Survival Benefit of Renin-Angiotensin System Blockers in Critically Ill Cancer Patients: A Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. ICU Mortality
3.3. In-Hospital Mortality
3.4. One-Year Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Roquetaillade, C.; Jamme, M.; Charpentier, J.; Chiche, J.-D.; Cariou, A.; Mira, J.-P.; Pène, F.; Llitjos, J.-F. Hemodynamic Impact of Cardiovascular Antihypertensive Medications in Patients with Sepsis-Related Acute Circulatory Failure. Shock 2020, 54, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Lee, H.H.; Kim, A.J.; Ro, H.; Kim, H.S.; Chang, J.H.; Chung, W.; Jung, J.Y. Renin-Angiotensin-Aldosterone System Blockade in Critically Ill Patients Is Associated with Increased Risk for Acute Kidney Injury. Tohoku J. Exp. Med. 2016, 238, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, D.; Kuriyama, N.; Yanase, F.; Takahashi, O.; Aoki, K.; Komatsu, Y. Angiotensin-Converting Enzyme Inhibitor/Angiotensin II Receptor Blocker Use Prior to Medical Intensive Care Unit Admission and in-Hospital Mortality: Propensity Score-Matched Cohort Study. J. Nephrol. 2019, 32, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-S.; How, C.-K.; Hsieh, V.C.-R.; Chen, P.-C. Preadmission Antihypertensive Drug Use and Sepsis Outcome: Impact of Angiotensin-Converting Enzyme Inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs). Shock 2020, 53, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- On Behalf of FROG-ICU Investigators; Gayat, E.; Hollinger, A.; Cariou, A.; Deye, N.; Vieillard-Baron, A.; Jaber, S.; Chousterman, B.G.; Lu, Q.; Laterre, P.F.; et al. Impact of Angiotensin-Converting Enzyme Inhibitors or Receptor Blockers on Post-ICU Discharge Outcome in Patients with Acute Kidney Injury. Intensive Care Med. 2018, 44, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Lee, Y.; Lo, Y.; Chen, C.; Huang, Y.; Kuo, Y.; Chia, Y. Effects of Renin-Angiotensin–Aldosterone System Inhibitors on Long-Term Major Adverse Cardiovascular Events in Sepsis Survivors. JAHA 2021, 10, e022870. [Google Scholar] [CrossRef]
- Angriman, F.; Rosella, L.C.; Lawler, P.R.; Ko, D.T.; Martin, C.M.; Wunsch, H.; Scales, D.C. Renin-Angiotensin System Inhibitors and Major Cardiovascular Events after Sepsis. Ann. Am. Thorac. Soc. 2023, 20, 414–423. [Google Scholar] [CrossRef]
- Laghlam, D.; Jozwiak, M.; Nguyen, L.S. Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021, 10, 1767. [Google Scholar] [CrossRef]
- Taccone, F.; Artigas, A.A.; Sprung, C.L.; Moreno, R.; Sakr, Y.; Vincent, J.-L. Characteristics and Outcomes of Cancer Patients in European ICUs. Crit. Care 2009, 13, R15. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.-L.; Marshall, J.C.; Ñamendys-Silva, S.A.; François, B.; Martin-Loeches, I.; Lipman, J.; Reinhart, K.; Antonelli, M.; Pickkers, P.; Njimi, H.; et al. Assessment of the Worldwide Burden of Critical Illness: The Intensive Care Over Nations (ICON) Audit. Lancet Respir. Med. 2014, 2, 380–386. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Tini, G.; Sarocchi, M.; Tocci, G.; Arboscello, E.; Ghigliotti, G.; Novo, G.; Brunelli, C.; Lenihan, D.; Volpe, M.; Spallarossa, P. Arterial Hypertension in Cancer: The Elephant in the Room. Int. J. Cardiol. 2019, 281, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, J.F. Prognostic Importance of Comorbidity in a Hospital-Based Cancer Registry. JAMA 2004, 291, 2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Drobni, Z.D.; Michielin, O.; Quinaglia, T.; Zlotoff, D.A.; Zubiri, L.; Gilman, H.K.; Supraja, S.; Merkely, B.; Muller, V.; Sullivan, R.J.; et al. Renin–Angiotensin–Aldosterone System Inhibitors and Survival in Patients with Hypertension Treated with Immune Checkpoint Inhibitors. Eur. J. Cancer 2022, 163, 108–118. [Google Scholar] [CrossRef]
- Morris, Z.S.; Saha, S.; Magnuson, W.J.; Morris, B.A.; Borkenhagen, J.F.; Ching, A.; Hirose, G.; McMurry, V.; Francis, D.M.; Harari, P.M.; et al. Increased Tumor Response to Neoadjuvant Therapy among Rectal Cancer Patients Taking Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers: ACEIs/ARBs Affect Response in Rectal Cancer. Cancer 2016, 122, 2487–2495. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, T.; Gavras, I. Renin–Angiotensin Inhibition in Combating Malignancy: A Review. Anticancer. Res. 2019, 39, 4597–4602. [Google Scholar] [CrossRef]
- Pinter, M.; Kwanten, W.J.; Jain, R.K. Renin-Angiotensin System Inhibitors to Mitigate Cancer Treatment-Related Adverse Events. Clin. Cancer Res. 2018, 24, 3803–3812. [Google Scholar] [CrossRef] [Green Version]
- Moey, M.Y.Y.; Liles, D.K.; Carabello, B.A. Concomitant Use of Renin-Angiotensin-Aldosterone System Inhibitors Prevent Trastuzumab-Induced Cardiotoxicity in HER2+ Breast Cancer Patients: An Institutional Retrospective Study. Cardio-Oncol. 2019, 5, 9. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Vigneron, C.; Charpentier, J.; Valade, S.; Alexandre, J.; Chelabi, S.; Palmieri, L.-J.; Franck, N.; Laurence, V.; Mira, J.-P.; Jamme, M.; et al. Patterns of ICU Admissions and Outcomes in Patients with Solid Malignancies over the Revolution of Cancer Treatment. Ann. Intensive Care 2021, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Hashiguchi, Y.; Yagi, T.; Fukushima, Y.; Shimada, R.; Hayama, T.; Tsuchiya, T.; Nozawa, K.; Iinuma, H.; Ishihara, S.; et al. Angiotensin I-Converting Enzyme Inhibitors/Angiotensin II Receptor Blockers May Reduce Tumor Recurrence in Left-Sided and Early Colorectal Cancers. Int. J. Color. Dis. 2019, 34, 1731–1739. [Google Scholar] [CrossRef]
- Santala, E.E.E.; Murto, M.O.; Artama, M.; Pukkala, E.; Visvanathan, K.; Murtola, T.J. Angiotensin Receptor Blockers Associated with Improved Breast Cancer Survival—A Nationwide Cohort Study from Finland. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2376–2382. [Google Scholar] [CrossRef]
- Santala, E.E.E.; Kotsar, A.; Veitonmäki, T.; Tammela, T.L.J.; Murtola, T.J. Risk of Urothelial Cancer Death among People Using Antihypertensive Drugs-a Cohort Study from Finland. Scand. J. Urol. 2019, 53, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, D.-S.; Xin, L.; Zhou, L.-Q.; Zhang, H.-T.; Liu, L.; Yuan, Y.-W.; Li, S.-H. The Renin-Angiotensin System Blockers and Survival in Digestive System Malignancies: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e19075. [Google Scholar] [CrossRef]
- Song, T.; Choi, C.H.; Kim, M.K.; Kim, M.-L.; Yun, B.S.; Seong, S.J. The Effect of Angiotensin System Inhibitors (Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers) on Cancer Recurrence and Survival: A Meta-Analysis. Eur. J. Cancer Prev. 2017, 26, 78–85. [Google Scholar] [CrossRef]
- Ino, K.; Shibata, K.; Kajiyama, H.; Yamamoto, E.; Nagasaka, T.; Nawa, A.; Nomura, S.; Kikkawa, F. Angiotensin II Type 1 Receptor Expression in Ovarian Cancer and Its Correlation with Tumour Angiogenesis and Patient Survival. Br. J. Cancer 2006, 94, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Acconcia, F. The Network of Angiotensin Receptors in Breast Cancer. Cells 2020, 9, 1336. [Google Scholar] [CrossRef]
- Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Ryan, R.; Pucci, F.; Sio, S.W.; Kuswanto, W.; Rauch, P.J.; Chudnovskiy, A.; Iwamoto, Y.; et al. Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity 2013, 38, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Naxerova, K.; Pinter, M.; Incio, J.; Lee, H.; Shigeta, K.; Ho, W.; Crain, J.; Jacobson, A.; Michelakos, T.; et al. Use of Angiotensin System Inhibitors Is Associated with Immune Activation and Longer Survival in Non-Metastatic Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2017, 23, 5959–5969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Cao, J.; Melamed, A.; Worley, M.; Gockley, A.; Jones, D.; Nia, H.T.; Zhang, Y.; Stylianopoulos, T.; Kumar, A.S.; et al. Losartan Treatment Enhances Chemotherapy Efficacy and Reduces Ascites in Ovarian Cancer Models by Normalizing the Tumor Stroma. Proc. Natl. Acad. Sci. USA 2019, 116, 2210–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglin, M.; Krischer, J.; Tamura, R.; Fink, A.; Bello-Matricaria, L.; McCaskill-Stevens, W.; Munster, P.N. Randomized Trial of Lisinopril Versus Carvedilol to Prevent Trastuzumab Cardiotoxicity in Patients with Breast Cancer. J. Am. Coll Cardiol. 2019, 73, 2859–2868. [Google Scholar] [CrossRef] [PubMed]
- Gulati, G.; Heck, S.L.; Ree, A.H.; Hoffmann, P.; Schulz-Menger, J.; Fagerland, M.W.; Gravdehaug, B.; von Knobelsdorff-Brenkenhoff, F.; Bratland, Å.; Storås, T.H.; et al. Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy (PRADA): A 2 × 2 Factorial, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Candesartan and Metoprolol. Eur. Heart J. 2016, 37, 1671–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgharzadeh, F.; Hashemzehi, M.; Moradi-Marjaneh, R.; Hassanian, S.M.; Ferns, G.A.; Khazaei, M.; Avan, A. Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers as Therapeutic Options in the Treatment of Renal Cancer: A Meta-Analysis. Life Sci. 2020, 242, 117181. [Google Scholar] [CrossRef] [PubMed]
- Hicks, B.M.; Filion, K.B.; Yin, H.; Sakr, L.; Udell, J.A.; Azoulay, L. Angiotensin Converting Enzyme Inhibitors and Risk of Lung Cancer: Population Based Cohort Study. BMJ 2018, 363, k4209. [Google Scholar] [CrossRef] [Green Version]
- Trifilieff, A.; Silva, A.D.; Gies, J.P. Kinins and Respiratory Tract Diseases. Eur. Respir. J. 1993, 6, 576–587. [Google Scholar] [CrossRef]
- Muñoz, M.; Coveñas, R. Involvement of Substance P and the NK-1 Receptor in Human Pathology. Amino Acids 2014, 46, 1727–1750. [Google Scholar] [CrossRef]
No RABs n = 1431 | ARBs n = 220 | ACEis n = 194 | p | |
---|---|---|---|---|
Demographic conditions | ||||
Age, median [IQR] | 66.0 [57.0–74.0] | 72.0 [65.0–79.0] | 72.0 [65.0–78.0] | <0.001 |
Male gender, n (%) | 851 (59.5) | 143 (65.0) | 144 (74.2) | <0.001 |
Non-cancer comorbid conditions | ||||
Hypertension, n (%) | 382 (26.7) | 220 (100.0) | 194 (100.0) | <0.001 |
Diabetes mellitus, n (%) | 197 (13.8) | 85 (38.6) | 70 (36.1) | <0.001 |
Cirrhosis, n (%) | 85 (5.9) | 12 (5.5) | 15 (7.7) | 0.569 |
Chronic renal failure n, (%) | 100 (7.0) | 38 (17.3) | 27 (13.9) | <0.001 |
Chronic dialysis, n (%) | 10 (0.7) | 1 (0.5) | 1 (0.5) | 0.888 |
Chronic respiratory failure, n (%) | 57 (4.0) | 7 (3.2) | 14 (7.2) | 0.079 |
Ischemic cardiopathy, n (%) | 121 (8.5) | 47 (21.4) | 58 (29.9) | <0.001 |
Chronic heart failure, n (%) | 43 (3.0) | 17 (7.7) | 28 (14.4) | <0.001 |
Peripheral arterial disease, n (%) | 56 (3.9) | 19 (8.6) | 30 (15.5) | <0.001 |
Stroke, n (%) | 46 (3.2) | 9 (4.1) | 24 (12.4) | <0.001 |
Type of cancer, n (%) | 0.056 | |||
Lung | 353 (24.7) | 56 (25.5) | 47 (24.2) | |
Breast | 149 (10.4) | 17 (7.7) | 11 (5.7) | |
Gastrointestinal | 380 (26.6) | 60 (27.2) | 54 (27.8) | |
Urologic | 259 (18.1) | 60 (27.3) | 52 (26.8) | |
Skin | 27 (1.9) | 3 (1.4) | 3 (1.5) | |
Gynecologic | 63 (4.4) | 8 (3.6) | 8 (4.1) | |
Head and neck | 53 (3.7) | 5 (2.3) | 6 (3.1) | |
Others | 147 (10.3) | 11 (5.0) | 13 (6.7) | |
Stage, n (%) | 0.002 | |||
Localized | 304 (21.2) | 74 (33.6) | 54 (27.8) | |
Advanced | 308 (21.5) | 42 (19.1) | 44 (22.7) | |
Metastatic | 809 (56.5) | 101 (45.9) | 94 (48.5) | |
Unknown | 10 (0.6) | 3 (1.4) | 2 (1.0) | |
Current status, n (%) | 0.015 | |||
Newly diagnosed | 409 (28.6) | 66 (30.0) | 65 (33.5) | |
Partial remission | 290 (20.3) | 43 (19.5) | 50 (25.8) | |
Complete remission | 182 (12.7) | 40 (18.2) | 30 (15.5) | |
Progression | 532 (37.2) | 67 (30.5) | 47 (24.2) | |
Unknown | 18 (1.3) | 4 (1.8) | 2 (1.0) | |
Recent oncological treatment (<3 months) | ||||
Chemotherapy <3 months | 734 (51.4) | 96 (43.6) | 96 (49.5) | 0.098 |
Surgery <3 months | 205 (14.3) | 40 (18.2) | 27 (13.9) | 0.309 |
No RABs n = 1431 | ARBs n = 220 | ACEis n = 194 | ||
---|---|---|---|---|
SOFA score, median [IQR] | 5.0 [4.0–8.0] | 5.0 [4.0–8.0] | 5.0 [4.0–8.0] | 0.861 |
SAPS2, median [IQR] | 48.0 [35.0–63.0] | 49.5 [40.0–66.8] | 50.0 [38.0–68.0] | 0.015 |
Reasons for admission | 0.085 | |||
Cancer-specific complication | 408 (28.5) | 37 (16.8) | 43 (22.2) | <0.001 |
Bleeding | 69 (4.8) | 19 (8.6) | 10 (5.1) | |
Infection | 510 (35.6) | 80 (36.4) | 60 (30.9) | |
Acute renal failure | 94 (6.6) | 24 (10.9) | 17 (8.8) | |
Ischemic event | 16 (1.1) | 1 (0.5) | 6 (3.1) | |
Thrombotic event | 42 (2.9) | 8 (3.6) | 5 (2.6) | |
Metabolic | 84 (5.9) | 9 (4.1) | 7 (3.6) | |
Others | 502 (35.1) | 65 (29.5) | 70 (36.1) | |
Organ failure supports | ||||
Mechanical ventilation | 735 (51.4) | 110 (50.0) | 114 (58.8) | 0.126 |
Vasopressor/inotropes | 476 (33.3) | 80 (36.4) | 76 (39.2) | 0.208 |
Renal replacement therapy | 215 (15.0) | 51 (23.2) | 37 (19.1) | 0.006 |
Outcomes | ||||
ICU mortality | 332 (23.2) | 42 (19.1) | 34 (17.5) | 0.104 |
In-hospital mortality | 590/1370 (43.0) | 76/214 (35.5) | 72/187 (38.5) | 0.087 |
6-month mortality | 755/1295(58.3) | 96/197 (48.7) | 101/175 (57.7) | 0.040 |
One-year mortality | 863/1278 (67.5) | 117/195 (60.0) | 115/172 (66.9) | 0.116 |
Decision to forgo life-sustaining therapy | 419 (29.3) | 56 (25.5) | 54 (27.8) | 0.487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laghlam, D.; Chaba, A.; Tarneaud, M.; Charpentier, J.; Mira, J.-P.; Pène, F.; Vigneron, C. Survival Benefit of Renin-Angiotensin System Blockers in Critically Ill Cancer Patients: A Retrospective Study. Cancers 2023, 15, 3183. https://doi.org/10.3390/cancers15123183
Laghlam D, Chaba A, Tarneaud M, Charpentier J, Mira J-P, Pène F, Vigneron C. Survival Benefit of Renin-Angiotensin System Blockers in Critically Ill Cancer Patients: A Retrospective Study. Cancers. 2023; 15(12):3183. https://doi.org/10.3390/cancers15123183
Chicago/Turabian StyleLaghlam, Driss, Anis Chaba, Matthias Tarneaud, Julien Charpentier, Jean-Paul Mira, Frédéric Pène, and Clara Vigneron. 2023. "Survival Benefit of Renin-Angiotensin System Blockers in Critically Ill Cancer Patients: A Retrospective Study" Cancers 15, no. 12: 3183. https://doi.org/10.3390/cancers15123183
APA StyleLaghlam, D., Chaba, A., Tarneaud, M., Charpentier, J., Mira, J. -P., Pène, F., & Vigneron, C. (2023). Survival Benefit of Renin-Angiotensin System Blockers in Critically Ill Cancer Patients: A Retrospective Study. Cancers, 15(12), 3183. https://doi.org/10.3390/cancers15123183