Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways
Abstract
:Simple Summary
Abstract
1. Tumor Angiogenesis
2. Alternative Ways of Tumor Vascularization
3. Angiogenesis and Microvascular Density in Hodgkin’s Lymphomas
4. Angiogenesis and Microvascular Density in Non-Hodgkin’s Lymphomas
5. Vasculogenic Mimicry and IMG in Lymphomas
6. Prognostic and Therapeutic Implications of Angiogenesis in Lymphomas and Alternative Mode of Vascular Growth as a Mechanism of Resistance to Anti-Angiogenic Therapies
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geudens, I.; Gerhardt, H. Coordinating Cell Behaviour during Blood Vessel Formation. Dev. Camb. Engl. 2011, 138, 4569–4583. [Google Scholar] [CrossRef] [Green Version]
- Duran, C.L.; Howell, D.W.; Dave, J.M.; Smith, R.L.; Torrie, M.E.; Essner, J.J.; Bayless, K.J. Molecular Regulation of Sprouting Angiogenesis. Compr. Physiol. 2017, 8, 153–235. [Google Scholar] [CrossRef]
- Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and Therapeutic Aspects of Angiogenesis. Cell 2011, 146, 873–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillen, F.; Griffioen, A.W. Tumour Vascularization: Sprouting Angiogenesis and Beyond. Cancer Metastasis Rev. 2007, 26, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Almeida, B.M.; Challacombe, S.J.; Eveson, J.W.; Morgan, P.R.; Purkis, P.E.; Leigh, I.M. The Distribution of LH39 Basement Membrane Epitope in the Tumour Stroma of Oral Squamous Cell Carcinomas. J. Pathol. 1992, 166, 369–374. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pranzini, E.; Raugei, G.; Taddei, M.L. Metabolic Features of Tumor Dormancy: Possible Therapeutic Strategies. Cancers 2022, 14, 547. [Google Scholar] [CrossRef]
- Ribatti, D.; Djonov, V. Intussusceptive Microvascular Growth in Tumors. Cancer Lett. 2012, 316, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Pezzella, F. Overview on the Different Patterns of Tumor Vascularization. Cells 2021, 10, 639. [Google Scholar] [CrossRef]
- Lugassy, C.; Vermeulen, P.B.; Ribatti, D.; Pezzella, F.; Barnhill, R.L. Vessel Co-Option and Angiotropic Extravascular Migratory Metastasis: A Continuum of Tumour Growth and Spread. Br. J. Cancer 2022, 126, 973–980. [Google Scholar] [CrossRef]
- Djonov, V.; Hogger, K.; Sedlacek, R.; Laissue, J.; Draeger, A. MMP-19: Cellular Localization of a Novel Metalloproteinase within Normal Breast Tissue and Mammary Gland Tumours. J. Pathol. 2001, 195, 147–155. [Google Scholar] [CrossRef]
- Nico, B.; Crivellato, E.; Guidolin, D.; Annese, T.; Longo, V.; Finato, N.; Vacca, A.; Ribatti, D. Intussusceptive Microvascular Growth in Human Glioma. Clin. Exp. Med. 2010, 10, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Patan, S.; Munn, L.L.; Jain, R.K. Intussusceptive Microvascular Growth in a Human Colon Adenocarcinoma Xenograft: A Novel Mechanism of Tumor Angiogenesis. Microvasc. Res. 1996, 51, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D.; Nico, B.; Floris, C.; Mangieri, D.; Piras, F.; Ennas, M.G.; Vacca, A.; Sirigu, P. Microvascular Density, Vascular Endothelial Growth Factor Immunoreactivity in Tumor Cells, Vessel Diameter and Intussusceptive Microvascular Growth in Primary Melanoma. Oncol. Rep. 2005, 14, 81–84. [Google Scholar] [PubMed]
- Teuwen, L.-A.; De Rooij, L.P.M.H.; Cuypers, A.; Rohlenova, K.; Dumas, S.J.; García-Caballero, M.; Meta, E.; Amersfoort, J.; Taverna, F.; Becker, L.M.; et al. Tumor Vessel Co-Option Probed by Single-Cell Analysis. Cell Rep. 2021, 35, 109253. [Google Scholar] [CrossRef] [PubMed]
- Pezzella, F.; Pastorino, U.; Tagliabue, E.; Andreola, S.; Sozzi, G.; Gasparini, G.; Menard, S.; Gatter, K.C.; Harris, A.L.; Fox, S.; et al. Non-Small-Cell Lung Carcinoma Tumor Growth without Morphological Evidence of Neo-Angiogenesis. Am. J. Pathol. 1997, 151, 1417–1423. [Google Scholar]
- Holash, J.; Maisonpierre, P.C.; Compton, D.; Boland, P.; Alexander, C.R.; Zagzag, D.; Yancopoulos, G.D.; Wiegand, S.J. Vessel Cooption, Regression, and Growth in Tumors Mediated by Angiopoietins and VEGF. Science 1999, 284, 1994–1998. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Chen, Y.; Jiang, X.; Peng, M.; Liu, Y.; Mo, Y.; Ren, D.; Hua, Y.; Yu, B.; Zhou, Y.; et al. Mechanisms of Vasculogenic Mimicry in Hypoxic Tumor Microenvironments. Mol. Cancer 2021, 20, 7. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Doussis-Anagnostopoulou, I.A.; Talks, K.L.; Turley, H.; Debnam, P.; Tan, D.C.; Mariatos, G.; Gorgoulis, V.; Kittas, C.; Gatter, K.C. Vascular Endothelial Growth Factor (VEGF) Is Expressed by Neoplastic Hodgkin-Reed-Sternberg Cells in Hodgkin’s Disease. J. Pathol. 2002, 197, 677–683. [Google Scholar] [CrossRef]
- Agarwal, B.; Naresh, K.N. Re: Doussis-Anagnostopoulou et al. Vascular Endothelial Growth Factor (VEGF) Is Expressed by Neoplastic Hodgkin–Reed–Sternberg Cells in Hodgkin’s Disease. J. Pathol. 2002; 197: 677–683. J. Pathol. 2003, 201, 334–335. [Google Scholar] [CrossRef] [PubMed]
- Korkolopoulou, P.; Thymara, I.; Kavantzas, N.; Vassilakopoulos, T.P.; Angelopoulou, M.K.; Kokoris, S.I.; Dimitriadou, E.M.; Siakantaris, M.P.; Anargyrou, K.; Panayiotidis, P.; et al. Angiogenesis in Hodgkin’s Lymphoma: A Morphometric Approach in 286 Patients with Prognostic Implications. Leukemia 2005, 19, 894–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passam, F.H.; Alexandrakis, M.G.; Kafousi, M.; Fotinou, M.; Darivianaki, K.; Tsirakis, G.; Roussou, P.A.; Stathopoulos, E.N.; Siafakas, N.M. Histological Expression of Angiogenic Factors: VEGF, PDGFRalpha, and HIF-1alpha in Hodgkin Lymphoma. Pathol. Res. Pract. 2009, 205, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Khnykin, D.; Troen, G.; Berner, J.-M.; Delabie, J. The Expression of Fibroblast Growth Factors and Their Receptors in Hodgkin’s Lymphoma. J. Pathol. 2006, 208, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Giles, F.J.; Vose, J.M.; Do, K.-A.; Johnson, M.M.; Manshouri, T.; Bociek, G.; Bierman, P.J.; O’Brien, S.M.; Kantarjian, H.M.; Armitage, J.O.; et al. Clinical Relevance of Circulating Angiogenic Factors in Patients with Non-Hodgkin’s Lymphoma or Hodgkin’s Lymphoma. Leuk. Res. 2004, 28, 595–604. [Google Scholar] [CrossRef]
- Rueda, A.; Olmos, D.; Villareal, V.; Torres, E.; Pajares, B.I.; Alba, E. Elevated Vascular Endothelial Growth Factor Pretreatment Levels Are Correlated with the Tumor Burden in Hodgkin Lymphoma and Continue to Be Elevated in Prolonged Complete Remission. Clin. Lymphoma Myeloma 2007, 7, 400–405. [Google Scholar] [CrossRef]
- Dimtsas, G.S.; Georgiadi, E.C.; Karakitsos, P.; Vassilakopoulos, T.P.; Thymara, I.; Korkolopoulou, P.; Patsouris, E.; Kittas, C.; Doussis-Anagnostopoulou, I.A. Prognostic Significance of Immunohistochemical Expression of the Angiogenic Molecules Vascular Endothelial Growth Factor-A, Vascular Endothelial Growth Factor Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 in Patients with Classical Hodgkin Lymphoma. Leuk. Lymphoma 2014, 55, 558–564. [Google Scholar] [CrossRef]
- Passalidou, E.; Stewart, M.; Trivella, M.; Steers, G.; Pillai, G.; Dogan, A.; Leigh, I.; Hatton, C.; Harris, A.; Gatter, K.; et al. Vascular Patterns in Reactive Lymphoid Tissue and in Non-Hodgkin’s Lymphoma. Br. J. Cancer 2003, 88, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Gratzinger, D.; Zhao, S.; Marinelli, R.J.; Kapp, A.V.; Tibshirani, R.J.; Hammer, A.S.; Hamilton-Dutoit, S.; Natkunam, Y. Microvessel Density and Expression of Vascular Endothelial Growth Factor and Its Receptors in Diffuse Large B-Cell Lymphoma Subtypes. Am. J. Pathol. 2007, 170, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Alshenawy, H.A. Prognostic Significance of Vascular Endothelial Growth Factor, Basic Fibroblastic Growth Factor, and Microvessel Density and Their Relation to Cell Proliferation in B-Cell Non-Hodgkin’s Lymphoma. Ann. Diagn. Pathol. 2010, 14, 321–327. [Google Scholar] [CrossRef]
- Jørgensen, J.M.; Sørensen, F.B.; Bendix, K.; Nielsen, J.L.; Olsen, M.L.; Funder, A.M.D.; d’Amore, F. Angiogenesis in Non-Hodgkin’s Lymphoma: Clinico-Pathological Correlations and Prognostic Significance in Specific Subtypes. Leuk. Lymphoma 2007, 48, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Ganjoo, K.N.; An, C.S.; Robertson, M.J.; Gordon, L.I.; Sen, J.A.; Weisenbach, J.; Li, S.; Weller, E.A.; Orazi, A.; Horning, S.J. Rituximab, Bevacizumab and CHOP (RA-CHOP) in Untreated Diffuse Large B-Cell Lymphoma: Safety, Biomarker and Pharmacokinetic Analysis. Leuk. Lymphoma 2006, 47, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Hyjek, E.; Kermani, P.; Christos, P.J.; Hooper, A.T.; Coleman, M.; Hempstead, B.; Leonard, J.P.; Chadburn, A.; Rafii, S. Magnitude of Stromal Hemangiogenesis Correlates with Histologic Subtype of Non–Hodgkin’s Lymphoma. Clin. Cancer Res. 2006, 12, 5622–5631. [Google Scholar] [CrossRef] [Green Version]
- Vacca, A.; Moretti, S.; Ribatti, D.; Pellegrino, A.; Pimpinelli, N.; Bianchi, B.; Bonifazi, E.; Ria, R.; Serio, G.; Dammacco, F. Progression of Mycosis Fungoides Is Associated with Changes in Angiogenesis and Expression of the Matrix Metalloproteinases 2 and 9. Eur. J. Cancer 1997, 33, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Schaerer, L.; Schmid, M.H.; Mueller, B.; Dummer, R.G.; Burg, G.; Kempf, W. Angiogenesis in Cutaneous Lymphoproliferative Disorders: Microvessel Density Discriminates between Cutaneous B-Cell Lymphomas and B-Cell Pseudolymphomas. Am. J. Dermatopathol. 2000, 22, 140–143. [Google Scholar] [CrossRef]
- Mazur, G.; Woźniak, Z.; Wróbel, T.; Maj, J.; Kuliczkowski, K. Increased Angiogenesis in Cutaneous T-Cell Lymphomas. Pathol. Oncol. Res. POR 2004, 10, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Treweeke, A.T.; West, D.C.; Till, K.J.; Cawley, J.C.; Zuzel, M.; Toh, C.H. In Vitro and in Vivo Production of Vascular Endothelial Growth Factor by Chronic Lymphocytic Leukemia Cells. Blood 2000, 96, 3181–3187. [Google Scholar] [CrossRef]
- Kay, N.E.; Bone, N.D.; Tschumper, R.C.; Howell, K.H.; Geyer, S.M.; Dewald, G.W.; Hanson, C.A.; Jelinek, D.F. B-CLL Cells Are Capable of Synthesis and Secretion of Both pro- and Anti-Angiogenic Molecules. Leukemia 2002, 16, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Foss, H.D.; Araujo, I.; Demel, G.; Klotzbach, H.; Hummel, M.; Stein, H. Expression of Vascular Endothelial Growth Factor in Lymphomas and Castleman’s Disease. J. Pathol. 1997, 183, 44–50. [Google Scholar] [CrossRef]
- Koster, A.; van Krieken, J.H.J.M.; Mackenzie, M.A.; Schraders, M.; Borm, G.F.; van der Laak, J.A.W.M.; Leenders, W.; Hebeda, K.; Raemaekers, J.M.M. Increased Vascularization Predicts Favorable Outcome in Follicular Lymphoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2005, 11, 154–161. [Google Scholar] [CrossRef]
- Stewart, M.; Talks, K.; Leek, R.; Turley, H.; Pezzella, F.; Harris, A.; Gatter, K. Expression of Angiogenic Factors and Hypoxia Inducible Factors HIF 1, HIF 2 and CA IX in Non-Hodgkin’s Lymphoma. Histopathology 2002, 40, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-L.; Sheu, L.-F.; Li, C.-Y. Immunohistochemical Expression of Basic Fibroblast Growth Factor, Vascular Endothelial Growth Factor, and Their Receptors in Stage IV Non-Hodgkin Lymphoma. Appl. Immunohistochem. Mol. Morphol. AIMM 2002, 10, 316–321. [Google Scholar] [CrossRef]
- Crivellato, E.; Nico, B.; Vacca, A.; Ribatti, D. B-Cell Non-Hodgkin’s Lymphomas Express Heterogeneous Patterns of Neovascularization. Haematologica 2003, 88, 671–678. [Google Scholar] [PubMed]
- Nico, B.; Mangieri, D.; Tamma, R.; Longo, V.; Annese, T.; Crivellato, E.; Pollo, B.; Maderna, E.; Ribatti, D.; Salmaggi, A. Aquaporin-4 contributes to the resolution of peritumoural brain oedema in human glioblastoma multiforme after combined chemotherapy and radiotherapy. Eur. J. Cancer 2009, 45, 3315–3325. [Google Scholar] [CrossRef]
- Gratzinger, D.; Zhao, S.; Tibshirani, R.J.; Hsi, E.D.; Hans, C.P.; Pohlman, B.; Bast, M.; Avigdor, A.; Schiby, G.; Nagler, A.; et al. Prognostic Significance of VEGF, VEGF Receptors, and Microvessel Density in Diffuse Large B Cell Lymphoma Treated with Anthracycline-Based Chemotherapy. Lab. Investig. J. Tech. Methods Pathol. 2008, 88, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salven, P.; Orpana, A.; Teerenhovi, L.; Joensuu, H. Simultaneous Elevation in the Serum Concentrations of the Angiogenic Growth Factors VEGF and BFGF Is an Independent Predictor of Poor Prognosis in Non-Hodgkin Lymphoma: A Single-Institution Study of 200 Patients. Blood 2000, 96, 3712–3718. [Google Scholar] [CrossRef] [PubMed]
- Niitsu, N.; Okamato, M.; Nakamine, H.; Yoshino, T.; Tamaru, J.; Nakamura, S.; Higashihara, M.; Hirano, M. Simultaneous Elevation of the Serum Concentrations of Vascular Endothelial Growth Factor and Interleukin-6 as Independent Predictors of Prognosis in Aggressive Non-Hodgkin’s Lymphoma. Eur. J. Haematol. 2002, 68, 91–100. [Google Scholar] [CrossRef]
- Aref, S.; Mabed, M.; Zalata, K.; Sakrana, M.; El Askalany, H. The Interplay between C-Myc Oncogene Expression and Circulating Vascular Endothelial Growth Factor (SVEGF), Its Antagonist Receptor, Soluble Flt-1 in Diffuse Large B Cell Lymphoma (DLBCL): Relationship to Patient Outcome. Leuk. Lymphoma 2004, 45, 499–506. [Google Scholar] [CrossRef]
- Pazgal, I.; Zimra, Y.; Tzabar, C.; Okon, E.; Rabizadeh, E.; Shaklai, M.; Bairey, O. Expression of Basic Fibroblast Growth Factor Is Associated with Poor Outcome in Non-Hodgkin’s Lymphoma. Br. J. Cancer 2002, 86, 1770–1775. [Google Scholar] [CrossRef] [Green Version]
- Ria, R.; Cirulli, T.; Giannini, T.; Bambace, S.; Serio, G.; Portaluri, M.; Ribatti, D.; Vacca, A.; Dammacco, F. Serum Levels of Angiogenic Cytokines Decrease after Radiotherapy in Non-Hodgkin Lymphomas. Clin. Exp. Med. 2008, 8, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Shanafelt, T.D.; Bone, N.D.; Strege, A.K.; Jelinek, D.F.; Kay, N.E. VEGF Receptors on Chronic Lymphocytic Leukemia (CLL) B Cells Interact with STAT 1 and 3: Implication for Apoptosis Resistance. Leukemia 2005, 19, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Kuramoto, K.; Sakai, A.; Shigemasa, K.; Takimoto, Y.; Asaoku, H.; Tsujimoto, T.; Oda, K.; Kimura, A.; Uesaka, T.; Watanabe, H.; et al. High Expression of MCL1 Gene Related to Vascular Endothelial Growth Factor Is Associated with Poor Outcome in Non-Hodgkin’s Lymphoma. Br. J. Haematol. 2002, 116, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-L.; Mourah, S.; Mounier, N.; Leboeuf, C.; Daneshpouy, M.E.; Legrès, L.; Meignin, V.; Oksenhendler, E.; Maignin, C.L.; Calvo, F.; et al. Vascular Endothelial Growth Factor-A Is Expressed Both on Lymphoma Cells and Endothelial Cells in Angioimmunoblastic T-Cell Lymphoma and Related to Lymphoma Progression. Lab. Investig. J. Tech. Methods Pathol. 2004, 84, 1512–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shipp, M.A.; Ross, K.N.; Tamayo, P.; Weng, A.P.; Kutok, J.L.; Aguiar, R.C.T.; Gaasenbeek, M.; Angelo, M.; Reich, M.; Pinkus, G.S.; et al. Diffuse Large B-Cell Lymphoma Outcome Prediction by Gene-Expression Profiling and Supervised Machine Learning. Nat. Med. 2002, 8, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Matsuda, K.; Kitai, R.; Sato, K.; Kubota, T. Angiogenesis in Primary Central Nervous System Lymphoma (PCNSL). J. Neurooncol. 2007, 84, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Hlushchuk, R.; Riesterer, O.; Baum, O.; Wood, J.; Gruber, G.; Pruschy, M.; Djonov, V. Tumor Recovery by Angiogenic Switch from Sprouting to Intussusceptive Angiogenesis after Treatment with PTK787/ZK222584 or Ionizing Radiation. Am. J. Pathol. 2008, 173, 1173–1185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, S.; Dudley, A.C. Models and Molecular Mechanisms of Blood Vessel Co-Option by Cancer Cells. Angiogenesis 2020, 23, 17–25. [Google Scholar] [CrossRef]
- Bridgeman, V.L.; Vermeulen, P.B.; Foo, S.; Bilecz, A.; Daley, F.; Kostaras, E.; Nathan, M.R.; Wan, E.; Frentzas, S.; Schweiger, T.; et al. Vessel Co-Option Is Common in Human Lung Metastases and Mediates Resistance to Anti-Angiogenic Therapy in Preclinical Lung Metastasis Models. J. Pathol. 2017, 241, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Frentzas, S.; Simoneau, E.; Bridgeman, V.L.; Vermeulen, P.B.; Foo, S.; Kostaras, E.; Nathan, M.; Wotherspoon, A.; Gao, Z.-H.; Shi, Y.; et al. Vessel Co-Option Mediates Resistance to Anti-Angiogenic Therapy in Liver Metastases. Nat. Med. 2016, 22, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Kuczynski, E.A.; Yin, M.; Bar-Zion, A.; Lee, C.R.; Butz, H.; Man, S.; Daley, F.; Vermeulen, P.B.; Yousef, G.M.; Foster, F.S.; et al. Co-Option of Liver Vessels and Not Sprouting Angiogenesis Drives Acquired Sorafenib Resistance in Hepatocellular Carcinoma. J. Natl. Cancer Inst. 2016, 108, djw030. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribatti, D.; Tamma, R.; Annese, T.; d’Amati, A.; Ingravallo, G.; Specchia, G. Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers 2023, 15, 3262. https://doi.org/10.3390/cancers15123262
Ribatti D, Tamma R, Annese T, d’Amati A, Ingravallo G, Specchia G. Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers. 2023; 15(12):3262. https://doi.org/10.3390/cancers15123262
Chicago/Turabian StyleRibatti, Domenico, Roberto Tamma, Tiziana Annese, Antonio d’Amati, Giuseppe Ingravallo, and Giorgina Specchia. 2023. "Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways" Cancers 15, no. 12: 3262. https://doi.org/10.3390/cancers15123262
APA StyleRibatti, D., Tamma, R., Annese, T., d’Amati, A., Ingravallo, G., & Specchia, G. (2023). Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers, 15(12), 3262. https://doi.org/10.3390/cancers15123262