Impact of Next-Generation Sequencing in Diagnosis, Prognosis and Therapeutic Management of Acute Myeloid Leukemia/Myelodysplastic Neoplasms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Diagnosis
3. Prognosis
- ■
- ASXL1 is part of Enhancers of Trithorax and Polycomb (ETP) proteins that assemble chromatin modification complexes and transcription factors. In contrast to ASXL2 mutations [often associated with t(8;21)], ASXL1 confers a poor prognosis. Of note, this mutation can orientate the therapeutic intervention since some experiments suggest that ASXL1 mutants confer sensitivity to BET bromodomain inhibitors (BETis) and resistance to Histone DeACetylase inhibitors (HDACi) [19].
- ■
- The BCOR gene encodes for a subunit of the Polycomb Repressive Complex (PRC) 1.1, one of the six complexes that constitute the PRC1. By pairing the analysis of 6162 patient samples with cell line experiments, Schaefer et al. [20] have shown that the BCOR mutation inactivates the repressive activity of PCR1.1, leading to aberrant oncogenic signaling, suggesting that specific inhibitors of the RAS/MAPK pathway could be of interest in this AML subset.
- ■
- The Enhancer of Zeste Homolog 2 (EZH2) mutation corresponds to the loss of function of a histone methyltransferase activity that participates in the Polycomb Repressive Complex 2 (PRC2), whose role is to silence genes involved in stem cell renewal, including leukemic stem cells (LSC). Interestingly, the identification of EZH2 mutations was correlated, in most cases, with the loss of EZH2 protein expression, as evaluated by immunohistochemical analysis, thus directly linking the sequencing data to the AML phenotype [21].
- ■
- The RUNX1 gene, as previously seen, is involved/translocated in some recurrent genetic abnormalities in AMLs (of good prognosis), although it can also be mutated in 10% of MDS or AMLs. In this case, a loss of function is the common consequence of the mutation (missense/deletion truncation), and mtRUNX1 confers a poor prognosis. The mutation of RUNX1 impairs ribosome biogenesis (RiBi), leading to the hypothesis that drugs that perturb RiBi could be of interest in that AML subset. In accordance, AMLs with mtRUNX1 show an important sensitivity to homoharringtonine and BET inhibitors, with a synergistic effect of the B-cell lymphoma 2 (BCL2) inhibitor venetoclax, suggesting a specific chemotherapy regimen for these AMLs [22].
- ■
- The Splicing Factor 3B subunit 1 (SF3B1) mutation corresponds to most “sideroblastic anemias” of the previous classification and is considered MDS-related. This mutation is not restricted to the myeloid lineage since it is found in CLL, T–ALL and solid tumors, such as melanoma, pancreatic adenocarcinoma or breast cancer. The main function of SF3B1 is the assembly of the spliceosome, so many inhibitors of the spliceosome are under investigation in AML or MDS [23].
- ■
- The Serine and Arginine Rich Splicing Factor 2 (SRSF2) is a splicing factor in which mutations occur in up to 20% of AML/MDS and is frequently associated with mtRUNX1, conferring a particularly poor prognosis [24]. The reasons why the mtSRSF2/mtRUNX1 association is so deleterious have been analyzed [25]. Very interestingly, this co-mutation induces mis-splicing of a series of genes involved in the DNA damage response and in the cell-cycle checkpoint pathways (Fanconi anemia of complementation group J gene/BRIP1, NABP1, TBRG4 and AKAP8L). This example demonstrates the usefulness of a comprehensive and simultaneous analysis of all these mutations in order to take account of their possible cooperative effects on AML pathophysiology.
- ■
- STromal AntiGen 2 (STAG2) is one of the core components of the cohesin complex, a global protective structure around DNA molecules, whose mutation usually leads to a loss of function. The mutation of STAG2 induces a switch of the cohesion complex to use STAG1, which is rarely mutated in AML/MDS [26]. This switch induces global alterations of chromatin, and from a therapeutic point of view, an interesting consequence, i.e., a 70-fold increase in sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors, with some compounds being under investigation, such as talazoparib. Of note, some data also predict a synergy with hypomethylating drugs, suggesting a novel “backbone” associated (cf. previous mutations) with various partners depending on the other mutations identified by NGS analysis.
- ■
- The U2 small RNA nuclear auxiliary factor 1 (U2AF1) plays a central role in the alternative splicing of pre-mRNA and is mutated in 10% of AML/MDS. It is considered a poor prognosis marker, and although no specific drugs target this molecule, splicing modulators may be of interest in this AML subtype [27].
- ■
- The ZRSR2 (Zinc Finger CCCH-Type, RNA Binding Motif and Serine/Arginine Rich 2) is a splicing factor rarely mutated (5% of MDS/AML) and often associated with mutation of the epigenetic regulator TET2. Its various mutations lead to a loss of function. Interestingly, although many abnormalities are detected in ribosome functions, inflammation or cell mobility, a major dysregulation of the MAPK pathway seems to play a central role in leukemogenesis [28], suggesting the use of inhibitors [29].
4. Impact of the Novel Classification on Myelodysplastic Syndrome: The M-IPSS
5. Measurable Residual Disease (MRD)
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.M.; Catovsky, D.; Daniel, M.T.; Flandrin, G.; Galton, D.A.G.; Gralnick, H.R.; Sultan, C. Proposed Revised Criteria for the Classification of Acute Myeloid Leukemia. Areport of the French-American-British Cooperative Group. Ann. Intern. Med. 1985, 103, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.-F.; Lu, Y.; Wu, Q.; Lou, Y.-J.; Yang, M.; Xu, J.-Y.; Sun, C.-H.; Mao, L.-P.; Xu, G.-X.; Li, L.; et al. Oral arsenic and retinoic acid for high-risk acute promyelocytic leukemia. J. Hematol. Oncol. 2022, 15, 148. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, G.; Kantarjian, H. Core binding factor acute myelogenous leukemia-2021 treatment algorithm. Blood Cancer J. 2021, 11, 114. [Google Scholar] [CrossRef]
- Bill, M.; Mrózek, K.; Kohlschmidt, J.; Eisfeld, A.-K.; Walker, C.J.; Nicolet, D.; Papaioannou, D.; Blachly, J.S.; Orwick, S.; Carroll, A.J.; et al. Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/KMT2A. Proc. Natl. Acad. Sci. USA 2020, 117, 26340–26346. [Google Scholar] [CrossRef]
- Mendes, A.; Jühlen, R.; Martinelli, V.; Fahrenkrog, B. Targeted CRM1-inhibition perturbs leukemogenic NUP214 fusion proteins and exerts anti-cancer effects in leukemia cell lines with NUP214 rearrangements. Oncotarget 2020, 11, 3371–3386. [Google Scholar] [CrossRef]
- Kiehlmeier, S.; Rafiee, M.-R.; Bakr, A.; Mika, J.; Kruse, S.; Müller, J.; Schweiggert, S.; Herrmann, C.; Sigismondo, G.; Schmezer, P.; et al. Identification of therapeutic targets of the hijacked super-enhancer complex in EVI1-rearranged leukemia. Leukemia 2021, 35, 3127–3138. [Google Scholar] [CrossRef]
- Ranieri, R.; Pianigiani, G.; Sciabolacci, S.; Perriello, V.M.; Marra, A.; Cardinali, V.; Pierangeli, S.; Milano, F.; Gionfriddo, I.; Brunetti, L.; et al. Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022, 36, 2351–2367. [Google Scholar] [CrossRef]
- Swaminathan, M.; Bourgeois, W.; Armstrong, S.A.M.; Wang, E.S. Menin Inhibitors in Acute Myeloid Leukemia—What Does the Future Hold? Cancer J. 2022, 28, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Wakita, S.; Sakaguchi, M.; Oh, I.; Kako, S.; Toya, T.; Najima, Y.; Doki, N.; Kanda, J.; Kuroda, J.; Mori, S.; et al. Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv. 2022, 6, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Kayser, S.; Kramer, M.; Martínez-Cuadrón, D.; Grenet, J.; Metzeler, K.H.; Sustkova, Z.; Luskin, M.R.; Brunner, A.M.; Elliott, M.A.; Gil, C.; et al. Characteristics and outcome of patients with core-binding factor acute myeloid leukemia and FLT3-ITD: Results from an international collaborative study. Haematologica 2021, 107, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Grob, T.; Al Hinai, A.S.A.; Sanders, M.A.; Kavelaars, F.G.; Rijken, M.; Gradowska, P.L.; Biemond, B.J.; Breems, D.A.; Maertens, J.; Kooy, M.V.M.; et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood 2022, 139, 2347–2354. [Google Scholar] [CrossRef]
- Madaci, L.; Colle, J.; Venton, G.; Farnault, L.; Loriod, B.; Costello, R. The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark. Res. 2021, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.G.; Maiti, A.; Kadia, T.M.; Vyas, P.; Majeti, R.; Wei, A.H.; Garcia-Manero, G.; Craddock, C.; Sallman, D.A.; Kantarjian, H.M. TP53-Mutated Myelodysplastic Syndrome and Acute Myeloid Leukemia: Biology, Current Therapy, and Future Directions. Cancer Discov. 2022, 12, 2516–2529. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Maiti, A.; Rausch, C.R.; Pemmaraju, N.; Naqvi, K.; Daver, N.G.; Kadia, T.M.; Borthakur, G.; Ohanian, M.; Alvarado, Y.; et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: A single-centre, phase 2 trial. Lancet Haematol. 2020, 7, e724–e736. [Google Scholar] [CrossRef]
- Clarke, J.R.S.; Douglas, L.R.; Duriez, P.J.; Balourdas, D.-I.; Joerger, A.C.; Khadiullina, R.; Bulatov, E.; Baud, M.G.J. Discovery of Nanomolar-Affinity Pharmacological Chaperones Stabilizing the Oncogenic p53 Mutant Y220C. ACS Pharmacol. Transl. Sci. 2022, 5, 1169–1180. [Google Scholar] [CrossRef]
- Medina, E.A.; Delma, C.R.; Yang, F.-C. ASXL1/2 mutations and myeloid malignancies. J. Hematol. Oncol. 2022, 15, 127. [Google Scholar] [CrossRef]
- Schaefer, E.J.; Wang, H.C.; Karp, H.Q.; Meyer, C.A.; Cejas, P.; Gearhart, M.D.; Adelman, E.R.; Fares, I.; Apffel, A.; Lim, K.; et al. BCOR and BCORL1 Mutations Drive Epigenetic Reprogramming and Oncogenic Signaling by Unlinking PRC1.1 from Target Genes. Blood Cancer Discov. 2022, 3, 116–135. [Google Scholar] [CrossRef]
- Sakhdari, A.; Class, C.; Montalban-Bravo, G.; Sasaki, K.; Bueso-Ramos, C.E.; Patel, K.P.; Routbort, M.J.; Loghavi, S.; Ok, C.Y.; Quesada, A.; et al. Immunohistochemical loss of enhancer of Zeste Homolog 2 (EZH2) protein expression correlates with EZH2 alterations and portends a worse outcome in myelodysplastic syndromes. Mod. Pathol. 2022, 35, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Mill, C.P.; Fiskus, W.; DiNardo, C.D.; Birdwell, C.; Davis, J.A.; Kadia, T.M.; Takahashi, K.; Short, N.J.; Daver, N.G.; Ohanian, M.; et al. Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood 2022, 139, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Pellagatti, A.; Boultwood, J. Splicing factor mutations in the myelodysplastic syndromes: Role of key aberrantly spliced genes in disease pathophysiology and treatment. Adv. Biol. Regul. 2023, 87, 920. [Google Scholar] [CrossRef]
- Van der Werf, I.; Wojtuszkiewicz, A.; Meggendorfer, M.; Hutter, S.; Baer, C.; Heymans, M.; Valk, P.J.M.; Kern, W.; Haferlach, C.; Janssen, J.J.W.M.; et al. Splicing factor gene mutations in acute myeloid leukemia offer additive value if incorporated in current risk classification. Blood Adv. 2021, 5, 3254–3265. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Chen, J.-Y.; Yan, M.; Davis, A.G.; Miyauchi, S.; Chen, L.; Hao, Y.; Katz, S.; Bejar, R.; Abdel-Wahab, O.; et al. RUNX1 deficiency cooperates with SRSF2 mutation to induce multilineage hematopoietic defects characteristic of MDS. Blood Adv. 2022, 6, 6078–6092. [Google Scholar] [CrossRef]
- Tothova, Z.; Valton, A.-L.; Gorelov, R.A.; Vallurupalli, M.; Krill-Burger, J.M.; Holmes, A.; Landers, C.C.; Haydu, J.E.; Malolepsza, E.; Hartigan, C.; et al. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. J. Clin. Investig. 2021, 6, 2149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cai, W.; Hua, Y.; Yang, X.; Zhou, J. The Biological and Clinical Consequences of RNA Splicing Factor U2AF1 Mutation in Myeloid Malignancies. Cancers 2022, 14, 4406. [Google Scholar] [CrossRef]
- Garcia-Ruiz, C.; Martínez-Valiente, C.; Cordón, L.; Liquori, A.; Fernández-González, R.; Pericuesta, E.; Sandoval, J.; Cervera, J.; Gutiérrez-Adán, A.; Sanjuan-Pla, A. Concurrent Zrsr2 mutation and Tet2 loss promote myelodysplastic neoplasm in mice. Leukemia 2022, 36, 2509–2518. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [Green Version]
- Bernard, E.; Tuechler, H.; Greenberg, P.L.; Hasserjian, R.P.; Ossa, J.E.A.; Nannya, Y.; Devlin, S.M.; Creignou, M.; Pinel, P.; Monnier, L.; et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. NEJM Évid. 2022, 1, 8. [Google Scholar] [CrossRef]
- McGowan, P.; Hyter, S.; Cui, W.; Plummer, R.M.; Godwin, A.K.; Zhang, D. Comparison of flow cytometry and next-generation sequencing in minimal residual disease monitoring of acute myeloid leukemia: One institute’s practical clinical experience. Int. J. Lab. Hematol. 2021, 44, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Tang, J.-L.; Tien, F.-M.; Kuo, Y.-Y.; Wu, D.-C.; Lin, C.-C.; Tseng, M.-H.; Peng, Y.-L.; Hou, M.-F.; Chuang, Y.-K.; et al. Clinical implications of sequential MRD monitoring by NGS at 2 time points after chemotherapy in patients with AML. Blood Adv. 2021, 5, 2456–2466. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Park, S.; Hwang, I.; Kang, D.; Cho, B.S.; Kim, H.-J.; Ahn, A.; Kim, M.; Kim, Y. FLT3-ITD Measurable Residual Disease Monitoring in Acute Myeloid Leukemia Using Next-Generation Sequencing. Cancers 2022, 14, 6121. [Google Scholar] [CrossRef] [PubMed]
- Loo, S.; Dillon, R.; Ivey, A.; Anstee, N.S.; Othman, J.; Tiong, I.S.; Potter, N.; Jovanovic, J.; Runglall, M.; Chong, C.C.; et al. Pretransplant FLT3-ITD MRD assessed by high-sensitivity PCR-NGS determines posttransplant clinical outcome. Blood 2022, 140, 2407–2411. [Google Scholar] [CrossRef]
- Roloff, G.W.; Odenike, O.; Bajel, A.; Wei, A.H.; Foley, N.; Uy, G.L. Contemporary Approach to Acute Myeloid Leukemia Therapy in 2022. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 568–583. [Google Scholar] [CrossRef]
- Cassanello, G.; Pasquale, R.; Barcellini, W.; Fattizzo, B. Novel Therapies for Unmet Clinical Needs in Myelodysplastic Syndromes. Cancers 2022, 14, 4941. [Google Scholar] [CrossRef]
- Döhner, H.; Weber, D.; Krzykalla, J.; Fiedler, W.; Wulf, G.; Salih, H.; Lübbert, M.; Kühn, M.W.; Schroeder, T.; Salwender, H.; et al. Midostaurin plus intensive chemotherapy for younger and older patients with AML and FLT3 internal tandem duplications. Blood Adv. 2022, 6, 5345–5355. [Google Scholar] [CrossRef]
- Itzykson, R.A.; Fournier, E.; Berthon, C.; Röllig, C.; Braun, T.; Marceau-Renaut, A.; Pautas, C.; Nibourel, O.; Lemasle, E.; Micol, J.-B.; et al. Genetic identification of patients with AML older than 60 years achieving long-term survival with intensive chemotherapy. Blood 2021, 138, 507–519. [Google Scholar] [CrossRef]
- Patel, J.P.; Gönen, M.; Figueroa, M.E.; Fernandez, H.; Sun, Z.; Racevskis, J.; Van Vlierberghe, P.; Dolgalev, I.; Thomas, S.; Aminova, O.; et al. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. N. Engl. J. Med. 2012, 366, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.W.K.; Mitchell, A.; Kennedy, J.A.; Chen, W.C.; McLeod, J.; Ibrahimova, N.; Arruda, A.; Popescu, A.; Gupta, V.; Schimmer, A.D.; et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 2016, 540, 433–437. [Google Scholar] [CrossRef]
- Lai, B.; Lai, Y.; Zhang, Y.; Zhou, M.; OuYang, G. Survival prediction in acute myeloid leukemia using gene expression profiling. BMC Med. Inform. Decis. Mak. 2022, 22, 57. [Google Scholar] [CrossRef] [PubMed]
- Venton, G.; Pérez-Alea, M.; Baier, C.; Fournet, G.; Quash, G.; Labiad, Y.; Martin, G.; Sanderson, F.; Poullin, P.; Suchon, P.; et al. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J. 2016, 6, e469. [Google Scholar] [CrossRef] [PubMed]
WHO 2022 | ICI |
---|---|
Acute myeloid leukemia with defining genetic abnormalities Acute promyelocytic leukemia with PML::RARA fusion Acute myeloid leukemia with RUNX1::RUNX1T1 fusion Acute myeloid leukemia with CBFB::MYH11 fusion Acute myeloid leukemia with DEK::NUP214 fusion Acute myeloid leukemia with RBM15::MRTFA fusion Acute myeloid leukemia with BCR::ABL1 fusion Acute myeloid leukemia with KMT2A rearrangement Acute myeloid leukemia with MECOM rearrangement Acute myeloid leukemia with NUP98 rearrangement Acute myeloid leukemia with NPM1 rearrangement Acute myeloid leukemia with CEBPA rearrangement Acute myeloid leukemia, myelodysplasia-related Acute myeloid leukemia with other defined genetic alterations | Acute myeloid leukemia with defining genetic abnormalities Acute promyelocytic leukemia with PML::RARA fusion or other RARA rearrangement Acute myeloid leukemia with RUNX1::RUNX1T1 fusion Acute myeloid leukemia with CBFB::MYH11 fusion Acute myeloid leukemia with DEK::NUP214 fusion XXX Blast phase CML Acute myeloid leukemia with KMT2A rearrangement: MLLT3 Acute myeloid leukemia with MECOM rearrangement XXX Acute myeloid leukemia with NPM1 rearrangement Acute myeloid leukemia with CEBPA rearrangement Acute myeloid leukemia, myelodysplasia-related Acute myeloid leukemia with other defined genetic alterations |
Acute myeloid leukemia, defined by differentiation Acute myeloid leukemia with minimal differentiation Acute myeloid leukemia without maturation Acute myeloid leukemia with maturation Acute basophilic leukemia Acute myelomonocytic leukemia Acute monocytic leukemia Acute erythroid leukemia Acute megakaryoblastic leukemia | AML, not otherwise specified XXX XXX XXX XXX XXX XXX XXX |
MDS-MR defining mutations ASXL1 BCOR EZH2 RUNX1 SF3B1 SRSF2 STAG2 U2AF1 ZRSR2 | MDS-MR defining mutations ASXL1 BCOR EZH2 XXX SF3B1 SRSF2 STAG2 U2AF1 ZRSR2 |
APL with t(15;17)(q24.1;q21.2)/PML::RARA |
AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 |
AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 |
AML with t(9;11)(p21.3;q23.3)/MLLT3::KMT2A |
AML with t(6;9)(p22.3;q34.1)/DEK::NUP214 |
AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) |
AML with other rare recurring translocations |
AML with mutated NPM1 |
AML with in-frame bZIP mutated CEBPA |
AML with t(9;22)(q34.1;q11.2)/BCR::ABL1 |
ASXL1 | Additional Sex Combs-Like 1, Transcriptional Regulator |
BCOR | BCL6 CoRepressor |
EZH2 | Enhancer of zeste homolog 2, H3 histone methylation |
RUNX1 | Runt-related transcription factor 1, core binding factor family |
SF3B1 | Splicing Factor 3B subunit 1 |
SRSF2 | Serine and arginine Rich Splicing Factor 2 |
STAG2 | Stroma AntiGen 2, cohesin complex |
U2AF1 | U2 small nuclear RNA Auxiliary Factor 1, splicing factor |
ZRSR2 | Zing finger CCCH-type, RNA binding motif and Serine/arginine Rich 2, splicing factor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madaci, L.; Farnault, L.; Abbou, N.; Gabert, J.; Venton, G.; Costello, R. Impact of Next-Generation Sequencing in Diagnosis, Prognosis and Therapeutic Management of Acute Myeloid Leukemia/Myelodysplastic Neoplasms. Cancers 2023, 15, 3280. https://doi.org/10.3390/cancers15133280
Madaci L, Farnault L, Abbou N, Gabert J, Venton G, Costello R. Impact of Next-Generation Sequencing in Diagnosis, Prognosis and Therapeutic Management of Acute Myeloid Leukemia/Myelodysplastic Neoplasms. Cancers. 2023; 15(13):3280. https://doi.org/10.3390/cancers15133280
Chicago/Turabian StyleMadaci, Lamia, Laure Farnault, Norman Abbou, Jean Gabert, Geoffroy Venton, and Régis Costello. 2023. "Impact of Next-Generation Sequencing in Diagnosis, Prognosis and Therapeutic Management of Acute Myeloid Leukemia/Myelodysplastic Neoplasms" Cancers 15, no. 13: 3280. https://doi.org/10.3390/cancers15133280
APA StyleMadaci, L., Farnault, L., Abbou, N., Gabert, J., Venton, G., & Costello, R. (2023). Impact of Next-Generation Sequencing in Diagnosis, Prognosis and Therapeutic Management of Acute Myeloid Leukemia/Myelodysplastic Neoplasms. Cancers, 15(13), 3280. https://doi.org/10.3390/cancers15133280