA mutant allele frequency compared to those with increasing mutant allele frequency |
[33] | 12 | mccRCC (n = 12) | Nivolumab (n = 6) Nivolumab + Ipilimumab (n = 6) The use of targeted digital sequencing (TARDIS) differentiates partial to complete response and allowed to identify patients at risk for tumor progression |
CDKN2A tumor suppressor gene loss of function | |||
[34] | 56 (789 multiple cancer types) | mRCC | Nivolumab Ipilimumab Nivolumab + Ipilimumab |
151 (1250 multiple cancer types) | mRCC | CDKN2A genetic alterations were not associated with response to ICIs in mRCC | |
[35] | 5307 from Chinese and Western cohorts | mRCC | Anti-angiogenic targeted therapy ICIs Genomic alteration of MTAP/CDKN2A significantly correlates with sarcomatoid differentiation in RCC and predicts aggressive progression, poor prognosis, primary resistance to targeted therapy, and potential favorable responses to ICIs ≠ Results from [34] |
PBRM1 tumor suppressor gene genetic alterations | |||
[36] | 35 | mccRCC | Nivolumab |
63 | mccRCC | Nivolumab Atezolizumab Clinical benefit to ICIs treatment with loss-of-function mutations of PBRM1 in both cohorts | |
[37] | 382 | mccRCC | Nivolumab (n = 189) Everolimus (n = 193) Clinical benefit (OR and PFS) in the ICI-treated group (confirming results in [36]), but not in the TKI-treated group |
Impact of AXL expression | |||
[38] | 316 | mccRCC | Nivolumab after failure to anti-angiogenic therapies
AXL thus appears as a biomarker of resistance to anti-PD-1 therapy |
CTLA-4 promoter gene methylation | |||
[39] | 3 cohorts: 533 from TCGA database (Comprehensive methylation, expression, and immunogenomic data) | ccRCC | Mutiple therapies |
116 | ccRCC | Not receiving ICI | |
71 | mccRCC (n = 67) mRCC (Other than ccRCC) (n = 4) | Anti-PD-1 second line (n = 46) Anti-PD-1 based combination (n = 25)
CTLA4 gene promoter methylation thus appears as a biological biomarker of improved response to ICI combinations | |
Soluble molecules | |||
[40] | 16 | mRCC | Nivolumab
RANKL thus appears as an independent biological biomarker of resistance to Nivolumab |
Tumor content of T cells (T cell subsets, B cells, macrophages (and dendritic cells) | |||
[41] | 24 | mccRCC | Nivolumab + Ipilimumab Foxp3-CD4+ helper T cells, M1 macrophages, and CD137+ CD8+ T cells are potential predictive biomarkers of improved response Nivolumab + Ipilimumab |
Levels of circulating soluble immune checkpoint-related proteins (BTLA, PD-1, PD-L1, PD-L2, CTLA-4, TIMP-3, LAG-3…) | |||
[42] | 3 cohorts: 182 47 533 from TCGA | ccRCC (early and late stages) | No therapy or multiple therapies
Soluble proteins may have prognostic value |
Composition of the gut microbiota | |||
[43] Part of enrolled patients in the GETUG-AFU 26 NIVOREN microbiota translational substudy phase 2 trial | 69 (vs. healthy volunteers) | mccRCC | Nivolumab after TKI Prior antibiotics (n = 11) No antibiotics (n = 58)
|
[44] | 31 | mRCC | Nivolumab (77%) Nivolumab + Ipilimumab (23%) Collection of stool prior to ICIs therapy
|
[45] = MITRE Clinical Trial protocol (explore and validate a microbiome signature in a larger scale prospective study across several different cancer types, including RCC) | Recruiting | mRCC | Standard ICIs
|
[46] Evaluation of the impact of proton pump inhibitors (known to affect the microbiome) on ICIs clinical outcomes | 2cohorts: 62 156 | mRCC | Nivolumab + Ipilimumab (25 receiving proton pump inhibitors) Nivolumab (second- or third-line treatment) (88 receiving proton pump inhibitors) In neither cohort the concomitant use of proton pump inhibitors affected survival outcomes on ICIs |
ccRCC molecular subgroups | |||
[47] BIONIKK Phase 2 Clinical Trial (primary endpoint: the objective response rate) | 202 | mRCC | Nivolumab (n = 61, groups ccrcc1 and 4) Nivolumab + Ipilimumab (n = 101, groups ccrcc1-4) VEGFR-TKI (n = 40, groups ccrcc2 and 3) Show the feasibility and positive effect of a prospective patient selection based on tumor molecular phenotype to choose between Nivolumab with or without Ipilimumab and a VEGFR-TKI in the first line treatment |
[48] IMmotion150 Phase 2 Clinical Trial Previously untreated patients expressing PD-L1 | 305 | mRCC | Atezolizumab (n = 103) Atezolizumab+ Bevacizumab (n = 101) Sunitinib (n = 101) |
[49] IMmotion150 Phase 3 Clinical Trial The coprimary end points were PFS in patients with PD-L1+ disease and OS in the intention-to-treat population | 915 (intention-to-treat population) 897 (safety population) | mRCC | PFS was improved for the combination treatment vs. Sunitinib Atezolizumab + Bevacizumab (n = 451) Sunitinib (n = 446)
Improved median OS in patients with tumors characterized by T-effector/proliferative, proliferative, or small nucleolar RNA transcriptomic profiles = Insight into which patients may benefit from either therapy |
Influence of the tumor microenvironment | |||
[50] Single-cell RNA sequencing | 9 | ccRCC (n = 7) Chromophe RCC (n = 2) |
|
[51] Single-cell transcriptomic analysis (cancer and immune cells) | 8 (primary or metastasis sites) | mccRCC (n = 7) Papillary RCC (n = 1) | Nivolumab (n = 2) Nivolumab + Ipilimumab (n = 1) Nivolumab + VEGF TKI (n = 2) No treatment (n = 3)
ICIs remodels the microenvironment and modifies the interplay between cancer and immune cells critical for response and resistance to ICIs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masson, C.; Thouvenin, J.; Boudier, P.; Maillet, D.; Kuchler-Bopp, S.; Barthélémy, P.; Massfelder, T. Biological Biomarkers of Response and Resistance to Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Cancers 2023, 15, 3159. https://doi.org/10.3390/cancers15123159
Masson C, Thouvenin J, Boudier P, Maillet D, Kuchler-Bopp S, Barthélémy P, Massfelder T. Biological Biomarkers of Response and Resistance to Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Cancers. 2023; 15(12):3159. https://doi.org/10.3390/cancers15123159
Chicago/Turabian StyleMasson, Claire, Jonathan Thouvenin, Philippe Boudier, Denis Maillet, Sabine Kuchler-Bopp, Philippe Barthélémy, and Thierry Massfelder. 2023. "Biological Biomarkers of Response and Resistance to Immune Checkpoint Inhibitors in Renal Cell Carcinoma" Cancers 15, no. 12: 3159. https://doi.org/10.3390/cancers15123159
APA StyleMasson, C., Thouvenin, J., Boudier, P., Maillet, D., Kuchler-Bopp, S., Barthélémy, P., & Massfelder, T. (2023). Biological Biomarkers of Response and Resistance to Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Cancers, 15(12), 3159. https://doi.org/10.3390/cancers15123159