Targeting Metabolic Vulnerabilities in Epstein–Barr Virus-Driven Proliferative Diseases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Metabolic Reprogramming in Latency
2.1. Molecular Metabolic Mechanisms Underlying Cell Persistence
2.1.1. DNA Replication in Latency
2.1.2. Gene Transcription and Protein Translation in Latency
2.1.3. Carbohydrate Metabolism
2.1.4. Lipid and Sterol Metabolism
2.1.5. Redox Homeostasis and Senescence
2.1.6. Epigenetic Control and Post-Translational Modification of Tumour Suppressor Proteins
2.2. Molecular Metabolic Mechanisms Driving Immune Evasion and Metastasis
2.2.1. Mammalian Target of Rapamycin (mTOR) Signalling to Metastatic Regulators
2.2.2. Methylation of Viral Genes
2.2.3. Synthesis of Immunosuppressive Metabolites
3. Metabolic Reprogramming in the Lytic Phase
3.1. Virus Production and Packaging
3.1.1. DNA Replication
3.1.2. Protein Synthesis
3.1.3. Lipid Synthesis
4. Clinical Trials
5. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Young, L.S.; Yap, L.F.; Murray, P.G. Epstein-Barr Virus: More than 50 Years Old and Still Providing Surprises. Nat. Rev. Cancer 2016, 16, 789–802. [Google Scholar] [CrossRef]
- Balfour, H.H.; Dunmire, S.K.; Hogquist, K.A. Infectious Mononucleosis. Clin. Transl. Immunol. 2015, 4, e33. [Google Scholar] [CrossRef]
- Frappier, L. Epstein-Barr Virus: Current Questions and Challenges. Tumour Virus Res. 2021, 12, 200218. [Google Scholar] [CrossRef]
- Soldan, S.S.; Lieberman, P.M. Epstein–Barr Virus and Multiple Sclerosis. Nat. Rev. Microbiol. 2022, 21, 51–64. [Google Scholar] [CrossRef]
- Lv, K.; Yin, T.; Yu, M.; Chen, Z.; Zhou, Y.; Li, F. Treatment Advances in EBV Related Lymphoproliferative Diseases. Front. Oncol. 2022, 12, 1346. [Google Scholar] [CrossRef]
- Farber, S.; Diamond, L.K.; Mercer, R.D.; Sylvester, R.F., Jr.; Wolff, J.A. Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-Glutamic Acid (Aminopterin). N. Engl. J. Med. 1948, 238, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.R. A Tribute to Sidney Farber—The Father of Modern Chemotherapy. Br. J. Haematol. 2006, 134, 20–26. [Google Scholar] [CrossRef]
- Ribatti, D. Sidney Farber and the Treatment of Childhood Acute Lymphoblastic Leukemia with a Chemotherapeutic Agent. Pediatr. Hematol. Oncol. 2012, 29, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Baer, R.; Bankier, A.T.; Biggin, M.D.; Deininger, P.L.; Farrell, P.J.; Gibson, T.J.; Hatfull, G.; Hudson, G.S.; Satchwell, S.C.; Séguin, C.; et al. DNA Sequence and Expression of the B95-8 Epstein—Barr Virus Genome. Nature 1984, 310, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.; Hutt-Fletcher, L.M. Epstein-Barr Virus Enters B Cells and Epithelial Cells by Different Routes. J. Virol. 1992, 66, 3409. [Google Scholar] [CrossRef] [Green Version]
- Delecluse, H.J.; Feederle, R.; O’Sullivan, B.; Taniere, P. Epstein Barr Virus-Associated Tumours: An Update for the Attention of the Working Pathologist. J. Clin. Pathol. 2007, 60, 1358–1364. [Google Scholar] [CrossRef]
- Lukac, D.M.; Yuan, Y. Reactivation and Lytic Replication of EBV. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Cambridge University Press: Cambridge, UK, 2007; pp. 434–460. [Google Scholar] [CrossRef]
- Tsurumi, T.; Fujita, M.; Kudoh, A. Latent and Lytic Epstein-Barr Virus Replication Strategies. Rev. Med. Virol. 2005, 15, 3–15. [Google Scholar] [CrossRef]
- Kempkes, B.; Robertson, E.S. Epstein-Barr Virus Latency: Current and Future Perspectives. Curr. Opin. Virol. 2015, 14, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, T.; Sugimoto, A.; Inagaki, T.; Yanagi, Y.; Watanabe, T.; Sato, Y.; Kimura, H. Molecular Basis of Epstein–Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021, 13, 2344. [Google Scholar] [CrossRef] [PubMed]
- Morscio, J.; Dierickx, D.; Tousseyn, T. Molecular Pathogenesis of B-Cell Posttransplant Lymphoproliferative Disorder: What Do We Know So Far? Clin. Dev. Immunol. 2013, 2013, 150835. [Google Scholar] [CrossRef] [Green Version]
- Hafez, A.Y.; Messinger, J.E.; McFadden, K.; Fenyofalvi, G.; Shepard, C.N.; Lenzi, G.M.; Kim, B.; Luftig, M.A. Limited Nucleotide Pools Restrict Epstein-Barr Virus-Mediated B-Cell Immortalization. Oncogenesis 2017, 6, e349. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Shen, H.; Nobre, L.; Ersing, I.; Paulo, J.A.; Trudeau, S.; Wang, Z.; Smith, N.A.; Ma, Y.; Reinstadler, B.; et al. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell. Metab. 2019, 30, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.H.; Wang, C.; Yiu, S.P.T.; Zhao, B.; Guo, R.; Gewurz, B.E. Epstein-Barr Virus Induced Cytidine Metabolism Roles in Transformed B-Cell Growth and Survival. mBio 2021, 12, e01530-21. [Google Scholar] [CrossRef]
- Kashuba, E.; Kashuba, V.; Sandalova, T.; Klein, G.; Szekely, L. Epstein-Barr Virus Encoded Nuclear Protein EBNA-3 Binds a Novel Human Uridine Kinase/Uracil Phosphoribosyltransferase. BMC Cell. Biol. 2002, 3, 23. [Google Scholar] [CrossRef]
- Maddocks, O.D.K.; Labuschagne, C.F.; Adams, P.D.; Vousden, K.H. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells. Mol. Cell. 2016, 61, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Liang, J.H.; Zhang, Y.; Lutchenkov, M.; Li, Z.; Wang, Y.; Trujillo-Alonso, V.; Puri, R.; Giulino-Roth, L.; Gewurz, B.E. Methionine Metabolism Controls the B-Cell EBV Epigenome and Viral Latency. Cell. Metab. 2022, 34, 1280. [Google Scholar] [CrossRef]
- Yang, M.; Vousden, K.H. Serine and One-Carbon Metabolism in Cancer. Nat. Rev. Cancer 2016, 16, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Kory, N.; Wyant, G.A.; Prakash, G.; De Bos, J.U.; Bottanelli, F.; Pacold, M.E.; Chan, S.H.; Lewis, C.A.; Wang, T.; Keys, H.R.; et al. SFXN1 Is a Mitochondrial Serine Transporter Required for One-Carbon Metabolism. Science 2018, 362, eaat9528. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.J.; Kim, J.Y.; Long, N.P.; Min, J.E.; Kim, H.M.; Yoon, J.H.; Anh, N.H.; Park, M.C.; Kwon, S.W.; Lee, S.K. Comprehensive Multi-Omics Analysis Reveals Aberrant Metabolism of Epstein–Barr-Virus-Associated Gastric Carcinoma. Cells 2019, 8, 1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos De Souza, A.C.; Zenker Justo, G.; Ribeiro De Araújo, D.; Martins Cavagis, A.D. Defining the Molecular Basis of Tumor Metabolism: A Continuing Challenge since Warburg’s Discovery. Cell. Physiol. Biochem. 2011, 28, 771–792. [Google Scholar] [CrossRef] [Green Version]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Teng, X.; Liu, L.; Mattaini, K.R.; Looper, R.E.; Vander Heiden, M.G.; Rabinowitz, J.D. Human Phosphoglycerate Dehydrogenase Produces the Oncometabolite D-2-Hydroxyglutarate. ACS Chem. Biol. 2015, 10, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darekar, S.; Georgiou, K.; Yurchenko, M.; Yenamandra, S.P.; Chachami, G.; Simos, G.; Klein, G.; Kashuba, E. Epstein-Barr Virus Immortalization of Human B-Cells Leads to Stabilization of Hypoxia-Induced Factor 1 Alpha, Congruent with the Warburg Effect. PLoS ONE 2012, 7, e42072. [Google Scholar] [CrossRef]
- McFadden, K.; Hafez, A.Y.; Kishton, R.; Messinger, J.E.; Nikitin, P.A.; Rathmell, J.C.; Luftig, M.A. Metabolic Stress Is a Barrier to Epstein-Barr Virus-Mediated B-Cell Immortalization. Proc. Natl. Acad. Sci. USA 2016, 113, E782–E790. [Google Scholar] [CrossRef] [Green Version]
- Hulse, M.; Johnson, S.M.; Boyle, S.; Caruso, L.B.; Tempera, I. Epstein-Barr Virus-Encoded Latent Membrane Protein 1 and B-Cell Growth Transformation Induce Lipogenesis through Fatty Acid Synthase. J. Virol. 2021, 95, 1857–1877. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, B.; Lai, W.; Shi, Y.; Xiao, D.; Jia, J.; Liu, S.; Li, H.; Lu, J.; Li, Z.; et al. Repression of Hox Genes by LMP1 in Nasopharyngeal Carcinoma and Modulation of Glycolytic Pathway Genes by HoxC8. Oncogene 2015, 34, 6079. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jia, L.; Lin, W.; Yip, Y.L.; Lo, K.W.; Lau, V.M.Y.; Zhu, D.; Tsang, C.M.; Zhou, Y.; Deng, W.; et al. Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Upregulates Glucose Transporter 1 Transcription via the MTORC1/NF-ΚB Signaling Pathways. J. Virol. 2017, 91, e02168-16. [Google Scholar] [CrossRef] [Green Version]
- Denko, N.C. Hypoxia, HIF1 and Glucose Metabolism in the Solid Tumour. Nat. Rev. Cancer 2008, 8, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Matskova, L.; Zhou, X.; Xiao, X.; Huang, G.; Zhang, Z.; Ernberg, I. Downregulation of Adipose Triglyceride Lipase by EB Viral-encoded LMP2A Links Lipid Accumulation to Increased Migration in Nasopharyngeal Carcinoma. Mol. Oncol. 2020, 14, 3234. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Han, T.; Sheng, X.; Zhang, N.; Wang, P. Downregulation of EB Virus MiR-BART4 Inhibits Proliferation and Aggressiveness While Promoting Radiosensitivity of Nasopharyngeal Carcinoma. Biomed. Pharmacother. 2018, 108, 741–751. [Google Scholar] [CrossRef]
- Cai, L.; Li, J.; Zhang, X.; Lu, Y.; Wang, J.; Lyu, X.; Chen, Y.; Liu, J.; Cai, H.; Wang, Y.; et al. Gold Nano-Particles (AuNPs) Carrying Anti-EBV-MiR-BART7-3p Inhibit Growth of EBV-Positive Nasopharyngeal Carcinoma. Oncotarget 2015, 6, 7838. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, J.; Wu, L.; Yu, Q.; Ji, J.; Wu, J.; Dai, W.; Guo, C. Emerging Roles and the Regulation of Aerobic Glycolysis in Hepatocellular Carcinoma. J. Exp. Clin. Cancer Res. 2020, 39, 126. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Wang, J.; Guo, X.; Wu, G.; Jiao, Y.; Faleti, O.D.; Liu, P.; Liu, T.; Long, Y.; Chong, T.; et al. EBV-MiR-BART1-5P Activates AMPK/MTOR/HIF1 Pathway via a PTEN Independent Manner to Promote Glycolysis and Angiogenesis in Nasopharyngeal Carcinoma. PLoS Pathog. 2018, 14, e1007484. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; You, C.; Meng, S.; Lai, Z.; Ai, W.; Zhang, J. EBV Infection and Its Regulated Metabolic Reprogramming in Nasopharyngeal Tumorigenesis. Front. Cell. Infect. Microbiol. 2022, 12, 935205. [Google Scholar] [CrossRef]
- Almuhaideb, A.; Papathanasiou, N.; Bomanji, J. 18F-FDG PET/CT Imaging in Oncology. Ann. Saudi Med. 2011, 31, 3. [Google Scholar] [CrossRef] [Green Version]
- Toriihara, A.; Nakajima, R.; Arai, A.; Nakadate, M.; Abe, K.; Kubota, K.; Tateishi, U. Pathogenesis and FDG-PET/CT Findings of Epstein-Barr Virus-Related Lymphoid Neoplasms. Ann. Nucl. Med. 2017, 31, 425–436. [Google Scholar] [CrossRef]
- Attarwala, N.; Zhang, C.; Le, A. Diseases & Disorders | Therapies Targeting Glutamine Addiction in Cancer. In Encyclopedia of Biological Chemistry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 452–461. [Google Scholar] [CrossRef]
- Sanchez, E.L.; Carroll, P.A.; Thalhofer, A.B.; Lagunoff, M. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLoS Pathog. 2015, 11, e1005052. [Google Scholar] [CrossRef] [Green Version]
- Lo, A.K.F.; Dawson, C.W.; Young, L.S.; Lo, K.W. The Role of Metabolic Reprogramming in γ-Herpesvirus-Associated Oncogenesis. Int. J. Cancer 2017, 141, 1512–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, M.I.; Demo, S.D.; Dennison, J.B.; Chen, L.; Chernov-Rogan, T.; Goyal, B.; Janes, J.R.; Laidig, G.J.; Lewis, E.R.; Li, J.; et al. Antitumor Activity of the Glutaminase Inhibitor CB-839 in Triple-Negative Breast Cancer. Mol. Cancer Ther. 2014, 13, 890–901. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wenes, M.; Romero, P.; Huang, S.C.C.; Fendt, S.M.; Ho, P.C. Navigating Metabolic Pathways to Enhance Antitumour Immunity and Immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 425–441. [Google Scholar] [CrossRef]
- Liu, W.J.; Wang, H.; Peng, X.W.; Wang, W.D.; Liu, N.W.; Wang, Y.; Lu, Y. Asparagine Synthetase Expression Is Associated with the Sensitivity to Asparaginase in Extranodal Natural Killer/T-Cell Lymphoma in Vivo and in Vitro. Onco Targets Ther. 2018, 11, 6605. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Suzuki, R.; Kwong, Y.L.; Kim, W.S.; Hasegawa, Y.; Izutsu, K.; Suzumiya, J.; Okamura, T.; Nakamura, S.; Kawa, K.; et al. Phase I Study of Dexamethasone, Methotrexate, Ifosfamide, L-Asparaginase, and Etoposide (SMILE) Chemotherapy for Advanced-Stage, Relapsed or Refractory Extranodal Natural Killer (NK)/T-Cell Lymphoma and Leukemia. Cancer Sci. 2008, 99, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, M.; Izumi, K.M.; Kieff, E. Epstein–Barr Virus Latent-Infection Membrane Proteins Are and Raft-Associated: Protein 1 Binds to the cytoskeleton through TNF Receptor Cytoplasmic Factors. Proc. Natl. Acad. Sci. USA 2001, 98, 4675. [Google Scholar] [CrossRef] [Green Version]
- Meckes, D.G., Jr.; Menaker, N.F.; Raab-Traub, N. Epstein-Barr Virus LMP1 Modulates Lipid Raft Microdomains and the Vimentin Cytoskeleton for Signal Transduction and Transformation. J. Virol. 2013, 87, 1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clendening, J.W.; Pandyra, A.; Boutros, P.C.; El Ghamrasni, S.; Khosravi, F.; Trentin, G.A.; Martirosyan, A.; Hakem, A.; Hakem, R.; Jurisica, I.; et al. Dysregulation of the Mevalonate Pathway Promotes Transformation. Proc. Natl. Acad. Sci. USA 2010, 107, 15051–15056. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Wang, Z.; Ersing, I.; Nobre, L.; Guo, R.; Jiang, S.; Trudeau, S.; Zhao, B.; Weekes, M.P.; Gewurz, B.E. Epstein-Barr Virus Subverts Mevalonate and Fatty Acid Pathways to Promote Infected B-Cell Proliferation and Survival. PLoS Pathog. 2019, 15, e1008030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanton, R.C. Glucose-6-Phosphate Dehydrogenase, NADPH, and Cell Survival. IUBMB Life 2012, 64, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Zhou, Y.; Zhang, L.; Chen, Y.; Lyu, X.; Cai, L.; Lu, Y.; Deng, Y.; Wang, J.; Yao, K.; et al. EBV-MiR-BART1 Is Involved in Regulating Metabolism-Associated Genes in Nasopharyngeal Carcinoma. Biochem. Biophys. Res. Commun. 2013, 436, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Non-Apoptotic Cell Death. Cell 2012, 149, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, E.M.; Voyer, J.; Gewurz, B.E. Epstein–Barr Virus Latency Programs Dynamically Sensitize B Cells to Ferroptosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2118300119. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Hong, L.; Cheng, C.; Li, N.; Zhao, X.; Shi, F.; Liu, J.; Fan, J.; Zhou, J.; Bode, A.M.; et al. DNMT1 Mediates Metabolic Reprogramming Induced by Epstein–Barr Virus Latent Membrane Protein 1 and Reversed by Grifolin in Nasopharyngeal Carcinoma. Cell. Death Dis. 2018, 9, 619. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Hu, C.; Zhu, Y.; Sun, R.; Fang, Y.; Fan, Y.; Xu, F. LMP1 Increases Expression of NADPH Oxidase (NOX) and Its Regulatory Subunit P22 in NP69 Nasopharyngeal Cells and Makes Them Sensitive to a Treatment by a NOX Inhibitor. PLoS ONE 2015, 10, e0134896. [Google Scholar] [CrossRef]
- Dai, Z.; Mentch, S.J.; Gao, X.; Nichenametla, S.N.; Locasale, J.W. Methionine Metabolism Influences Genomic Architecture and Gene Expression through H3K4me3 Peak Width. Nat. Commun. 2018, 9, 1955. [Google Scholar] [CrossRef]
- Cantoni, G.L. The Role of S-Adenosylhomocysteine in the Biological Utilization of S-Adenosylmethionine. Prog. Clin. Biol. Res. 1985, 198, 47–65. [Google Scholar]
- Sanderson, S.M.; Gao, X.; Dai, Z.; Locasale, J.W. Methionine Metabolism in Health and Cancer: A Nexus of Diet and Precision Medicine. Nat. Rev. Cancer 2019, 19, 625–637. [Google Scholar] [CrossRef]
- Li, W.; Okabe, A.; Usui, G.; Fukuyo, M.; Matsusaka, K.; Rahmutulla, B.; Mano, Y.; Hoshii, T.; Funata, S.; Hiura, N.; et al. Activation of EHF via STAT3 Phosphorylation by LMP2A in Epstein-Barr Virus–Positive Gastric Cancer. Cancer Sci. 2021, 112, 3349. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, B.; Liu, E.; Zhang, Z. Loss of PTEN Expression Is Associated with PI3K Pathway-Dependent Metabolic Reprogramming in Hepatocellular Carcinoma. Cell Commun. Signal. 2020, 18, 131. [Google Scholar] [CrossRef]
- Saha, A.; Jha, H.C.; Upadhyay, S.K.; Robertson, E.S. Epigenetic Silencing of Tumor Suppressor Genes during in Vitro Epstein-Barr Virus Infection. Proc. Natl. Acad. Sci. USA 2015, 112, E5199–E5207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.; Li, Y.; Robertson, K.D. DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy? Genes. Cancer 2011, 2, 607–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kareta, M.S.; Botello, Z.M.; Ennis, J.J.; Chou, C.; Chédin, F. Reconstitution and Mechanism of the Stimulation of de Novo Methylation by Human DNMT3L. J. Biol. Chem. 2006, 281, 25893–25902. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Wang, J.; Wei, L.; Peng, Q.; Gao, Y.; Fu, Y.; Lu, Y.; Qin, Z.; Zhang, X.; Lu, J.; et al. Epstein-Barr Virus MicroRNA MiR-BART5-3p Inhibits P53 Expression. J. Virol. 2018, 92, e01022-18. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Bamidele, A.; Murakami, M.; Robertson, E.S. EBNA3C Attenuates the Function of P53 through Interaction with Inhibitor of Growth Family Proteins 4 and 5. J. Virol. 2011, 85, 2079–2088. [Google Scholar] [CrossRef] [Green Version]
- Frappier, L. Contributions of Epstein–Barr Nuclear Antigen 1 (EBNA1) to Cell Immortalization and Survival. Viruses 2012, 4, 1537. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, C.; Hu, W.; Feng, Z. Tumor Suppressor P53 and Metabolism. J. Mol. Cell. Biol. 2019, 11, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Wang, Q.; Wu, Z.; Wang, Y.; Zeng, M.-S.; Yuan, Y. Epstein-Barr Virus LMP1-Activated MTORC1 and MTORC2 Coordinately Promote Nasopharyngeal Cancer Stem Cell Properties. J. Virol. 2022, 96, e01941-21. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.W.; Palle, K. Aldehyde Dehydrogenases in Cancer Stem Cells: Potential as Therapeutic Targets. Ann. Transl. Med. 2016, 4, 518. [Google Scholar] [CrossRef]
- Shortall, K.; Djeghader, A.; Magner, E.; Soulimane, T. Insights into Aldehyde Dehydrogenase Enzymes: A Structural Perspective. Front. Mol. Biosci. 2021, 8, 410. [Google Scholar] [CrossRef]
- Raha, D.; Wilson, T.R.; Peng, J.; Peterson, D.; Yue, P.; Evangelista, M.; Wilson, C.; Merchant, M.; Settleman, J. The Cancer Stem Cell Marker Aldehyde Dehydrogenase Is Required to Maintain a Drug-Tolerant Tumor Cell Subpopulation. Cancer Res. 2014, 74, 3579–3590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, W.; Cheung, A.K.L.; Ko, J.M.Y.; Cheng, Y.; Zheng, H.; Ngan, R.K.C.; Ng, W.T.; Lee, A.W.M.; Yau, C.C.; Lee, V.H.F.; et al. Comparative Methylome Analysis in Solid Tumors Reveals Aberrant Methylation at Chromosome 6p in Nasopharyngeal Carcinoma. Cancer Med. 2015, 4, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funata, S.; Matsusaka, K.; Yamanaka, R.; Yamamoto, S.; Okabe, A.; Fukuyo, M.; Aburatani, H.; Fukayama, M.; Kaneda, A. Histone Modification Alteration Coordinated with Acquisition of Promoter DNA Methylation during Epstein-Barr Virus Infection. Oncotarget 2017, 8, 55265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Mo, Y.; Wang, S.; Midorikawa, K.; Ma, N.; Hiraku, Y.; Oikawa, S.; Huang, G.; Zhang, Z.; Murata, M.; et al. Quantitation of DNA Methylation in Epstein-Barr Virus–Associated Nasopharyngeal Carcinoma by Bisulfite Amplicon Sequencing. BMC Cancer 2017, 17, 489. [Google Scholar] [CrossRef] [Green Version]
- Okabe, A.; Funata, S.; Matsusaka, K.; Namba, H.; Fukuyo, M.; Rahmutulla, B.; Oshima, M.; Iwama, A.; Fukayama, M.; Kaneda, A. Regulation of Tumour Related Genes by Dynamic Epigenetic Alteration at Enhancer Regions in Gastric Epithelial Cells Infected by Epstein-Barr Virus. Sci. Rep. 2017, 7, 7924. [Google Scholar] [CrossRef] [Green Version]
- Okabe, A.; Huang, K.K.; Matsusaka, K.; Fukuyo, M.; Xing, M.; Ong, X.; Hoshii, T.; Usui, G.; Seki, M.; Mano, Y.; et al. Cross-Species Chromatin Interactions Drive Transcriptional Rewiring in Epstein-Barr Virus-Positive Gastric Adenocarcinoma. Nat. Genet. 2020, 52, 919–930. [Google Scholar] [CrossRef]
- Leen, A.; Meij, P.; Redchenko, I.; Middeldorp, J.; Bloemena, E.; Rickinson, A.; Blake, N. Differential Immunogenicity of Epstein-Barr Virus Latent-Cycle Proteins for Human CD4+ T-Helper 1 Responses. J. Virol. 2001, 75, 8649. [Google Scholar] [CrossRef] [Green Version]
- Sawada, L.; Vallinoto, A.C.R.; Brasil-Costa, I. Regulation of the Immune Checkpoint Indoleamine 2,3-Dioxygenase Expression by Epstein–Barr Virus. Biomolecules 2021, 11, 1792. [Google Scholar] [CrossRef] [PubMed]
- Peyraud, F.; Guegan, J.P.; Bodet, D.; Cousin, S.; Bessede, A.; Italiano, A. Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives. Front. Immunol. 2022, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.V.; Schultze, J.L. New Insights into IDO Biology in Bacterial and Viral Infections. Front. Immunol. 2014, 5, 384. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lin, Y.; Xiao, H.; Xing, S.; Chen, H.; Chi, P.; Zhang, G. Epstein-Barr Virus Infection Induces Indoleamine 2,3-Dioxygenase Expression in Human Monocyte-Derived Macrophages through P38/Mitogen-Activated Protein Kinase and NF-ΚB Pathways: Impairment in T Cell Functions. J. Virol. 2014, 88, 6660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littler, E.; Zeuthen, J.; McBride, A.A.; Trøst Sørensen, E.; Powell, K.L.; Walsh-Arrand, J.E.; Arrand, J.R. Identification of an Epstein-Barr Virus-Coded Thymidine Kinase. EMBO J. 1986, 5, 1959. [Google Scholar] [CrossRef]
- Littler, E.; Arrand, J.R. Characterization of the EBV Thymidine Kinase. In Epstein-Barr Virus and Human Disease; Humana: Totowa, NJ, USA, 1987; pp. 217–222. [Google Scholar] [CrossRef]
- Snoj, N.; Dinh, P.; Bedard, P.; Sotiriou, C. Molecular Biology of Breast Cancer. In Molecular Pathology: The Molecular Basis of Human Disease; Coleman, W.B., Tsongalis, G.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 501–517. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.L.; Greene, B.L.; Greene, B.L.; Kang, G.; Cui, C.; Cui, C.; Bennati, M.; Bennati, M.; Nocera, D.G.; Drennan, C.L.; et al. Ribonucleotide Reductases (RNRs): Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Annu. Rev. Biochem. 2020, 89, 45. [Google Scholar] [CrossRef]
- Traylen, C.; Ramasubramanyan, S.; Zuo, J.; Rowe, M.; Almohammad, R.; Heesom, K.; Sweet, S.M.M.; Matthews, D.A.; Sinclair, A.J. Identification of Epstein-Barr Virus Replication Proteins in Burkitt’s Lymphoma Cells. Pathogens 2015, 4, 739. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Song, M.; Camargo, M.C.; Van Duine, J.; Williams, S.; Chung, Y.; Kim, K.M.; Lissowska, J.; Sivins, A.; Gao, W.; et al. Identification of Anti-Epstein-Barr Virus (EBV) Antibody Signature in EBV-Associated Gastric Carcinoma. Gastric Cancer 2021, 24, 858. [Google Scholar] [CrossRef]
- Peng, R.J.; Han, B.W.; Cai, Q.Q.; Zuo, X.Y.; Xia, T.; Chen, J.R.; Feng, L.N.; Lim, J.Q.; Chen, S.W.; Zeng, M.S.; et al. Genomic and Transcriptomic Landscapes of Epstein-Barr Virus in Extranodal Natural Killer T-Cell Lymphoma. Leukemia 2018, 33, 1451–1462. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Hagemeier, S.R.; Fingeroth, J.D.; Gershburg, E.; Pagano, J.S.; Kenney, S.C. The Epstein-Barr Virus (EBV)-Encoded Protein Kinase, EBV-PK, but Not the Thymidine Kinase (EBV-TK), Is Required for Ganciclovir and Acyclovir Inhibition of Lytic Viral Production. J. Virol. 2010, 84, 4534. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.W.; Wang, S.S.; Hung, C.H.; Hung, Y.H.; Lin, C.L.; Chang, P.J. The Epstein-Barr Virus Lytic Protein BMLF1 Induces Upregulation of GRP78 Expression through ATF6 Activation. Int. J. Mol. Sci. 2021, 22, 4024. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, E.L.; Lagunoff, M. Viral Activation of Cellular Metabolism. Virology 2015, 479–480, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccaluga, P.P.; Weber, A.; Ambrosio, M.R.; Ahmed, Y.; Leoncini, L. Epstein–Barr Virus-Induced Metabolic Rearrangements in Human B-Cell Lymphomas. Front. Microbiol. 2018, 9, 1233. [Google Scholar] [CrossRef]
- Li, Y.; Webster-Cyriaque, J.; Tomlinson, C.C.; Yohe, M.; Kenney, S. Fatty Acid Synthase Expression Is Induced by the Epstein-Barr Virus Immediate-Early Protein BRLF1 and Is Required for Lytic Viral Gene Expression. J. Virol. 2004, 78, 4197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICTRP Search Portal. Available online: https://trialsearch.who.int/ (accessed on 4 April 2023).
- Koufaris, C.; Nilsson, R. Protein Interaction and Functional Data Indicate MTHFD2 Involvement in RNA Processing and Translation. Cancer Metab. 2018, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Hau, P.M.; Lung, H.L.; Wu, M.; Tsang, C.M.; Wong, K.L.; Mak, N.K.; Lo, K.W. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front. Oncol. 2020, 10, 600. [Google Scholar] [CrossRef]
- Ducker, G.S.; Ghergurovich, J.M.; Mainolfi, N.; Suri, V.; Jeong, S.K.; Li, S.H.J.; Friedman, A.; Manfredi, M.G.; Gitai, Z.; Kim, H.; et al. Human SHMT Inhibitors Reveal Defective Glycine Import as a Targetable Metabolic Vulnerability of Diffuse Large B-Cell Lymphoma. Proc. Natl. Acad. Sci. USA 2017, 114, 11404–11409. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, S.; Zhang, J.; Sun, Z.; Zhang, L.; Ross, C.A.; Huang, Y.C.; Asara, J.M.; Li, H.; Daley, G.Q.; Collins, J.J. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell. Rep. 2017, 21, 2965. [Google Scholar] [CrossRef] [Green Version]
- Mullarky, E.; Lucki, N.C.; Zavareh, R.B.; Anglin, J.L.; Gomes, A.P.; Nicolay, B.N.; Wong, J.C.Y.; Christen, S.; Takahashi, H.; Singh, P.K.; et al. Identification of a Small Molecule Inhibitor of 3-Phosphoglycerate Dehydrogenase to Target Serine Biosynthesis in Cancers. Proc. Natl. Acad. Sci. USA 2016, 113, 1778–1783. [Google Scholar] [CrossRef] [Green Version]
- Pacold, M.E.; Brimacombe, K.R.; Chan, S.H.; Rohde, J.M.; Lewis, C.A.; Swier, L.J.; Possemato, R.; Chen, W.W.; Sullivan, L.B.; Fiske, B.P.; et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 2016, 12, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S. Ivosidenib: First Global Approval. Drugs 2018, 78, 1509–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.S. Enasidenib: First Global Approval. Drugs 2017, 77, 1705–1711. [Google Scholar] [CrossRef]
- Straus, S.E.; Komaroff, A.L.; Wedner, H.J. Chronic Fatigue Syndrome: Point and Counterpoint. J. Infect. Dis. 1994, 170, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Leser, U.; Marschall, M.; Langford, A.; Jilg, W.; Gelderblom, H.; Reichart, P.; Wolf, H. Expression of Proteins Encoded by Epstein-Barr Virus Trans-Activator Genes Depends on the Differentiation of Epithelial Cells in Oral Hairy Leukoplakia. Proc. Natl. Acad. Sci. USA 1991, 88, 8332–8336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okano, M.; Matsumoto, S.; Osato, T.; Sakiyama, Y.; Thiele, G.M.; Purtilo, D.T. Severe Chronic Active Epstein-Barr Virus Infection Syndrome. Clin. Microbiol. Rev. 1991, 4, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Jinta, M.; Imadome, K.I.; Komatsu, H.; Yoshimori, M.; Kurata, M.; Fujiwara, S.; Miura, O.; Arai, A. L-Asparaginase Monotherapy for EBV-Positive T/NK Lymphoproliferative Diseases: A Pilot Study. J. Med. Dent. Sci. 2015, 62, 1–9. [Google Scholar] [CrossRef]
Metabolic Pathways Implicated | Specific Factor/Molecule(s) Targeted by Intervention | Inhibitor | Trial ID |
---|---|---|---|
Amino acid metabolism | Extracellular asparagine and glutamine | Asparaginase | JPRN-UMIN000003498 |
Folate metabolism | Dihydrofolate reductase (DHFR) | Methotrexate | NCT00822432 NCT01964755 |
Glucose metabolism | Glycolytic enzymes | N.A. * | ChiCTR-ROC-15006026 NCT02481089 |
Monocarboxylate transporter 1 (MCT1; also known as SLC16A1) | AZD3965 | NCT01791595 | |
Iron metabolism | Free iron | Deferasirox | NCT01159067 NCT01273766 |
Iron transporters | N.A. * | ChiCTR2100042554 | |
Nucleotide metabolism | Dihydropyrimidine dehydrogenase (DPD) | Eniluracil | NCT00264472 |
Gimeracil | ChiCTR1800015670 | ||
Ribonucleotide reductase (RNR) | Gemcitabine | ChiCTR-ONC-12002613 ChiCTR1900022288 ChiCTR1900027112 ChiCTR2100041804 CTRI/2020/10/028269 EUCTR2010-022444-20-NL KCT0003189 KCT0006096 NCT00060112 NCT00072514 NCT00370890 NCT00436800 NCT00690872 NCT00697905 NCT01309633 NCT01417390 NCT01528618 NCT01596868 NCT01854203 NCT02016417 NCT02460887 NCT02578641 NCT02789189 NCT02878889 NCT03639467 NCT03707509 NCT04405622 NCT04458909 NCT04517214 NCT04522050 NCT04833257 NCT04890522 NCT04898374 NCT05062005 NCT05294172 NCT05340270 NCT05484375 NCT05576272 NTR2740 | |
Hydroxyurea | NCT00180973 NCT01964755 | ||
Thymidylate synthase | 5-fluorouracil | ChiCTR-TRC-13003378 | |
Capecitabine | NCT04072107 | ||
Tegafur | ChiCTR1800015670 | ||
Nutrient Signalling via mTOR | FK506-binding protein 12 (FKBP12) | RAD001 | NCT01341834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, N.Y.T.; Wang, L.W. Targeting Metabolic Vulnerabilities in Epstein–Barr Virus-Driven Proliferative Diseases. Cancers 2023, 15, 3412. https://doi.org/10.3390/cancers15133412
Leung NYT, Wang LW. Targeting Metabolic Vulnerabilities in Epstein–Barr Virus-Driven Proliferative Diseases. Cancers. 2023; 15(13):3412. https://doi.org/10.3390/cancers15133412
Chicago/Turabian StyleLeung, Nicole Yong Ting, and Liang Wei Wang. 2023. "Targeting Metabolic Vulnerabilities in Epstein–Barr Virus-Driven Proliferative Diseases" Cancers 15, no. 13: 3412. https://doi.org/10.3390/cancers15133412
APA StyleLeung, N. Y. T., & Wang, L. W. (2023). Targeting Metabolic Vulnerabilities in Epstein–Barr Virus-Driven Proliferative Diseases. Cancers, 15(13), 3412. https://doi.org/10.3390/cancers15133412