Management of Cutaneous Head and Neck Squamous and Basal Cell Carcinomas for Immunocompromised Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathogenesis of NMSCs
2.1. Pathogeneisis of CuSCC
2.2. Pathogenesis of cuSCC in Immunocompromised Patients
2.3. Pathogenesis of BCC
2.4. Pathogenesis BCC in Immunocompromised Patients
3. Role of Immune Evasion in the Progression of cuSCC and BCC
3.1. Role of TIME in cuSCC
3.2. Role of TIME in BCC
4. Surgical Management of cuSCC and BCC in Immunocompromised Patients
4.1. SCC
4.2. BCC
5. Radiation Therapy in the Management of cuSCC and BCC
6. Current Systemic Therapies and Ongoing Clinical Trials
6.1. Systemic Therapy for cuSCC
6.2. Systemic Therapy for BCC
6.3. Systemic Therapy in Immunocompromised Patients
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stratigos, A.; Garbe, C.; Lebbe, C.; Malvehy, J.; del Marmol, V.; Pehamberger, H.; Peris, K.; Becker, J.C.; Zalaudek, I.; Saiag, P.; et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline. Eur. J. Cancer 2015, 51, 1989–2007. [Google Scholar] [CrossRef]
- Miller, J.E.; Echanique, K.A.; St John, M.A. Margin Recommendations for Cutaneous Malignancies in Immunocompetent and Immunocompromised Patients. Laryngoscope 2022, 132, 1331–1333. [Google Scholar] [CrossRef]
- Bichakjian, C.; Armstrong, A.; Baum, C.; Bordeaux, J.S.; Brown, M.; Busam, K.J.; Eisen, D.B.; Iyengar, V.; Lober, C.; Margolis, D.J.; et al. Guidelines of care for the management of basal cell carcinoma. J. Am. Acad. Dermatol. 2018, 78, 540–559. [Google Scholar]
- Muzic, J.G.; Schmitt, A.R.; Wright, A.C.; Alniemi, D.T.; Zubair, A.S.; Olazagasti Lourido, J.M.; Sosa Seda, I.M.; Weaver, A.L.; Baum, C.L. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma: A Population-Based Study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef]
- Manyam, B.V.; Garsa, A.A.; Chin, R.-I.; Reddy, C.A.; Gastman, B.; Thorstad, W.; Yom, S.S.; Nussenbaum, B.; Wang, S.J.; Vidimos, A.T.; et al. A multi-institutional comparison of outcomes of immunosuppressed and immunocompetent patients treated with surgery and radiation therapy for cutaneous squamous cell carcinoma of the head and neck. Cancer 2017, 123, 2054–2060. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly Zwald, F.; Brown, M. Skin cancer in solid organ transplant recipients: Advances in therapy and management: Part I. Epidemiology of skin cancer in solid organ transplant recipients. J. Am. Acad. Dermatol. 2011, 65, 253–261. [Google Scholar] [CrossRef]
- Smith, K.J.; Hamza, S.; Skelton, H. Histologic features in primary cutaneous squamous cell carcinomas in immunocompromised patients focusing on organ transplant patients. Dermatol. Surg. 2004, 30, 634–641. [Google Scholar] [CrossRef]
- Lott, D.G.; Manz, R.; Koch, C.; Lorenz, R.R. Aggressive behavior of nonmelanotic skin cancers in solid organ transplant recipients. Transplantation 2010, 90, 683–687. [Google Scholar] [CrossRef]
- Kaplan, A.L.; Cook, J.L. Cutaneous squamous cell carcinoma in patients with chronic lymphocytic leukemia. Skinmed 2005, 4, 300–304. [Google Scholar] [CrossRef]
- Euvrard, S.; Kanitakis, J.; Claudy, A. Skin cancers after organ transplantation. N. Engl. J. Med. 2003, 348, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Öhlund, D.; Elyada, E.; Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 2014, 211, 1503–1523. [Google Scholar] [CrossRef] [Green Version]
- Omland, S.H.; Gniadecki, R.; Hædersdal, M.; Helweg-Larsen, J.; Omland, L.H. Skin Cancer Risk in Hematopoietic Stem-Cell Transplant Recipients Compared With Background Population and Renal Transplant Recipients: A Population-Based Cohort Study. JAMA Dermatol. 2016, 152, 177–183. [Google Scholar] [CrossRef]
- Adamson, R.; Obispo, E.; Dychter, S.; Dembitsky, W.; Moreno-Cabral, R.; Jaski, B.; Gordon, J.; Hoagland, P.; Moore, K.; King, J.; et al. High Incidence and Clinical Course of Aggressive Skin Cancer in Heart Transplant Patients: A Single-Center Study. Transplant. Proc. 1998, 30, 1124–1126. [Google Scholar] [CrossRef]
- Brantsch, K.D.; Meisner, C.; Schönfisch, B.; Trilling, B.; Wehner-Caroli, J.; Röcken, M.; Breuninger, H. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: A prospective study. Lancet Oncol. 2008, 9, 713–720. [Google Scholar] [CrossRef]
- Fuchs, A.; Marmur, E. The kinetics of skin cancer: Progression of actinic keratosis to squamous cell carcinoma. Dermatol. Surg. 2007, 33, 1099–1101. [Google Scholar] [CrossRef]
- Czarnecki, D.; Meehan, C.J.; Bruce, F.; Culjak, G. The majority of cutaneous squamous cell carcinomas arise in actinic keratoses. J. Cutan. Med. Surg. 2002, 6, 207–209. [Google Scholar] [CrossRef]
- Ratushny, V.; Gober, M.D.; Hick, R.; Ridky, T.W.; Seykora, J.T. From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. J. Clin. Investig. 2012, 122, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Marks, R. An overview of skin cancers. Incidence and causation. Cancer 1995, 75, 607–612. [Google Scholar]
- Xu, J.; Lamouille, S.; Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef]
- Zhao, G.; Bae, J.Y.; Zheng, Z.; Park, H.S.; Chung, K.Y.; Roh, M.R.; Jin, Z. Overexpression and Implications of Melanoma-associated Antigen A12 in Pathogenesis of Human Cutaneous Squamous Cell Carcinoma. Anticancer Res. 2019, 39, 1849–1857. [Google Scholar] [CrossRef]
- de Feraudy, S.; Ridd, K.; Richards, L.M.; Kwok, P.Y.; Revet, I.; Oh, D.; Feeney, L.; Cleaver, J.E. The DNA damage-binding protein XPC is a frequent target for inactivation in squamous cell carcinomas. Am. J. Pathol. 2010, 177, 555–562. [Google Scholar] [CrossRef]
- Pyczek, J.; Khizanishvili, N.; Kuzyakova, M.; Zabel, S.; Bauer, J.; Nitzki, F.; Emmert, S.; Schön, M.P.; Boukamp, P.; Schildhaus, H.-U.; et al. Regulation and Role of GLI1 in Cutaneous Squamous Cell Carcinoma Pathogenesis. Front. Genet. 2019, 10, 1185. [Google Scholar] [CrossRef]
- Rivinius, R.; Helmschrott, M.; Ruhparwar, A.; Schmack, B.; Klein, B.; Erbel, C.; Gleissner, C.A.; Akhavanpoor, M.; Frankenstein, L.; Darche, F.F.; et al. Analysis of malignancies in patients after heart transplantation with subsequent immunosuppressive therapy. Drug. Des. Devel Ther. 2015, 9, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Rival-Tringali, A.L.; Euvrard, S.; Decullier, E.; Claudy, A.; Faure, M.; Kanitakis, J. Conversion from calcineurin inhibitors to sirolimus reduces vascularization and thickness of post-transplant cutaneous squamous cell carcinomas. Anticancer Res. 2009, 29, 1927–1932. [Google Scholar]
- Jiyad, Z.; Olsen, C.M.; Burke, M.T.; Isbel, N.M.; Green, A.C. Azathioprine and Risk of Skin Cancer in Organ Transplant Recipients: Systematic Review and Meta-Analysis. Am. J. Transplant. 2016, 16, 3490–3503. [Google Scholar] [CrossRef] [Green Version]
- Glover, M.T.; Deeks, J.J.; Raftery, M.J.; Cunningham, J.; Leigh, I.M. Immunosuppression and risk of non-melanoma skin cancer in renal transplant recipients. Lancet 1997, 349, 398. [Google Scholar] [CrossRef]
- Harwood, C.A.; Toland, A.E.; Proby, C.M.; Euvrard, S.; Hofbauer, G.F.L.; Tommasino, M.; Bouwes Bavinck, J.N. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br. J. Dermatol. 2017, 177, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Harwood, C.; Attard, N.; O’donovan, P.; Chambers, P.; Perrett, C.; Proby, C.; McGregor, J.; Karran, P. PTCH mutations in basal cell carcinomas from azathioprine-treated organ transplant recipients. Br. J. Cancer 2008, 99, 1276–1284. [Google Scholar] [CrossRef] [Green Version]
- Karayannopoulou, G.; Euvrard, S.; Kanitakis, J. Differential expression of p-mTOR in cutaneous basal and squamous cell carcinomas likely explains their different response to mTOR inhibitors in organ-transplant recipients. Anticancer Res. 2013, 33, 3711–3714. [Google Scholar]
- O’Donovan, P.; Perrett, C.M.; Zhang, X.; Montaner, B.; Xu, Y.-Z.; Harwood, C.A.; McGregor, J.M.; Walker, S.L.; Hanaoka, F.; Karran, P. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 2005, 309, 1871–1874. [Google Scholar] [CrossRef] [Green Version]
- Karran, P.; Brem, R. Protein oxidation, UVA and human DNA repair. DNA Repair 2016, 44, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.; Shimshak, S.; Reimer, D.; Brigham, T.; Hedges, M.S.; Degesys, C.; Tolaymat, L. Skin Cancer in Solid Organ Transplant Recipients: A Review for the Nondermatologist. Mayo Clin. Proc. 2022, 97, 2355–2368. [Google Scholar] [CrossRef]
- Menzies, S.; O’Leary, E.; Callaghan, G.; Mansoor, N.; Deady, S.; Murad, A.; Lenane, P.; O’Neill, J.; Lally, A.; Houlihan, D.D.; et al. A population-based comparison of organ transplant recipients in whom cutaneous squamous cell develops versus those in whom basal cell carcinoma develops. J. Am. Acad. Dermatol. 2022, 86, 1377–1379. [Google Scholar] [CrossRef]
- Knoll, G.A.; Kokolo, M.B.; Mallick, R.; Beck, A.; Buenaventura, C.D.; Ducharme, R.; Barsoum, R.; Bernasconi, C.; Blydt-Hansen, T.D.; Ekberg, H. Effect of sirolimus on malignancy and survival after kidney transplantation: Systematic review and meta-analysis of individual patient data. BMJ 2014, 349, g6679. [Google Scholar] [CrossRef] [Green Version]
- Coghill, A.E.; Johnson, L.G.; Berg, D.; Resler, A.J.; Leca, N.; Madeleine, M.M. Immunosuppressive Medications and Squamous Cell Skin Carcinoma: Nested Case-Control Study Within the Skin Cancer after Organ Transplant (SCOT) Cohort. Am. J. Transplant. 2016, 16, 565–573. [Google Scholar] [CrossRef] [Green Version]
- de Gruijl, F.R.; Koehl, G.E.; Voskamp, P.; Strik, A.; Rebel, H.G.; Gaumann, A.; de Fijter, J.W.; Tensen, C.P.; Bavinck, J.N.; Geissler, E.K. Early and late effects of the immunosuppressants rapamycin and mycophenolate mofetil on UV carcinogenesis. Int. J. Cancer 2010, 127, 796–804. [Google Scholar] [CrossRef]
- Hernandez, L.E.; Mohsin, N.; Levin, N.; Dreyfuss, I.; Frech, F.; Nouri, K. Basal cell carcinoma: An updated review of pathogenesis and treatment options. Dermatol. Ther. 2022, 35, e15501. [Google Scholar] [CrossRef]
- Win, T.S.; Tsao, H. Keratinocytic skin cancers-Update on the molecular biology. Cancer 2023, 129, 836–844. [Google Scholar] [CrossRef]
- Hoashi, T.; Kanda, N.; Saeki, H. Molecular Mechanisms and Targeted Therapies of Advanced Basal Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 11968. [Google Scholar] [CrossRef]
- Manganelli, M.; Guida, S.; Ferretta, A.; Pellacani, G.; Porcelli, L.; Azzariti, A.; Guida, G. Behind the Scene: Exploiting MC1R in Skin Cancer Risk and Prevention. Genes 2021, 12, 1093. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Hearing, V.J. Physiological factors that regulate skin pigmentation. Biofactors 2009, 35, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Rouzaud, F.; Costin, G.E.; Yamaguchi, Y.; Valencia, J.C.; Berens, W.F.; Chen, K.G.; Hoashi, T.; Böhm, M.; Abdel-Malek, Z.A.; Hearing, V.J. Regulation of constitutive and UVR-induced skin pigmentation by melanocortin 1 receptor isoforms. Faseb J. 2006, 20, 1927–1929. [Google Scholar] [CrossRef]
- Alaeddini, M.; Etemad-Moghadam, S. Cell kinetic markers in cutaneous squamous and basal cell carcinoma of the head and neck. Braz. J. Otorhinolaryngol. 2022, 88, 529–532. [Google Scholar] [CrossRef]
- Di Bartolomeo, L.; Vaccaro, F.; Irrera, N.; Borgia, F.; Li Pomi, F.; Squadrito, F.; Vaccaro, M. Wnt Signaling Pathways: From Inflammation to Non-Melanoma Skin Cancers. Int. J. Mol. Sci. 2023, 24, 1575. [Google Scholar] [CrossRef]
- Abdou, A.G.; Mostafa, A.F.; Gafar, S.; Farag, A.G.A. Immunohistochemical expression of SOX2 in non-melanoma skin cancer. J. Cosmet. Dermatol. 2022, 21, 2623–2628. [Google Scholar] [CrossRef]
- Lear, W.; Dahlke, E.; Murray, C.A. Basal cell carcinoma: Review of epidemiology, pathogenesis, and associated risk factors. J. Cutan. Med. Surg. 2007, 11, 19–30. [Google Scholar] [CrossRef]
- Amôr, N.G.; Santos, P.S.d.S.; Campanelli, A.P. The Tumor Microenvironment in SCC: Mechanisms and Therapeutic Opportunities. Front. Cell Dev. Biol. 2021, 9, 636544. [Google Scholar] [CrossRef]
- Chen, S.M.Y.; Krinsky, A.L.; Woolaver, R.A.; Wang, X.; Chen, Z.; Wang, J.H. Tumor immune microenvironment in head and neck cancers. Mol. Carcinog. 2020, 59, 766–774. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Cheng, M.; Wang, X.; Li, K.; Chen, J.; Chen, Z.; Chen, S.; Chen, J.; Xiong, G.; et al. Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Lett. 2021, 507, 55–69. [Google Scholar] [CrossRef]
- Khandelwal, A.R.; Echanique, K.A.; St. John, M.; Nathan, C.A. Cutaneous Cancer Biology. Otolaryngol. Clin. N. Am. 2021, 54, 259–269. [Google Scholar] [CrossRef]
- Nasser, H.; St John, M.A. The promise of immunotherapy in the treatment of young adults with oral tongue cancer. Laryngoscope Investig. Otolaryngol. 2020, 5, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Ferris, R.L. Immunology and immunotherapy of head and neck cancer. J. Clin. Oncol. 2015, 33, 3293–3304. [Google Scholar] [CrossRef] [Green Version]
- Asgari, M.M.; Ray, G.T.; Quesenberry, C.P.; Katz, K.A.; Silverberg, M.J. Association of multiple primary skin cancers with human immunodeficiency virus infection, CD4 count, and viral load. JAMA Dermatol. 2017, 153, 892–896. [Google Scholar] [CrossRef]
- Chen, X.; Song, E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 2019, 18, 99–115. [Google Scholar] [CrossRef]
- Florence, M.E.B.; Massuda, J.Y.; Bröcker, E.-B.; Metze, K.; Cintra, M.L.; Souza, E.M.d. Angiogenesis in the progression of cutaneous squamous cell carcinoma: An immunohistochemical study of endothelial markers. Clinics 2011, 66, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Tonini, T.; Rossi, F.; Claudio, P.P. Molecular basis of angiogenesis and cancer. Oncogene 2003, 22, 6549–6556. [Google Scholar] [CrossRef] [Green Version]
- Belkin, D.A.; Mitsui, H.; Wang, C.Q.; Gonzalez, J.; Zhang, S.; Shah, K.R.; Coats, I.; Suàrez-Farinas, M.; Krueger, J.G.; Felsen, D. CD200 upregulation in vascular endothelium surrounding cutaneous squamous cell carcinoma. JAMA Dermatol. 2013, 149, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Yang, H.; Levorse, J.; Yuan, S.; Polak, L.; Sribour, M.; Singh, B.; Rosenblum, M.D.; Fuchs, E. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 2019, 177, 1172–1186.e1114. [Google Scholar] [CrossRef]
- Linsley, P.S.; Greene, J.; Tan, P.; Bradshaw, J.; Ledbetter, J.A.; Anasetti, C.; Damle, N.K. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med. 1992, 176, 1595–1604. [Google Scholar] [CrossRef] [Green Version]
- Loser, K.; Apelt, J.; Voskort, M.; Mohaupt, M.; Balkow, S.; Schwarz, T.; Grabbe, S.; Beissert, S. IL-10 controls ultraviolet-induced carcinogenesis in mice. J. Immunol. 2007, 179, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Loser, K.; Scherer, A.; Krummen, M.B.; Varga, G.; Higuchi, T.; Schwarz, T.; Sharpe, A.H.; Grabbe, S.; Bluestone, J.A.; Beissert, S. An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in mice. J. Immunol. 2005, 174, 5298–5305. [Google Scholar] [CrossRef] [Green Version]
- Belai, E.B.; de Oliveira, C.E.; Gasparoto, T.H.; Ramos, R.N.; Torres, S.A.; Garlet, G.P.; Cavassani, K.A.; Silva, J.S.; Campanelli, A.P. PD-1 blockage delays murine squamous cell carcinoma development. Carcinogenesis 2014, 35, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Evan, J.L.; Mohammed, T.L.; Aleksandra, O.; Jessica, E.; Haiying, X.; Patricia, B.; Megan, S.; William, H.S.; Janis, M.T. Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade. J. Immunother. Cancer 2017, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Lipson, E.J.; Forde, P.M.; Hammers, H.-J.; Emens, L.A.; Taube, J.M.; Topalian, S.L. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin. Oncol. 2015, 42, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, E.W. The MHC class I antigen presentation pathway: Strategies for viral immune evasion. Immunology 2003, 110, 163–169. [Google Scholar] [CrossRef]
- Leibovitch, I.; Huilgol, S.C.; Selva, D.; Hill, D.; Richards, S.; Paver, R. Cutaneous squamous cell carcinoma treated with Mohs micrographic surgery in Australia I. Experience over 10 years. J. Am. Acad. Dermatol. 2005, 53, 253–260. [Google Scholar] [CrossRef]
- Seretis, K.; Thomaidis, V.; Karpouzis, A.; Tamiolakis, D.; Tsamis, I. Epidemiology of Surgical Treatment of Nonmelanoma Skin Cancer of the Head and Neck in Greece. Dermatol. Surg. 2010, 36, 15–22. [Google Scholar] [CrossRef]
- Berg, D.; Otley, C.C. Skin cancer in organ transplant recipients: Epidemiology, pathogenesis, and management. J. Am. Acad. Dermatol. 2002, 47, 1–20. [Google Scholar] [CrossRef]
- Goldenberg, A.; Ortiz, A.; Kim, S.S.; Jiang, S.B. Squamous cell carcinoma with aggressive subclinical extension: 5-year retrospective review of diagnostic predictors. J. Am. Acad. Dermatol. 2015, 73, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Phillips, T.J.; Harris, B.N.; Moore, M.G.; Farwell, D.G.; Bewley, A.F. Pathological margins and advanced cutaneous squamous cell carcinoma of the head and neck. J. Otolaryngol. Head Neck Surg. 2019, 48, 55. [Google Scholar] [CrossRef] [Green Version]
- Song, S.S.; Goldenberg, A.; Ortiz, A.; Eimpunth, S.; Oganesyan, G.; Jiang, S.I.B. Nonmelanoma Skin Cancer With Aggressive Subclinical Extension in Immunosuppressed Patients. JAMA Dermatol. 2016, 152, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Kadakia, S.; Ducic, Y.; Marra, D.; Chan, D.; Saman, M.; Sawhney, R.; Mourad, M. Cutaneous squamous cell carcinoma of the scalp in the immunocompromised patient: Review of 53 cases. Oral. Maxillofac. Surg. 2016, 20, 171–175. [Google Scholar] [CrossRef]
- Khan, A.A.; Potter, M.; Cubitt, J.J.; Khoda, B.J.; Smith, J.; Wright, E.H.; Scerri, G.; Crick, A.; Cassell, O.C.; Budny, P.G. Guidelines for the excision of cutaneous squamous cell cancers in the United Kingdom: The best cut is the deepest. J. Plast. Reconstr. Aesthetic Surg. 2013, 66, 467–471. [Google Scholar] [CrossRef]
- Kiely, J.; Kostusiak, M.; Bloom, O.; Roshan, A. Poorly differentiated cutaneous squamous cell carcinomas have high incomplete excision rates with UK minimum recommended pre-determined surgical margins. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Tam, S.; Yao, C.; Amit, M.; Gajera, M.; Luo, X.; Treistman, R.; Khanna, A.; Aashiq, M.; Nagarajan, P.; Bell, D.; et al. Association of Immunosuppression With Outcomes of Patients With Cutaneous Squamous Cell Carcinoma of the Head and Neck. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 128–135. [Google Scholar] [CrossRef]
- Brodland, D.G.; Zitelli, J.A. Surgical margins for excision of primary cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 1992, 27, 241–248. [Google Scholar] [CrossRef]
- Motley, R.; Kersey, P.; Lawrence, C. Multiprofessional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. Br. J. Dermatol. 2002, 146, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Mehrany, K.; Weenig, R.H.; Pittelkow, M.R.; Roenigk, R.K.; Otley, C.C. High recurrence rates of Basal cell carcinoma after mohs surgery in patients with chronic lymphocytic leukemia. Arch. Dermatol. 2004, 140, 985–988. [Google Scholar] [CrossRef] [Green Version]
- van Loo, E.; Mosterd, K.; Krekels, G.A.; Roozeboom, M.H.; Ostertag, J.U.; Dirksen, C.D.; Steijlen, P.M.; Neumann, H.A.; Nelemans, P.J.; Kelleners-Smeets, N.W. Surgical excision versus Mohs’ micrographic surgery for basal cell carcinoma of the face: A randomised clinical trial with 10 year follow-up. Eur. J. Cancer 2014, 50, 3011–3020. [Google Scholar] [CrossRef]
- Quazi, S.J.; Aslam, N.; Saleem, H.; Rahman, J.; Khan, S. Surgical Margin of Excision in Basal Cell Carcinoma: A Systematic Review of Literature. Cureus 2020, 12, e9211. [Google Scholar] [CrossRef]
- Badash, I.; Shauly, O.; Lui, C.G.; Gould, D.J.; Patel, K.M. Nonmelanoma Facial Skin Cancer: A Review of Diagnostic Strategies, Surgical Treatment, and Reconstructive Techniques. Clin. Med. Insights Ear Nose Throat 2019, 12, 1179550619865278. [Google Scholar] [CrossRef]
- Peters, M.; Smith, J.D.; Kovatch, K.J.; McLean, S.; Durham, A.B.; Basura, G. Treatment and Outcomes for Cutaneous Periauricular Basal Cell Carcinoma: A 16-Year Institutional Experience. OTO Open 2020, 4, 2473974X20964735. [Google Scholar] [CrossRef]
- Hamada, S.; Kersey, T.; Thaller, V.T. Eyelid basal cell carcinoma: Non-Mohs excision, repair, and outcome. Br. J. Ophthalmol. 2005, 89, 992–994. [Google Scholar] [CrossRef] [Green Version]
- Sharquie, K.E.; Noaimi, A.A. Basal cell carcinoma: Topical therapy versus surgical treatment. J. Saudi Soc. Dermatol. Dermatol. Surg. 2012, 16, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Luz, F.B.; Ferron, C.; Cardoso, G.P. Surgical treatment of basal cell carcinoma: An algorithm based on the literature. Bras. Dermatol. 2015, 90, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Burns, C.; Kubicki, S.; Nguyen, Q.-B.; Aboul-Fettouh, N.; Wilmas, K.M.; Chen, O.M.; Doan, H.Q.; Silapunt, S.; Migden, M.R. Advances in Cutaneous Squamous Cell Carcinoma Management. Cancers 2022, 14, 3653. [Google Scholar] [CrossRef]
- Wang, J.T.; Palme, C.E.; Morgan, G.J.; Gebski, V.; Wang, A.Y.; Veness, M.J. Predictors of outcome in patients with metastatic cutaneous head and neck squamous cell carcinoma involving cervical lymph nodes: Improved survival with the addition of adjuvant radiotherapy. Head Neck 2012, 34, 1524–1528. [Google Scholar] [CrossRef]
- Veness, M.; Harris, D. Role of radiotherapy in the management of organ transplant recipients diagnosed with non-melanoma skin cancers. Australas. Radiol. 2007, 51, 12–20. [Google Scholar] [CrossRef]
- Singh, M.K.; Brewer, J.D. Current approaches to skin cancer management in organ transplant recipients. Semin. Cutan Med. Surg. 2011, 30, 35–47. [Google Scholar] [CrossRef]
- Chen, O.M.; Kim, K.; Steele, C.; Wilmas, K.M.; Aboul-Fettouh, N.; Burns, C.; Doan, H.Q.; Silapunt, S.; Migden, M.R. Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma. Cancers 2022, 14, 3720. [Google Scholar] [CrossRef]
- Stonesifer, C.J.; Djavid, A.R.; Grimes, J.M.; Khaleel, A.E.; Soliman, Y.S.; Maisel-Campbell, A.; Garcia-Saleem, T.J.; Geskin, L.J.; Carvajal, R.D. Immune Checkpoint Inhibition in Non-Melanoma Skin Cancer: A Review of Current Evidence. Front. Oncol. 2021, 11, 4563. [Google Scholar] [CrossRef]
- Page, D.B.; Postow, M.A.; Callahan, M.K.; Allison, J.P.; Wolchok, J.D. Immune modulation in cancer with antibodies. Annu. Rev. Med. 2014, 65, 185–202. [Google Scholar] [CrossRef]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Cowey, C.L.; Robert, N.J.; Espirito, J.L.; Davies, K.; Frytak, J.; Lowy, I.; Fury, M.G. Clinical outcomes among unresectable, locally advanced, and metastatic cutaneous squamous cell carcinoma patients treated with systemic therapy. Cancer Med. 2020, 9, 7381–7387. [Google Scholar] [CrossRef]
- Rischin, D.; Migden, M.R.; Lim, A.M.; Schmults, C.D.; Khushalani, N.I.; Hughes, B.G.M.; Schadendorf, D.; Dunn, L.A.; Hernandez-Aya, L.; Chang, A.L.S.; et al. Phase 2 study of cemiplimab in patients with metastatic cutaneous squamous cell carcinoma: Primary analysis of fixed-dosing, long-term outcome of weight-based dosing. J. Immunother. Cancer 2020, 8, e000775. [Google Scholar] [CrossRef]
- Hughes, B.G.; Munoz-Couselo, E.; Mortier, L.; Bratland, Å.; Gutzmer, R.; Roshdy, O.; Mendoza, R.G.; Schachter, J.; Arance, A.; Grange, F. Abstract CT006: Phase 2 study of pembrolizumab (pembro) for locally advanced (LA) or recurrent/metastatic (R/M) cutaneous squamous cell carcinoma (cSCC): KEYNOTE-629. Cancer Res. 2021, 81, CT006. [Google Scholar] [CrossRef]
- Hughes, B.G.M.; Munoz-Couselo, E.; Mortier, L.; Bratland, Å.; Gutzmer, R.; Roshdy, O.; González Mendoza, R.; Schachter, J.; Arance, A.; Grange, F.; et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): An open-label, nonrandomized, multicenter, phase II trial. Ann. Oncol. 2021, 32, 1276–1285. [Google Scholar] [CrossRef]
- Grob, J.-J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R. Pembrolizumab monotherapy for recurrent or metastatic cutaneous squamous cell carcinoma: A single-arm phase II trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916. [Google Scholar] [CrossRef]
- Stratigos, A.J.; Sekulic, A.; Peris, K.; Bechter, O.; Prey, S.; Kaatz, M.; Lewis, K.D.; Basset-Seguin, N.; Chang, A.L.S.; Dalle, S. Cemiplimab in locally advanced basal cell carcinoma after hedgehog inhibitor therapy: An open-label, multi-centre, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 848–857. [Google Scholar] [CrossRef]
- Sekulic, A.; Migden, M.R.; Lewis, K.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; Marmur, E.; Rudin, C.M.; et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J. Am. Acad. Dermatol. 2015, 72, 1021–1026.e1028. [Google Scholar] [CrossRef]
- Sekulic, A.; Migden, M.R.; Oro, A.E.; Dirix, L.; Lewis, K.D.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med. 2012, 366, 2171–2179. [Google Scholar] [CrossRef] [Green Version]
- Dummer, R.; Guminksi, A.; Gutzmer, R.; Lear, J.T.; Lewis, K.D.; Chang, A.L.S.; Combemale, P.; Dirix, L.; Kaatz, M.; Kudchadkar, R.; et al. Long-term efficacy and safety of sonidegib in patients with advanced basal cell carcinoma: 42-month analysis of the phase II randomized, double-blind BOLT study. Br. J. Dermatol. 2020, 182, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Migden, M.R.; Guminski, A.; Gutzmer, R.; Dirix, L.; Lewis, K.D.; Combemale, P.; Herd, R.M.; Kudchadkar, R.; Trefzer, U.; Gogov, S. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): A multicentre, randomised, double-blind phase 2 trial. Lancet Oncol. 2015, 16, 716–728. [Google Scholar] [CrossRef]
- Pan, S.; Wu, X.; Jiang, J.; Gao, W.; Wan, Y.; Cheng, D.; Han, D.; Liu, J.; Englund, N.P.; Wang, Y.; et al. Discovery of NVP-LDE225, a Potent and Selective Smoothened Antagonist. ACS Med. Chem. Lett. 2010, 1, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Rodon, J.; Tawbi, H.A.; Thomas, A.L.; Stoller, R.G.; Turtschi, C.P.; Baselga, J.; Sarantopoulos, J.; Mahalingam, D.; Shou, Y.; Moles, M.A.; et al. A phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced solid tumors. Clin. Cancer Res. 2014, 20, 1900–1909. [Google Scholar] [CrossRef] [Green Version]
- Doan, H.Q.; Silapunt, S.; Migden, M.R. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma. OncoTargets Ther. 2016, 9, 5671–5678. [Google Scholar] [CrossRef] [Green Version]
- Danial, C.; Sarin, K.Y.; Oro, A.E.; Chang, A.L. An Investigator-Initiated Open-Label Trial of Sonidegib in Advanced Basal Cell Carcinoma Patients Resistant to Vismodegib. Clin. Cancer Res. 2016, 22, 1325–1329. [Google Scholar] [CrossRef] [Green Version]
- Endrizzi, B.; Ahmed, R.L.; Ray, T.; Dudek, A.; Lee, P. Capecitabine to Reduce Nonmelanoma Skin Carcinoma Burden in Solid Organ Transplant Recipients. Dermatol. Surg. 2013, 39, 634–645. [Google Scholar] [CrossRef]
- Nemer, K.M.; Council, M.L. Topical and Systemic Modalities for Chemoprevention of Nonmelanoma Skin Cancer. Dermatol. Clin. 2019, 37, 287–295. [Google Scholar] [CrossRef]
- Ulrich, C.; Johannsen, A.; Röwert-Huber, J.; Ulrich, M.; Sterry, W.; Stockfleth, E. Results of a randomized, placebo-controlled safety and efficacy study of topical diclofenac 3% gel in organ transplant patients with multiple actinic keratoses. Eur. J. Dermatol. 2010, 20, 482–488. [Google Scholar] [CrossRef]
- Thomas, S.; Kuncheria, L.; Roulstone, V.; Kyula, J.N.; Mansfield, D.; Bommareddy, P.K.; Smith, H.; Kaufman, H.L.; Harrington, K.J.; Coffin, R.S. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J. Immunother. Cancer 2019, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, N.C.; Martin, A.J.; Snaidr, V.A.; Eggins, R.; Chong, A.H.; Fernandéz-Peñas, P.; Gin, D.; Sidhu, S.; Paddon, V.L.; Banney, L.A.; et al. Nicotinamide for Skin-Cancer Chemoprevention in Transplant Recipients. N. Engl. J. Med. 2023, 388, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.C.; Martin, A.J.; Choy, B.; Fernández-Peñas, P.; Dalziell, R.A.; McKenzie, C.A.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Kricker, A.; et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N. Engl. J. Med. 2015, 373, 1618–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drago, F.; Ciccarese, G.; Cogorno, L.; Calvi, C.; Marsano, L.A.; Parodi, A. Prevention of non-melanoma skin cancers with nicotinamide in transplant recipients: A case-control study. Eur. J. Dermatol. 2017, 27, 382–385. [Google Scholar] [CrossRef]
- Perrett, C.M.; McGregor, J.M.; Warwick, J.; Karran, P.; Leigh, I.M.; Proby, C.M.; Harwood, C.A. Treatment of post-transplant premalignant skin disease: A randomized intrapatient comparative study of 5-fluorouracil cream and topical photodynamic therapy. Br. J. Dermatol. 2007, 156, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Bath-Hextall, F.J.; Matin, R.N.; Wilkinson, D.; Leonardi-Bee, J. Interventions for cutaneous Bowen’s disease. Cochrane Database Syst. Rev. 2013, 2013, Cd007281. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, C.; Zhou, Z.; Zhang, Y.; Zhang, G.; Wang, P.; Wang, X. Photodynamic therapy of intravenous injection combined with intratumoral administration of photosensitizer in squamous cell carcinoma. Photodiagnosis Photodyn. Ther. 2022, 38, 102857. [Google Scholar] [CrossRef]
- Bavinck, J.N.; Tieben, L.M.; Woude, F.J.V.d.; Tegzess, A.M.; Hermans, J.; Schegget, J.t.; Vermeer, B.J. Prevention of skin cancer and reduction of keratotic skin lesions during acitretin therapy in renal transplant recipients: A double-blind, placebo-controlled study. J. Clin. Oncol. 1995, 13, 1933–1938. [Google Scholar] [CrossRef]
- Peris, K.; Fargnoli, M.C.; Garbe, C.; Kaufmann, R.; Bastholt, L.; Seguin, N.B.; Bataille, V.; Marmol, V.d.; Dummer, R.; Harwood, C.A.; et al. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. Eur. J. Cancer 2019, 118, 10–34. [Google Scholar] [CrossRef] [Green Version]
- Villani, A.; Potestio, L.; Fabbrocini, G.; Scalvenzi, M. New Emerging Treatment Options for Advanced Basal Cell Carcinoma and Squamous Cell Carcinoma. Adv. Ther. 2022, 39, 1164–1178. [Google Scholar] [CrossRef]
- Basset-Seguin, N.; Herms, F. Update in the Management of Basal Cell Carcinoma. Acta Derm. Venereol. 2020, 100, adv00140. [Google Scholar] [CrossRef]
- Tsung, I.; Worden, F.P.; Fontana, R.J. A Pilot Study of Checkpoint Inhibitors in Solid Organ Transplant Recipients with Metastatic Cutaneous Squamous Cell Carcinoma. Oncologist 2021, 26, 133–138. [Google Scholar] [CrossRef]
- Alberú, J.; Pascoe, M.D.; Campistol, J.M.; Schena, F.P.; Rial, M.d.C.; Polinsky, M.; Neylan, J.F.; Korth-Bradley, J.; Goldberg-Alberts, R.; Maller, E.S.; et al. Lower Malignancy Rates in Renal Allograft Recipients Converted to Sirolimus-Based, Calcineurin Inhibitor-Free Immunotherapy: 24-Month Results From the CONVERT Trial. Transplantation 2011, 92, 303–310. [Google Scholar] [CrossRef]
- Murray, S.L.; Daly, F.E.; O’Kelly, P.; O’Leary, E.; Deady, S.; O’Neill, J.P.; Dudley, A.; Rutledge, N.R.; McCormick, A.; Houlihan, D.D.; et al. The impact of switching to mTOR inhibitor-based immunosuppression on long-term non-melanoma skin cancer incidence and renal function in kidney and liver transplant recipients. Ren. Fail. 2020, 42, 607–612. [Google Scholar] [CrossRef]
- Villani, A.; Ocampo-Garza, S.S.; Potestio, L.; Fabbrocini, G.; Ocampo-Candiani, J.; Ocampo-Garza, J.; Scalvenzi, M. Cemiplimab for the treatment of advanced cutaneous squamous cell carcinoma. Expert Opin. Drug Saf. 2022, 21, 21–29. [Google Scholar] [CrossRef]
- Kumar, V.; Shinagare, A.B.; Rennke, H.G.; Ghai, S.; Lorch, J.H.; Ott, P.A.; Rahma, O.E. The Safety and Efficacy of Checkpoint Inhibitors in Transplant Recipients: A Case Series and Systematic Review of Literature. Oncologist 2020, 25, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.; Zeitouni, N.; Fan, W.; Samie, F.H. Immune checkpoint inhibitor therapy in solid organ transplant recipients: A patient-centered systematic review. J. Am. Acad. Dermatol. 2020, 82, 1490–1500. [Google Scholar] [CrossRef]
NCT Number | Title | Status | Agent(s) | Phases |
---|---|---|---|---|
NCT04620200 | Neo-adjuvant Nivolumab or Nivolumab With Ipilimumab in Advanced Cutaneous Squamous Cell Carcinoma Prior to Surgery | Recruiting | Nivolumab and Ipilimumab | Phase 2 |
NCT04160065 | Immunotherapy With IFx-Hu2.0 Vaccine for Advanced Non-melanoma Skin Cancers | Recruiting | IFx-Hu2.0 | Phase 1 |
NCT04632433 | Neoadjuvant Plus Adjuvant Treatment With Cemiplimab in Cutaneaous Squamous Cell Carcinoma | Active, not recruiting | Cemiplimab | Phase 2 |
NCT05574101 | A Study of Radiation Therapy and Cemiplimab for People With Skin Cancer | Recruiting | Cemiplimab | Phase 2 |
NCT05110781 | Atezolizumab Before Surgery for the Treatment of Regionally Metastatic Head and Neck Squamous Cell Cancer With an Unknown or Historic Primary Site | Recruiting | Atezolizumab | Phase 2 |
NCT04329221 | Immunotherapy Before Transplantation for Skin Cancer Prevention in Organ Transplant Recipients | Not yet recruiting | Calcipotriol, Vaseline, and Topical 5FU | Phase 2 |
NCT04204837 | Nivolumab for Treatment of Squamous Cell Carcinoma of the Skin | Recruiting | Nivolumab and Nivolumab plus Relatlimab | Phase 2 |
NCT04428671 | Cemiplimab Before and After Surgery for the Treatment of High Risk Cutaneous Squamous Cell Cancer | Recruiting | Cemiplimab | Phase 1 |
NCT03737721 | The UNSCARRed Study: UNresctable Squamous Cell Carcinoma Treated With Avelumab and Radical Radiotherapy | Recruiting | Avelumab | Phase 2 |
NCT04642287 | Immunotherapy After Transplantation for Skin Cancer Prevention in Organ Transplant Recipients | Not yet recruiting | Calcipotriol, Vaseline, and Topical 5FU | Phase 2 |
NCT03944941 | Avelumab With or Without Cetuximab in Treating Patients With Advanced Skin Squamous Cell Cancer | Recruiting | Avelumab and Cetuximab | Phase 2 |
NCT03565783 | Cemiplimab in Treating Patients With Recurrent and Resectable Stage II-IV Head and Neck Cutaneous Squamous Cell Cancer Before Surgery | Recruiting | Cemiplimab | Phase 2 |
NCT04454489 | Quad Shot Radiotherapy in Combination With Immune Checkpoint Inhibition | Recruiting | Pembrolizumab | Phase 2 |
NCT04163952 | Talimogene Laherparepvec and Panitumumab for the Treatment of Locally Advanced or Metastatic Squamous Cell Carcinoma of the Skin | Active, not recruiting | Panitumumab and Talimogene Laherparepvec | Phase 1 |
NCT05085496 | Radiotherapy in Combination With Atezolizumab in Locally Advanced Borderline Resectable or Unresectable Cutaneous SCC | Recruiting | Atezolizumab | Phase 1 |
NCT04925713 | IFx-Hu2.0 for the Treatment of Patients With Skin Cancer | Completed | IFx-Hu2.0 | Phase 1 |
NCT04315701 | A PD-1 Checkpoint Inhibitor (Cemiplimab) for High-Risk Localized, Locally Recurrent, or Regionally Advanced Skin Cancer | Recruiting | Cemiplimab | Phase 2 |
NCT05721755 | Combining Radiation Therapy With Immunotherapy for the Treatment of Metastatic Squamous Cell Carcinoma of the Head and Neck | Not yet recruiting | Carboplatin, Cisplatin, Fluorouracil, Paclitaxel, and Pembrolizumab | Phase 3 |
NCT02978625 | Talimogene Laherparepvec and Nivolumab in Treating Patients With Refractory Lymphomas or Advanced or Refractory Non-melanoma Skin Cancers | Recruiting | Nivolumab and Talimogene Laherparepvec | Phase 2 |
NCT05025813 | Neoadjuvant Pembrolizumab in Cutaneous Squamous Cell Carcinoma | Recruiting | Pembrolizumab | Phase 2 |
NCT05086692 | A Beta-only IL-2 ImmunoTherapY (ABILITY) Study | Recruiting | MDNA11 Monotherapy and MDNA11 in Combination with Checkpoint Inhibitor | Phase 1/Phase 2 |
NCT04576091 | Testing the Addition of an Anti-cancer Drug, BAY 1895344, With Radiation Therapy to the Usual Pembrolizumab Treatment for Recurrent Head and Neck Cancer | Recruiting | Elimusertib and Pembrolizumab | Phase 1 |
NCT05269381 | Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for the Treatment of Advanced Solid Tumors, The PNeoVCA Study | Recruiting | Cyclophosphamide, Neoantigen Peptide Vaccine, Pembrolizumab, and Sargramostim | Phase 1 |
NCT02955290 | CIMAvax Vaccine, Nivolumab, and Pembrolizumab in Treating Patients With Advanced Non-small Cell Lung Cancer or Squamous Head and Neck Cancer | Recruiting | Nivolumab, Pembrolizumab, and Recombinant Human EGF-rP64K/Montanide ISA 51 Vaccine | Phase 1/Phase 2 |
NCT03108131 | Cobimetinib and Atezolizumab in Treating Participants With Advanced or Refractory Rare Tumors | Active, not recruiting | Atezolizumab and Cobimetinib | Phase 2 |
NCT04916002 | CMP-001 in Combination With IV PD-1-Blocking Antibody in Subjects With Certain Types of Advanced or Metastatic Cancer | Recruiting | CMP-001 and Cemiplimab-rwlc | Phase 2 |
NCT04007744 | Sonidegib and Pembrolizumab in Treating Patients With Advanced Solid Tumors | Recruiting | Pembrolizumab and Sonidegib | Phase 1 |
NCT01984892 | Treatment of Solid Tumors With Intratumoral Hiltonol (Poly-ICLC) | Terminated | Poly-ICLC | Phase 2 |
NCT04272034 | Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of INCB099318 in Participants With Advanced Solid Tumors | Recruiting | INCB099318 | Phase 1 |
NCT04242199 | Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of INCB099280 in Participants With Advanced Solid Tumors | Recruiting | INCB099280 | Phase 1 |
NCT03816332 | Tacrolimus, Nivolumab, and Ipilimumab in Treating Kidney Transplant Recipients With Selected Unresectable or Metastatic Cancers | Active, not recruiting | Ipilimumab, Nivolumab, Prednisone, and Tacrolimus | Phase 1 |
NCT04301011 | Study of TBio-6517 Given Alone or in Combination With Pembrolizumab in Solid Tumors | Active, not recruiting | TBio-6517 and Pembrolizumab | Phase 1/Phase 2 |
NCT04596033 | TiTAN-1: Safety, Proliferation and Persistence of GEN-011 Autologous Cell Therapy | Terminated | GEN-011, IL-2, Fludarabine, and Cyclophosphamide | Phase 1 |
NCT05076760 | Study of MEM-288 Oncolytic Virus in Solid Tumors Including Non-Small Cell Lung Cancer (NSCLC) | Recruiting | MEM-288 Intratumoral Injection | Phase 1 |
NCT04799054 | A Study of TransCon TLR7/8 Agonist With or Without Pembrolizumab in Patients With Advanced or Metastatic Solid Tumors | Recruiting | TransCon TLR7/8 Agonist and Pembrolizumab | Phase 1/Phase 2 |
NCT04348916 | Study of ONCR-177 Alone and in Combination With PD-1 Blockade in Adult Subjects With Advanced and/or Refractory Cutaneous, Subcutaneous or Metastatic Nodal Solid Tumors or With Liver Metastases of Solid Tumors | Active, not recruiting | ONCR-177 and Pembrolizumab | Phase 1 |
NCT03633110 | Safety, Tolerability, Immunogenicity, and Antitumor Activity of GEN-009 Adjuvanted Vaccine | Completed | GEN-009 Adjuvanted Vaccine, Nivolumab, and Pembrolizumab | Phase 1/Phase 2 |
NCT Number | Title | Status | Agent(s) | Phases |
---|---|---|---|---|
NCT04925713 | IFx-Hu2.0 for the Treatment of Patients With Skin Cancer | Completed | IFx-Hu2.0 | Phase 1 |
NCT02978625 | Talimogene Laherparepvec and Nivolumab in Treating Patients With Refractory Lymphomas or Advanced or Refractory Non-melanoma Skin Cancers | Recruiting | Nivolumab and Talimogene Laherparepvec | Phase 2 |
NCT05086692 | A Beta-only IL-2 ImmunoTherapY (ABILITY) Study | Recruiting | MDNA11 Monotherapy and MDNA11 in Combination with Checkpoint Inhibitor | Phase 1/Phase 2 |
NCT03816332 | Tacrolimus, Nivolumab, and Ipilimumab in Treating Kidney Transplant Recipients With Selected Unresectable or Metastatic Cancers | Active, not recruiting | Ipilimumab, Nivolumab, Prednisone, and Tacrolimus | Phase 1 |
NCT Number | cuSCC or BCC | Agent(s) | Title |
---|---|---|---|
NCT03769285 | Both | Nicotinamide | Nicotinamide Chemoprevention for Keratinocyte Carcinoma in Solid Organ Transplant Recipients: A Pilot, Placebo-controlled, Randomized Trial |
NCT02978625 | Both | RP1 | An Open-Label, Multicenter, Phase 1B/2 Study of RP1 in Solid Organ and Hematopoietic Cell Transplant Recipients With Advanced Cutaneous Malignancies |
NCT02218164 | cuSCC | Capecitabine | A Phase 2 Study of Capecitabine or 5-FU With Pegylated Interferon Alpha-2b in Unresectable/Metastatic Cutaneous Squamous Cell Carcinoma |
NCT00003611 | Both | Acitretin | Chemoprevention Trial of Acitretin Versus Placebo in Solid Organ Transplant Recipients With Multiple Prior Treated Skin Cancers |
NCT01358045 | BCC | Diclofenac Sodium | Topical Vitamin D3, Diclofenac or a Combination of Both to Treat Basal Cell Carcinoma |
NCT00472459 | Both | Metvix + PDT | A Multicentre, Randomised Study of Photodynamic Therapy(PDT) With Metvix® 160 mg/g Cream in Immuno-compromised Patients With Non-melanoma Skin Cancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bommakanti, K.K.; Kosaraju, N.; Tam, K.; Chai-Ho, W.; St. John, M. Management of Cutaneous Head and Neck Squamous and Basal Cell Carcinomas for Immunocompromised Patients. Cancers 2023, 15, 3348. https://doi.org/10.3390/cancers15133348
Bommakanti KK, Kosaraju N, Tam K, Chai-Ho W, St. John M. Management of Cutaneous Head and Neck Squamous and Basal Cell Carcinomas for Immunocompromised Patients. Cancers. 2023; 15(13):3348. https://doi.org/10.3390/cancers15133348
Chicago/Turabian StyleBommakanti, Krishna K., Nikitha Kosaraju, Kenric Tam, Wanxing Chai-Ho, and Maie St. John. 2023. "Management of Cutaneous Head and Neck Squamous and Basal Cell Carcinomas for Immunocompromised Patients" Cancers 15, no. 13: 3348. https://doi.org/10.3390/cancers15133348
APA StyleBommakanti, K. K., Kosaraju, N., Tam, K., Chai-Ho, W., & St. John, M. (2023). Management of Cutaneous Head and Neck Squamous and Basal Cell Carcinomas for Immunocompromised Patients. Cancers, 15(13), 3348. https://doi.org/10.3390/cancers15133348