Using Endoscopy in the Diagnosis of Pancreato-Biliary Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. EUS Techniques
2.1. Contrast-Enhanced EUS
2.2. EUS Elastography
2.3. EUS-Guided Tissue Acquisition
2.4. Fluid Analysis for PCLs
2.5. EUS-Guided Needle Confocal Laser Endomicroscopy
2.6. Through-the-Needle Microforceps Biopsy (TTNB)
3. Intraductal Biliopancreatic Techniques
3.1. Intraductal Tissue Acquisition
3.2. Cholangioscopy
3.3. Probe-Based Confocal Laser Endomicroscopy
3.4. Pancreatoscopy
4. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | Acute pancreatitis |
AE | Adverse event |
CEA | Carcinoembryonic antigen |
CC | Cholangiocarcinoma |
CT | Computed tomography |
CI | Confidence interval |
CE-EUS | Contrast-enhanced EUS |
ERCP | Endoscopic retrograde cholangiopancreatography |
EUS | Endoscopic ultrasound |
EUS-FNA | EUS fine-needle aspiration |
EUS-FNB | EUS fine-needle biopsy |
FISH | Fluorescence in situ hybridization |
IPMN | Intraductal papillary mucinous neoplasms |
MCN | Mucinous cystic neoplasms |
MOSE | Macroscopic on-site evaluation |
MPD | Main pancreatic duct |
MRI | Magnetic resonance imaging |
nCLE | Needle-based confocal laser endomicroscopy |
NGS | Next generation sequencing |
PADC | Pancreatic adenocarcinoma |
PCLs | Pancreatic cystic lesions |
pNET | Pancreatic neuroendocrine tumors |
POCS | Peroral cholangioscopy |
POPS | Peroral pancreatoscopy |
PSC | Primary sclerosing cholangitis |
pCLE | Probe-based confocal laser endomicroscopy |
ROSE | Rapid onsite cytopathological evaluation |
SOC | Single-operator cholangioscopy device |
TTNB | Through-the-needle microforceps biopsy |
References
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022, 163, 386–402.e1. [Google Scholar] [CrossRef]
- Izquierdo-Sanchez, L.; Lamarca, A.; La Casta, A.; Buettner, S.; Utpatel, K.; Klümpen, H.-J.; Adeva, J.; Vogel, A.; Lleo, A.; Fabris, L.; et al. Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. J. Hepatol. 2022, 76, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Cancer of the Pancreas—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/pancreas.html (accessed on 29 March 2023).
- Salom, F.; Prat, F. Current role of endoscopic ultrasound in the diagnosis and management of pancreatic cancer. World J. Gastrointest. Endosc. 2022, 14, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Goggins, M.; Overbeek, K.A.; Brand, R.; Syngal, S.; Del Chiaro, M.; Bartsch, D.K.; Bassi, C.; Carrato, A.; Farrell, J.; Fishman, E.K.; et al. Management of patients with increased risk for familial pancreatic cancer: Updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020, 69, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Matsumoto, K.; Okada, H. Recent advances regarding endoscopic biliary drainage for unresectable malignant hilar biliary obstruction. DEN Open 2022, 2, e33. [Google Scholar] [CrossRef]
- Nista, E.C.; Schepis, T.; Candelli, M.; Giuli, L.; Pignataro, G.; Franceschi, F.; Gasbarrini, A.; Ojetti, V. Humoral Predictors of Malignancy in IPMN: A Review of the Literature. Int. J. Mol. Sci. 2021, 22, 12839. [Google Scholar] [CrossRef]
- Elta, G.H.; Enestvedt, B.K.; Sauer, B.G.; Lennon, A.M. ACG Clinical Guideline: Diagnosis and Management of Pancreatic Cysts. Am. J. Gastroenterol. 2018, 113, 464–479. [Google Scholar] [CrossRef] [PubMed]
- The European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018, 67, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.A.; Kowalski, T.E.; Shahid, H.; O’Donnell, S.; Tolin, J.; Loren, D.E.; Infantolino, A.; Hong, S.-K.; Eloubeidi, M.A. False-positive EUS-guided FNA cytology for solid pancreatic lesions. Gastrointest. Endosc. 2011, 74, 535–540. [Google Scholar] [CrossRef]
- Ohno, E.; Ishikawa, T.; Mizutani, Y.; Iida, T.; Uetsuki, K.; Yashika, J.; Yamada, K.; Gibo, N.; Aoki, T.; Kawashima, H. Factors associated with misdiagnosis of preoperative endoscopic ultrasound in patients with pancreatic cystic neoplasms undergoing surgical resection. J. Med. Ultrason. 2022, 49, 433–441. [Google Scholar] [CrossRef]
- Okasha, H.H.; Abdellatef, A.; Elkholy, S.; Mogawer, M.-S.; Yosry, A.; Elserafy, M.; Medhat, E.; Khalaf, H.; Fouad, M.; Elbaz, T.; et al. Role of endoscopic ultrasound and cyst fluid tumor markers in diagnosis of pancreatic cystic lesions. World J. Gastrointest. Endosc. 2022, 14, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Matthaei, H.; Schulick, R.D.; Hruban, R.H.; Maitra, A. Cystic precursors to invasive pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, Y.; Shimokawa, T.; Napoléon, B.; Fusaroli, P.; Gincul, R.; Kudo, M.; Kitano, M. Value of contrast-enhanced harmonic endoscopic ultrasonography with enhancement pattern for diagnosis of pancreatic cancer: A meta-analysis. Dig. Endosc. 2019, 31, 125–133. [Google Scholar] [CrossRef]
- Du, C.; Chai, N.-L.; Linghu, E.-Q.; Li, H.-K.; Sun, L.-H.; Jiang, L.; Wang, X.-D.; Tang, P.; Yang, J. Comparison of endoscopic ultrasound, computed tomography and magnetic resonance imaging in assessment of detailed structures of pancreatic cystic neoplasms. World J. Gastroenterol. 2017, 23, 3184. [Google Scholar] [CrossRef] [PubMed]
- Seicean, A.; Mosteanu, O.; Seicean, R. Maximizing the endosonography: The role of contrast harmonics, elastography and confocal endomicroscopy. World J. Gastroenterol. 2017, 23, 25. [Google Scholar] [CrossRef]
- Fusaroli, P.; Spada, A.; Mancino, M.G.; Caletti, G. Contrast Harmonic Echo–Endoscopic Ultrasound Improves Accuracy in Diagnosis of Solid Pancreatic Masses. Clin. Gastroenterol. Hepatol. 2010, 8, 629–634.e2. [Google Scholar] [CrossRef]
- Mei, S.; Wang, M.; Sun, L. Contrast-Enhanced EUS for Differential Diagnosis of Pancreatic Masses: A Meta-Analysis. Gastroenterol. Res. Pract. 2019, 2019, 1670183. [Google Scholar] [CrossRef] [Green Version]
- Iordache, S.; Costache, M.I.; Popescu, C.F.; Streba, C.T.; Cazacu, S.; Săftoiu, A. Clinical impact of EUS elastography followed by contrast-enhanced EUS in patients with focal pancreatic masses and negative EUS-guided FNA. Med. Ultrason. 2016, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.-H.; Lin, C.-C.; Lin, H.-H.; Chen, M.-J. Is contrast-enhanced endoscopic ultrasound-guided fine needle biopsy better than conventional fine needle biopsy? A retrospective study in a medical center. Surg. Endosc. 2022, 36, 6138–6143. [Google Scholar] [CrossRef]
- Lisotti, A.; Napoleon, B.; Facciorusso, A.; Cominardi, A.; Crinò, S.F.; Brighi, N.; Gincul, R.; Kitano, M.; Yamashita, Y.; Marchegiani, G.; et al. Contrast-enhanced EUS for the characterization of mural nodules within pancreatic cystic neoplasms: Systematic review and meta-analysis. Gastrointest. Endosc. 2021, 94, 881–889.e5. [Google Scholar] [CrossRef] [PubMed]
- Ardeshna, D.R.; Cao, T.; Rodgers, B.; Onongaya, C.; Jones, D.; Chen, W.; Koay, E.J.; Krishna, S.G. Recent advances in the diagnostic evaluation of pancreatic cystic lesions. World J. Gastroenterol. 2022, 28, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Dhar, J.; Samanta, J. The expanding role of endoscopic ultrasound elastography. Clin. J. Gastroenterol. 2022, 15, 841–858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhu, F.; Li, P.; Yu, S.; Zhao, Y.; Li, M. Endoscopic ultrasound elastography in the diagnosis of pancreatic masses: A meta-analysis. Pancreatology 2018, 18, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Polkowski, M.; Jenssen, C.; Kaye, P.; Carrara, S.; Deprez, P.; Gines, A.; Fernández-Esparrach, G.; Eisendrath, P.; Aithal, G.; Arcidiacono, P.; et al. Technical aspects of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Technical Guideline–March 2017. Endoscopy 2017, 49, 989–1006. [Google Scholar] [CrossRef] [Green Version]
- Mangiavillano, B.; Frazzoni, L.; Togliani, T.; Fabbri, C.; Tarantino, I.; De Luca, L.; Staiano, T.; Binda, C.; Signoretti, M.; Eusebi, L.H.; et al. Macroscopic on-site evaluation (MOSE) of specimens from solid lesions acquired during EUS-FNB: Multicenter study and comparison between needle gauges. Endosc. Int. Open 2021, 9, E901–E906. [Google Scholar] [CrossRef]
- Bang, J.Y.; Hebert-Magee, S.; Navaneethan, U.; Hasan, M.K.; Hawes, R.; Varadarajulu, S. EUS-guided fine needle biopsy of pancreatic masses can yield true histology. Gut 2018, 67, 2081–2084. [Google Scholar] [CrossRef]
- Facciorusso, A.; Bajwa, H.; Menon, K.; Buccino, V.; Muscatiello, N. Comparison between 22G aspiration and 22G biopsy needles for EUS-guided sampling of pancreatic lesions: A meta-analysis. Endosc. Ultrasound 2019, 9, 167–174. [Google Scholar] [CrossRef]
- Yang, M.J.; Kim, J.; Park, S.W.; Cho, J.H.; Kim, E.J.; Lee, Y.N.; Lee, D.W.; Park, C.H.; Lee, S.S. Comparison between three types of needles for endoscopic ultrasound-guided tissue acquisition of pancreatic solid masses: A multicenter observational study. Sci. Rep. 2023, 13, 3677. [Google Scholar] [CrossRef]
- Gkolfakis, P.; Crinò, S.F.; Tziatzios, G.; Ramai, D.; Papaefthymiou, A.; Papanikolaou, I.S.; Triantafyllou, K.; Arvanitakis, M.; Lisotti, A.; Fusaroli, P.; et al. Comparative diagnostic performance of end-cutting fine-needle biopsy needles for EUS tissue sampling of solid pancreatic masses: A network meta-analysis. Gastrointest. Endosc. 2022, 95, 1067–1077.e15. [Google Scholar] [CrossRef]
- Crinò, S.F.; Di Mitri, R.; Nguyen, N.Q.; Tarantino, I.; de Nucci, G.; Deprez, P.H.; Carrara, S.; Kitano, M.; Shami, V.M.; Fernández-Esparrach, G.; et al. Endoscopic Ultrasound–guided Fine-needle Biopsy With or Without Rapid On-site Evaluation for Diagnosis of Solid Pancreatic Lesions: A Randomized Controlled Non-Inferiority Trial. Gastroenterology 2021, 161, 899–909.e5. [Google Scholar] [CrossRef]
- Kuo, Y.T.; Chu, Y.L.; Wong, W.F.; Han, M.L.; Chen, C.C.; Jan, I.S.; Cheng, W.C.; Shun, C.T.; Tsai, M.C.; Cheng, T.Y.; et al. Randomized trial of contrast-enhanced harmonic guidance versus fanning technique for EUS-guidedfine-needle biopsy sampling of solid pancreatic lesions. Gastrointest. Endosc. 2023, 97, 732–740. [Google Scholar] [CrossRef]
- Facciorusso, A.; Crinò, S.F.; Ramai, D.; Madhu, D.; Fugazza, A.; Carrara, S.; Spadaccini, M.; Mangiavillano, B.; Gkolfakis, P.; Mohan, B.P.; et al. Comparative Diagnostic Performance of Different Techniques for Endoscopic Ultrasound-Guided Fine-Needle Biopsy of Solid Pancreatic Masses: A Network Meta-analysis. Gastrointest. Endosc. 2023, 97, 839–848.e5. [Google Scholar] [CrossRef]
- Katanuma, A.; Maguchi, H.; Yane, K.; Hashigo, S.; Kin, T.; Kaneko, M.; Kato, S.; Kato, R.; Harada, R.; Osanai, M.; et al. Factors Predictive of Adverse Events Associated with Endoscopic Ultrasound-Guided Fine Needle Aspiration of Pancreatic Solid Lesions. Dig. Dis. Sci. 2013, 58, 2093–2099. [Google Scholar] [CrossRef] [Green Version]
- Okasha, H.H.; Awad, A.; El-meligui, A.; Ezzat, R.; Aboubakr, A.; AbouElenin, S.; El-Husseiny, R.; Alzamzamy, A. Cystic pancreatic lesions, the endless dilemma. World J. Gastroenterol. 2021, 27, 2664–2680. [Google Scholar] [CrossRef] [PubMed]
- Smith, Z.L.; Satyavada, S.; Simons-Linares, R.; Mok, S.R.S.; Martinez Moreno, B.; Aparicio, J.R.; Chahal, P. Intracystic Glucose and Carcinoembryonic Antigen in Differentiating Histologically Confirmed Pancreatic Mucinous Neoplastic Cysts. Am. J. Gastroenterol. 2022, 117, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Bick, B.; Enders, F.; Levy, M.; Zhang, L.; Henry, M.; Dayyeh, B.; Chari, S.; Clain, J.; Farnell, M.; Gleeson, F.; et al. The string sign for diagnosis of mucinous pancreatic cysts. Endoscopy 2015, 47, 626–631. [Google Scholar] [CrossRef]
- McCarty, T.R.; Paleti, S.; Rustagi, T. Molecular analysis of EUS-acquired pancreatic cyst fluid for KRAS and GNAS mutations for diagnosis of intraductal papillary mucinous neoplasia and mucinous cystic lesions: A systematic review and meta-analysis. Gastrointest. Endosc. 2021, 93, 1019–1033.e5. [Google Scholar] [CrossRef]
- Paniccia, A.; Polanco, P.M.; Boone, B.A.; Wald, A.I.; McGrath, K.; Brand, R.E.; Khalid, A.; Kubiliun, N.; O’Broin-Lennon, A.M.; Park, W.G.; et al. Prospective, Multi-Institutional, Real-Time Next-Generation Sequencing of Pancreatic Cyst Fluid Reveals Diverse Genomic Alterations That Improve the Clinical Management of Pancreatic Cysts. Gastroenterology 2023, 164, 117–133.e7. [Google Scholar] [CrossRef] [PubMed]
- Bertani, H.; Pezzilli, R.; Pigò, F.; Bruno, M.; De Angelis, C.; Manfredi, G.; Delconte, G.; Conigliaro, R.; Buscarini, E. Needle-based confocal endomicroscopy in the discrimination of mucinous from non-mucinous pancreatic cystic lesions. World J. Gastrointest. Endosc. 2021, 13, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Machicado, J.D.; Chao, W.-L.; Carlyn, D.E.; Pan, T.-Y.; Poland, S.; Alexander, V.L.; Maloof, T.G.; Dubay, K.; Ueltschi, O.; Middendorf, D.M.; et al. High performance in risk stratification of intraductal papillary mucinous neoplasms by confocal laser endomicroscopy image analysis with convolutional neural networks (with video). Gastrointest. Endosc. 2021, 94, 78–87.e2. [Google Scholar] [CrossRef]
- Robles-Medranda, C.; Olmos, J.I.; Puga-Tejada, M.; Oleas, R.; Baquerizo-Burgos, J.; Arevalo-Mora, M.; Del Valle Zavala, R.; Nebel, J.A.; Calle Loffredo, D.; Pitanga-Lukashok, H. Endoscopic ultrasound-guided through-the-needle microforceps biopsy and needle-based confocal laser-endomicroscopy increase detection of potentially malignant pancreatic cystic lesions: A single-center study. World J. Gastrointest. Endosc. 2022, 14, 129–141. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.; Rustagi, T. Endoscopic ultrasound-guided through-the-needle microforceps biopsy improves diagnostic yield for pancreatic cystic lesions: A systematic review and meta-analysis. Endosc. Int. Open 2020, 8, E1280–E1290. [Google Scholar] [CrossRef] [PubMed]
- Rift, C.V.; Melchior, L.C.; Kovacevic, B.; Klausen, P.; Toxværd, A.; Grossjohann, H.; Karstensen, J.G.; Brink, L.; Hassan, H.; Kalaitzakis, E.; et al. Targeted next-generation sequencing of EUS-guided through-the-needle-biopsy sampling from pancreatic cystic lesions. Gastrointest. Endosc. 2023, 97, 50–58.e4. [Google Scholar] [CrossRef]
- Kovacevic, B.; Klausen, P.; Rift, C.V.; Toxvaerd, A.; Grossjohann, H.; Karstensen, J.G.; Brink, L.; Hassan, H.; Kalaitzakis, E.; Storkolm, J.; et al. Clinical Impact of endoscopic ultrasounf-guided through-thhe-needle microbiopsy in patients with papancreatic cysts. Endoscopy 2021, 53, 44–52. [Google Scholar] [CrossRef]
- Facciorusso, A.; Kovacevic, B.; Yang, D.; Vilas-Boas, F.; Martinez-Moreno, B.; Stigliano, S.; Rizzatti, G.; Sacco, M.; Arevalo-Mora, M.; Villareal-Sanchez, L.; et al. Predictors of adverse events after endoscopic ultrasound-guided through-the-needle biopsy of pancreaticysts: A recursive partitioning analysis. Endoscopy 2022, 54, 1158–1168. [Google Scholar] [CrossRef]
- Turner, R.C.; Melnychuk, J.T.; Chen, W.; Jones, D.; Krishna, S.G. Molecular Analysis of Pancreatic Cyst Fluid for the Management of Intraductal Papillary Mucinous Neoplasms. Diagnostics 2022, 12, 2573. [Google Scholar] [CrossRef]
- Dumonceau, J.-M.; Tringali, A.; Papanikolaou, I.; Blero, D.; Mangiavillano, B.; Schmidt, A.; Vanbiervliet, G.; Costamagna, G.; Devière, J.; García-Cano, J.; et al. Endoscopic biliary stenting: Indications, choice of stents, and results: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline–Updated October 2017. Endoscopy 2018, 50, 910–930. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, Y.; Viesca, M.; Arvanitakis, M. Early Diagnosis And Management of Malignant Distal Biliary Obstruction: A Review On Current Recommendations And Guidelines. Clin. Exp. Gastroenterol. 2019, 12, 415–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inchingolo, R.; Acquafredda, F.; Posa, A.; Nunes, T.F.; Spiliopoulos, S.; Panzera, F.; Praticò, C.A. Endobiliary biopsy. World J. Gastrointest. Endosc. 2022, 14, 291–301. [Google Scholar] [CrossRef]
- Korc, P.; Sherman, S. ERCP tissue sampling. Gastrointest. Endosc. 2016, 84, 557–571. [Google Scholar] [CrossRef] [Green Version]
- Moura, D.; de Moura, E.; Matuguma, S.; dos Santos, M.; Moura, E.; Baracat, F.; Artifon, E.; Cheng, S.; Bernardo, W.; Chacon, D.; et al. EUS-FNA versus ERCP for tissue diagnosis of suspect malignant biliary strictures: A prospective comparative study. Endosc. Int. Open 2018, 6, E769–E777. [Google Scholar] [CrossRef] [Green Version]
- Kamp, E.J.C.A.; Dinjens, W.N.M.; Doukas, M.; Bruno, M.J.; de Jonge, P.J.F.; Peppelenbosch, M.P.; de Vries, A.C. Optimal tissue sampling during ERCP and emerging molecular techniques for the differentiation of benign and malignant biliary strictures. Ther. Adv. Gastroenterol. 2021, 14, 175628482110020. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.; Gausman, V.; Kokoy-Mondragon, C.; Munot, K.; Amin, S.P.; Desai, A.; Kipp, C.; Poneros, J.; Sethi, A.; Gress, F.G.; et al. Role of Fluorescent In Situ Hybridization, Cholangioscopic Biopsies, and EUS-FNA in the Evaluation of Biliary Strictures. Dig. Dis. Sci. 2018, 63, 636–644. [Google Scholar] [CrossRef]
- Kato, A.; Kato, H.; Naitoh, I.; Hayashi, K.; Yoshida, M.; Hori, Y.; Kachi, K.; Asano, G.; Sahashi, H.; Toyohara, T.; et al. Use of Endoscopic Scraper and Cell Block Technique as a Replacement for Conventional Brush for Diagnosing Malignant Biliary Strictures. Cancers 2022, 14, 4147. [Google Scholar] [CrossRef]
- Gonda, T.A.; Viterbo, D.; Gausman, V.; Kipp, C.; Sethi, A.; Poneros, J.M.; Gress, F.; Park, T.; Khan, A.; Jackson, S.A.; et al. Mutation Profile and Fluorescence In Situ Hybridization Analyses Increase Detection of Malignancies in Biliary Strictures. Clin. Gastroenterol. Hepatol. 2017, 15, 913–919.e1. [Google Scholar] [CrossRef] [Green Version]
- Singhi, A.D.; Nikiforova, M.N.; Chennat, J.; Papachristou, G.I.; Khalid, A.; Rabinovitz, M.; Das, R.; Sarkaria, S.; Ayasso, M.S.; Wald, A.I.; et al. Integrating next-generation sequencing to endoscopic retrograde cholangiopancreatography (ERCP)-obtained biliary specimens improves the detection and management of patients with malignant bile duct strictures. Gut 2020, 69, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Subhash, A.; Buxbaum, J.L.; Tabibian, J.H. Peroral cholangioscopy: Update on the state-of-the-art. World J. Gastrointest. Endosc. 2022, 14, 63–76. [Google Scholar] [CrossRef]
- Oleas, R.; Alcívar-Vasquez, J.; Robles-Medranda, C. New technologies for indeterminate biliary strictures. Transl. Gastroenterol. Hepatol. 2022, 7, 22. [Google Scholar] [CrossRef]
- Kulpatcharapong, S.; Pittayanon, R.; Kerr, S.J.; Rerknimitr, R. Diagnostic performance of digital and video cholangioscopes in patients with suspected malignant biliary strictures: A systematic review and meta-analysis. Surg. Endosc. 2022, 36, 2827–2841. [Google Scholar] [CrossRef] [PubMed]
- Shin, I.S.; Moon, J.H.; Lee, Y.N.; Kim, H.K.; Lee, T.H.; Yang, J.K.; Cha, S.-W.; Cho, Y.D.; Park, S.-H. Efficacy of narrow-band imaging during peroral cholangioscopy for predicting malignancy of indeterminate biliary strictures (with videos). Gastrointest. Endosc. 2022, 96, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Han, X.; Wang, R.; Ma, R.; Zhao, D. Diagnostic accuracy of probe-based confocal laser endomicroscopy and tissue sampling by endoscopic retrograde cholangiopancreatography in indeterminate biliary strictures: A meta-analysis. Sci. Rep. 2022, 12, 7257. [Google Scholar] [CrossRef] [PubMed]
- Caillol, F.; Filoche, B.; Gaidhane, M.; Kahaleh, M. Refined Probe-Based Confocal Laser Endomicroscopy Classification for Biliary Strictures: The Paris Classification. Dig. Dis. Sci. 2013, 58, 1784–1789. [Google Scholar] [CrossRef]
- Han, S.; Kahaleh, M.; Sharaiha, R.Z.; Tarnasky, P.R.; Kedia, P.; Slivka, A.; Chennat, J.S.; Joshi, V.; Sejpal, D.V.; Sethi, A.; et al. Probe-based confocal laser endomicroscopy in the evaluation of dominant strictures in patients with primary sclerosing cholangitis: Results of a U.S. multicenter prospective trial. Gastrointest. Endosc. 2021, 94, 569–576.e1. [Google Scholar] [CrossRef]
- Zhou, S.; Buxbaum, J. Advanced Imaging of the Biliary System and Pancreas. Dig. Dis. Sci. 2022, 67, 1599–1612. [Google Scholar] [CrossRef]
- Pérez-Cuadrado Robles, E.; Deprez, P.H. Indications for Single-Operator Cholangioscopy and Pancreatoscopy: An expert review. Curr. Treat. Options Gastro. 2019, 17, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Yamaguchi, T.; Ishihara, T.; Tsuyuguchi, T.; Kondo, F.; Kato, K.; Asano, T.; Saisho, T. Diagnosis and patient management of 55. intraductal papillary-mucinous tumor of the pancreas by using peroral pancreatoscopy and intraductal ultra- sonography. Gastroenterology 2002, 122, 34–43. [Google Scholar] [CrossRef]
- de Jong, D.M.; Stassen, P.M.C.; Groot Koerkamp, B.; Ellrichmann, M.; Karagyozov, P.I.; Anderloni, A.; Kylänpää, L.; Webster, G.J.M.; Van Driel, L.M.J.W.; Bruno, M.J.; et al. The role of pancreatoscopy in the diagnostic work-up of intraductal papillary mucinous neoplasms: A systematic review and meta-analysis. Endoscopy 2023, 55, 25–35. [Google Scholar] [CrossRef] [PubMed]
- El Hajj, I.I.; Brauer, B.C.; Wani, S.; Fukami, N.; Attwell, A.R.; Shah, R.J. Role of per-oral pancreatoscopy in the evaluation of suspected pancreatic duct neoplasia: A 13-year U.S. single-center experience. Gastrointest. Endosc. 2017, 85, 737–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Needle Type | Characteristics | |
---|---|---|
FNA | Conventional needles (19G, 22G, 25G) | End-cutting needle. Sharply pointed tip to facilitate puncture. |
Menghini-tip needle | End-cutting needle. Tapered bevel edge that facilitates the tissue being withdrawn into the lumen. | |
FNB | Franseen needle (22G, 25G) * | End-cutting needle. Crown tip with three-plane symmetric cutting edges. No side-slot. |
Reverse-bevel needle (19G, 22G, 25G) | Modified Menghini-type needle with a beveled side-slot near the needle tip. Tissue collected during retrograde movement of the needle. | |
Fork-type needle (19G, 22G, 25G) * | End-cutting needle. Fork-shaped distal tip including six cutting edges and an opposing bevel. No side-slot. | |
Antegrade core trap (20G) | Modified Menghini-type needle with a beveled side-slot near the needle tip. Tissue collected during antegrade movement of the needle. |
Cyst Fluid Analysis | Mucinous PCLs | Serous/Non Mucinous PCLs | Advanced Neoplasia (Predictors of Degenerate PCLs) | |
---|---|---|---|---|
Biomarkers | Intracystic glucose | ↘ | ↗ | ↘ |
CEA | ↗ | ↘ | ↗ | |
Cytology | Mucin staining | ↗ | / | + |
Cuboidal epithelial cells | / | + | / | |
Clear cytoplasm | / | + | / | |
Excess glycogen | / | + | / | |
NGS | KRAS mutation | + | / | + |
GNAS mutation | + | / | + | |
MAPK/GNAS | / | / | + | |
P53/SMAD4/CTNNB1/mTOR | / | / | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaves, J.; Fernandez Y Viesca, M.; Arvanitakis, M. Using Endoscopy in the Diagnosis of Pancreato-Biliary Cancers. Cancers 2023, 15, 3385. https://doi.org/10.3390/cancers15133385
Chaves J, Fernandez Y Viesca M, Arvanitakis M. Using Endoscopy in the Diagnosis of Pancreato-Biliary Cancers. Cancers. 2023; 15(13):3385. https://doi.org/10.3390/cancers15133385
Chicago/Turabian StyleChaves, Julia, Michael Fernandez Y Viesca, and Marianna Arvanitakis. 2023. "Using Endoscopy in the Diagnosis of Pancreato-Biliary Cancers" Cancers 15, no. 13: 3385. https://doi.org/10.3390/cancers15133385
APA StyleChaves, J., Fernandez Y Viesca, M., & Arvanitakis, M. (2023). Using Endoscopy in the Diagnosis of Pancreato-Biliary Cancers. Cancers, 15(13), 3385. https://doi.org/10.3390/cancers15133385