Prediction of 2-[18F]FDG PET-CT SUVmax for Adrenal Mass Characterization: A CT Radiomics Feasibility Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Imaging Technique
2.3. Image Segmentation
2.4. Image Preprocessing and Radiomics Feature Extraction
2.5. Data Preprocessing and Feature Selection
2.6. Linear Regression and Radiomics Standardized Value (RadSV) Estimation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.H.; Chaudhry, F.S.; Mayo-Smith, W.W. The Incidental Adrenal Mass on CT: Prevalence of Adrenal Disease in 1,049 Consecutive Adrenal Masses in Patients with No Known Malignancy. Am. J. Roentgenol. 2008, 190, 1163–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bovio, S.; Cataldi, A.; Reimondo, G.; Sperone, P.; Novello, S.; Berruti, A.; Borasio, P.; Fava, C.; Dogliotti, L.; Scagliotti, G.V.; et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J. Endocrinol. Investig. 2006, 29, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Kebebew, E. Adrenal Incidentaloma. N. Engl. J. Med. 2021, 384, 1542–1551. [Google Scholar] [CrossRef]
- Elbanan, M.G.; Javadi, S.; Ganeshan, D.; Habra, M.A.; Rao Korivi, B.; Faria, S.C.; Elsayes, K.M. Adrenal cortical adenoma: Current update, imaging features, atypical findings, and mimics. Abdom. Radiol. 2020, 45, 905–916. [Google Scholar] [CrossRef]
- Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. Pheochromocytoma as a frequent false-positive in adrenal washout CT: A systematic review and meta-analysis. Eur. Radiol. 2018, 28, 1027–1036. [Google Scholar] [CrossRef]
- Nandra, G.; Duxbury, O.; Patel, P.; Patel, J.H.; Patel, N.; Vlahos, I. Technical and Interpretive Pitfalls in Adrenal Imaging. RadioGraphics 2020, 40, 1041–1060. [Google Scholar] [CrossRef]
- Corwin, M.T.; Schieda, N.; Remer, E.M.; Caoili, E.M. Management of incidental adrenal nodules: A survey of abdominal radiologists conducted by the Society of Abdominal Radiology Disease-Focused Panel on Adrenal Neoplasms. Abdom. Radiol. 2022, 47, 1360–1368. [Google Scholar] [CrossRef]
- Dinnes, J.; Bancos, I.; Ferrante di Ruffano, L.; Chortis, V.; Davenport, C.; Bayliss, S.; Sahdev, A.; Guest, P.; Fassnacht, M.; Deeks, J.J.; et al. Management of Endocrine Disease: Imaging for the diagnosis of malignancy in incidentally discovered adrenal masses: A systematic review and meta-analysis. Eur. J. Endocrinol. 2016, 175, R51–R64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo-Smith, W.W.; Song, J.H.; Boland, G.L.; Francis, I.R.; Israel, G.M.; Mazzaglia, P.J.; Berland, L.L.; Pandharipande, P.V. Management of Incidental Adrenal Masses: A White Paper of the ACR Incidental Findings Committee. J. Am. Coll. Radiol. 2017, 14, 1038–1044. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Lee, S.-W.; Pak, K.; Kim, I.-J.; Kim, K. Diagnostic accuracy of 18 F-FDG PET or PET/CT for the characterization of adrenal masses: A systematic review and meta-analysis. Br. J. Radiol. 2018, 91, 20170520. [Google Scholar] [CrossRef] [PubMed]
- Boland, G.W.L.; Dwamena, B.A.; Jagtiani Sangwaiya, M.; Goehler, A.G.; Blake, M.A.; Hahn, P.F.; Scott, J.A.; Kalra, M.K. Characterization of Adrenal Masses by Using FDG PET: A Systematic Review and Meta-Analysis of Diagnostic Test Performance. Radiology 2011, 259, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Arikan, A.E.; Makay, O.; Teksoz, S.; Vatansever, S.; Alptekin, H.; Albeniz, G.; Demir, A.; Ozpek, A.; Tunca, F. Efficacy of PET-CT in the prediction of metastatic adrenal masses that are detected on follow-up of the patients with prior nonadrenal malignancy: A nationwide multicenter case–control study. Medicine 2022, 101, e30214. [Google Scholar] [CrossRef] [PubMed]
- Sahdev, A.; Willatt, J.; Francis, I.R.; Reznek, R.H. The indeterminate adrenal lesion. Cancer Imaging 2010, 10, 102–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Lei, H.; Pang, J. Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 975183. [Google Scholar] [CrossRef]
- Stanzione, A.; Cuocolo, R.; Ugga, L.; Verde, F.; Romeo, V.; Brunetti, A.; Maurea, S. Oncologic Imaging and Radiomics: A Walkthrough Review of Methodological Challenges. Cancers 2022, 14, 4871. [Google Scholar] [CrossRef]
- Moawad, A.W.; Ahmed, A.; Fuentes, D.T.; Hazle, J.D.; Habra, M.A.; Elsayes, K.M. Machine learning-based texture analysis for differentiation of radiologically indeterminate small adrenal tumors on adrenal protocol CT scans. Abdom. Radiol. 2021, 46, 4853–4863. [Google Scholar] [CrossRef]
- Stanzione, A.; Cuocolo, R.; Verde, F.; Galatola, R.; Romeo, V.; Mainenti, P.P.; Aprea, G.; Guadagno, E.; Del Basso De Caro, M.; Maurea, S. Handcrafted MRI radiomics and machine learning: Classification of indeterminate solid adrenal lesions. Magn. Reson. Imaging 2021, 79, 52–58. [Google Scholar] [CrossRef]
- Stanzione, A.; Galatola, R.; Cuocolo, R.; Romeo, V.; Verde, F.; Mainenti, P.P.; Brunetti, A.; Maurea, S. Radiomics in Cross-Sectional Adrenal Imaging: A Systematic Review and Quality Assessment Study. Diagnostics 2022, 12, 578. [Google Scholar] [CrossRef]
- Kirsch, M.J.; Kohli, M.W.; Long, K.L.; Pitt, S.C.; Schneider, D.F.; Sippel, R.S.; Dedhia, P.H. Utility of the 10 Hounsfield unit threshold for identifying adrenal adenomas: Can we improve? Am. J. Surg. 2020, 220, 920–924. [Google Scholar] [CrossRef]
- Maurea, S.; Bombace, C.; Mainolfi, C.G.; Annunziata, A.; Attanasio, L.; Stanzione, A.; Matano, E.; Mucci, B.; D’Ambrosio, A.; Giordano, C.; et al. Impact of COVID-19 pandemic on 2-[18F]FDG PET/CT imaging work-flow in a single medical institution: Comparison among the three Italian waves. Heliyon 2022, 8, e08819. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. J. Open Source Softw. 2018, 3, 861. [Google Scholar] [CrossRef]
- Li, M.D.; Arun, N.T.; Aggarwal, M.; Gupta, S.; Singh, P.; Little, B.P.; Mendoza, D.P.; Corradi, G.C.A.; Takahashi, M.S.; Ferraciolli, S.F.; et al. Multi-population generalizability of a deep learning-based chest radiograph severity score for COVID-19. Medicine 2022, 101, e29587. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, H.; Liu, Q.; Duan, J.; Zhou, W.; Yu, X.; Chen, Q.; Liu, Z.; Wang, W.; Rong, P. CT Radiomics to Predict Macrotrabecular-Massive Subtype and Immune Status in Hepatocellular Carcinoma. Radiology 2022, 307, e221291. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Chen, Y.; Wang, W.; Cheng, L.; Zhou, X.; Wang, J. Tumor Vascularity and Glucose Metabolism Correlated in Adenocarcinoma, but Not in Squamous Cell Carcinoma of the Lung. PLoS ONE 2014, 9, e91649. [Google Scholar] [CrossRef]
- Bracci, B.; De Santis, D.; Del Gaudio, A.; Faugno, M.C.; Romano, A.; Tarallo, M.; Zerunian, M.; Guido, G.; Polici, M.; Polidori, T.; et al. Adrenal Lesions: A Review of Imaging. Diagnostics 2022, 12, 2171. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.M.; Samei, E.; Mazurowski, M.A.; Zheng, Y.; Allen, B.C.; Nelson, R.C.; Marin, D. Can Texture Analysis Be Used to Distinguish Benign from Malignant Adrenal Nodules on Unenhanced CT, Contrast-Enhanced CT, or In-Phase and Opposed-Phase MRI? Am. J. Roentgenol. 2019, 212, 554–561. [Google Scholar] [CrossRef]
- Yi, X.; Guan, X.; Chen, C.; Zhang, Y.; Zhang, Z.; Li, M.; Liu, P.; Yu, A.; Long, X.; Liu, L.; et al. Adrenal incidentaloma: Machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma. J. Cancer 2018, 9, 3577–3582. [Google Scholar] [CrossRef] [Green Version]
- Shi, B.; Zhang, G.-M.-Y.; Xu, M.; Jin, Z.-Y.; Sun, H. Distinguishing metastases from benign adrenal masses: What can CT texture analysis do? Acta Radiol. 2019, 60, 1553–1561. [Google Scholar] [CrossRef]
- Yu, H.; Parakh, A.; Blake, M.; McDermott, S. Texture Analysis as a Radiomic Marker for Differentiating Benign from Malignant Adrenal Tumors. J. Comput. Assist. Tomogr. 2020, 44, 766–771. [Google Scholar] [CrossRef]
- Andersen, M.B.; Bodtger, U.; Andersen, I.R.; Thorup, K.S.; Ganeshan, B.; Rasmussen, F. Metastases or benign adrenal lesions in patients with histopathological verification of lung cancer: Can CT texture analysis distinguish? Eur. J. Radiol. 2021, 138, 109664. [Google Scholar] [CrossRef] [PubMed]
- Ansquer, C.; Drui, D.; Mirallié, E.; Renaudin-Autain, K.; Denis, A.; Gimenez-Roqueplo, A.-P.; Leux, C.; Toulgoat, F.; Kraeber-Bodéré, F.; Carlier, T. Usefulness of FDG-PET/CT-Based Radiomics for the Characterization and Genetic Orientation of Pheochromocytomas Before Surgery. Cancers 2020, 12, 2424. [Google Scholar] [CrossRef]
- Thuillier, P.; Bourhis, D.; Schick, U.; Alavi, Z.; Guezennec, C.; Robin, P.; Kerlan, V.; Salaun, P.-Y.; Abgral, R. Diagnostic value of positron-emission tomography textural indices for malignancy of 18F-fluorodeoxyglucose-avid adrenal lesions. Q. J. Nucl. Med. Mol. Imaging 2021, 65, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Nakajo, M.; Jinguji, M.; Nakajo, M.; Shinaji, T.; Nakabeppu, Y.; Fukukura, Y.; Yoshiura, T. Texture analysis of FDG PET/CT for differentiating between FDG-avid benign and metastatic adrenal tumors: Efficacy of combining SUV and texture parameters. Abdom. Radiol. 2017, 42, 2882–2889. [Google Scholar] [CrossRef]
- Buvat, I.; Orlhac, F. The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results. J. Nucl. Med. 2019, 60, 1543–1544. [Google Scholar] [CrossRef]
- Kocak, B.; Bulut, E.; Nuri Bayrak, O.; Arda Okumus, A.; Altun, O.; Borekci Arvas, Z.; Kavukoglu, I. NEgatiVE results in Radiomics research (NEVER): A meta-research study of publication bias in leading radiology journals. Eur. J. Radiol. 2023, 163, 110830. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A. Feasible does not mean useful: Do we always need radiomics? Eur. J. Radiol. 2022, 156, 110545. [Google Scholar] [CrossRef]
- Barat, M.; Cottereau, A.-S.; Gaujoux, S.; Tenenbaum, F.; Sibony, M.; Bertherat, J.; Libé, R.; Gaillard, M.; Jouinot, A.; Assié, G.; et al. Adrenal Mass Characterization in the Era of Quantitative Imaging: State of the Art. Cancers 2022, 14, 569. [Google Scholar] [CrossRef]
- Crimì, F.; Quaia, E.; Cabrelle, G.; Zanon, C.; Pepe, A.; Regazzo, D.; Tizianel, I.; Scaroni, C.; Ceccato, F. Diagnostic Accuracy of CT Texture Analysis in Adrenal Masses: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 637. [Google Scholar] [CrossRef]
- Gitto, S.; Cuocolo, R.; Emili, I.; Tofanelli, L.; Chianca, V.; Albano, D.; Messina, C.; Imbriaco, M.; Sconfienza, L.M. Effects of Interobserver Variability on 2D and 3D CT- and MRI-Based Texture Feature Reproducibility of Cartilaginous Bone Tumors. J. Digit. Imaging 2021, 34, 820–832. [Google Scholar] [CrossRef]
- Ren, J.; Yuan, Y.; Qi, M.; Tao, X. Machine learning–based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: Comparison of 2D and 3D segmentation. Eur. Radiol. 2020, 30, 6858–6866. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Caoili, E.M.; Avram, A.M.; Miller, B.S.; Else, T. 18F-FDG-PET/CT Evaluation of Indeterminate Adrenal Masses in Noncancer Patients. J. Clin. Endocrinol. Metab. 2021, 106, 1448–1459. [Google Scholar] [CrossRef] [PubMed]
- Demircioğlu, A. The effect of preprocessing filters on predictive performance in radiomics. Eur. Radiol. Exp. 2022, 6, 40. [Google Scholar] [CrossRef] [PubMed]
NCE Patients (n = 66) | CE Patients (n = 84) | |
---|---|---|
Age (years) * | 68 (15) | 67 (5) |
Oncologic patients (%) | 92 | 95 |
Primary tumor site (n) | 13 lung cancer | 14 non-Hodgkin lymphoma |
10 multiple myeloma | 13 melanoma | |
8 non-Hodgkin lymphoma | 12 breast cancer | |
3 breast cancer | 9 lung cancer | |
3 pancreatic cancer | 6 pancreatic cancer | |
3 colon cancer | 4 colon cancer | |
26 others (2 cases or less) | 26 others (2 cases or less) |
NCE Lesions (n = 71) | CE Lesions (n = 108) | |
---|---|---|
Adenoma (n) | 58 | 81 |
Pheochromocytoma (n) | 2 | 1 |
Metastasis (n) | 11 | 26 |
Multiple lesions (n) | 5 | 24 |
Left side lesions (%) | 79 | 70 |
Lesion maximum diameter (mm) # | 18.5 ± 3.8 | 18.1 ± 4.9 |
SUVmax # | 2.0 ± 1.7 | 3.8 ± 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanzione, A.; Cuocolo, R.; Bombace, C.; Pesce, I.; Mainolfi, C.G.; De Giorgi, M.; Delli Paoli, G.; La Selva, P.; Petrone, J.; Camera, L.; et al. Prediction of 2-[18F]FDG PET-CT SUVmax for Adrenal Mass Characterization: A CT Radiomics Feasibility Study. Cancers 2023, 15, 3439. https://doi.org/10.3390/cancers15133439
Stanzione A, Cuocolo R, Bombace C, Pesce I, Mainolfi CG, De Giorgi M, Delli Paoli G, La Selva P, Petrone J, Camera L, et al. Prediction of 2-[18F]FDG PET-CT SUVmax for Adrenal Mass Characterization: A CT Radiomics Feasibility Study. Cancers. 2023; 15(13):3439. https://doi.org/10.3390/cancers15133439
Chicago/Turabian StyleStanzione, Arnaldo, Renato Cuocolo, Claudia Bombace, Ilaria Pesce, Ciro Gabriele Mainolfi, Marco De Giorgi, Gregorio Delli Paoli, Pasquale La Selva, Jessica Petrone, Luigi Camera, and et al. 2023. "Prediction of 2-[18F]FDG PET-CT SUVmax for Adrenal Mass Characterization: A CT Radiomics Feasibility Study" Cancers 15, no. 13: 3439. https://doi.org/10.3390/cancers15133439
APA StyleStanzione, A., Cuocolo, R., Bombace, C., Pesce, I., Mainolfi, C. G., De Giorgi, M., Delli Paoli, G., La Selva, P., Petrone, J., Camera, L., Klain, M., Del Vecchio, S., Cuocolo, A., & Maurea, S. (2023). Prediction of 2-[18F]FDG PET-CT SUVmax for Adrenal Mass Characterization: A CT Radiomics Feasibility Study. Cancers, 15(13), 3439. https://doi.org/10.3390/cancers15133439