Usefulness of BRCA and ctDNA as Prostate Cancer Biomarkers: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Included Studies
3.2. BRCA 1 and BRCA 2
3.3. Circulating Tumor DNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uhr, A.; Glick, L.; Gomella, L.G. An Overview of Biomarkers in the Diagnosis and Management of Prostate Cancer. Can. J. Urol. 2020, 27, 24–27. [Google Scholar] [PubMed]
- Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, D.; Yan, W.; Yang, D.; Shen, B. Translational Bioinformatics for Diagnostic and Prognostic Prediction of Prostate Cancer in the Next-Generation Sequencing Era. Biomed Res. Int. 2013, 2013, 901578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjelmborg, J.B.; Scheike, T.; Holst, K.; Skytthe, A.; Penney, K.L.; Graff, R.E.; Pukkala, E.; Christensen, K.; Adami, H.O.; Holm, N.V.; et al. The Heritability of Prostate Cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2303–2310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphrey, P.A. Histopathology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030411. [Google Scholar] [CrossRef] [Green Version]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef]
- Schatten, H. Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies. In Cell & Molecular Biology of Prostate Cancer; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1095, pp. 1–14. [Google Scholar] [CrossRef]
- Herberts, C.; Wyatt, A.W. Technical and Biological Constraints on CtDNA-Based Genotyping. Trends Cancer 2021, 7, 995–1009. [Google Scholar] [CrossRef]
- Lee, J.; Yang, S.W.; Jin, L.; Lee, C.L.; Lee, J.Y.; Shin, J.H.; Lim, J.S.; Song, K.H. Is PSA Density of the Peripheral Zone as a Useful Predictor for Prostate Cancer in Patients with Gray Zone PSA Levels? BMC Cancer 2021, 21, 472. [Google Scholar] [CrossRef]
- Alacacioglu, A.; Varol, U.; Kucukzeybek, Y.; Somali, I.; Altun, Z.; Aktas, S.; Tarhan, M.O. BRCA Genes: BRCA 1 and BRCA 2. JBUON 2018, 23, 862–866. [Google Scholar]
- Lee, M.V.; Katabathina, V.S.; Bowerson, M.L.; Mityul, M.I.; Shetty, A.S.; Elsayes, K.M.; Balachandran, A.; Bhosale, P.R.; McCullough, A.E.; Menias, C.O. BRCA-Associated Cancers: Role of Imaging in Screening, Diagnosis, and Management. Radiographics 2017, 37, 1005–1023. [Google Scholar] [CrossRef] [Green Version]
- Ramus, S.J.; Gayther, S.A. The Contribution of BRCA1 and BRCA2 to Ovarian Cancer. Mol. Oncol. 2009, 3, 138. [Google Scholar] [CrossRef] [Green Version]
- Petrucelli, N.; Daly, M.B.; Pal, T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In GeneReviews®; University of Washington: Washington, DC, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK1247/ (accessed on 28 June 2023).
- Casaubon, J.T.; Kashyap, S.; Regan, J.-P. BRCA 1 and 2. In StatPearls; StatPearls: Tampa, FL, USA, 2022. [Google Scholar]
- Oh, M.; Alkhushaym, N.; Fallatah, S.; Althagafi, A.; Aljadeed, R.; Alsowaida, Y.; Jeter, J.; Martin, J.R.; Babiker, H.M.; McBride, A.; et al. The Association of BRCA1 and BRCA2 Mutations with Prostate Cancer Risk, Frequency, and Mortality: A Meta-Analysis. Prostate 2019, 79, 880–895. [Google Scholar] [CrossRef]
- Fachal, L.; Gõmez-Caamaño, A.; Celeiro-Muñoz, C.; Peleteiro, P.; Blanco, A.; Carballo, A.; Forteza, J.; Carracedo, Ú.; Vega, A. BRCA1 Mutations Do Not Increase Prostate Cancer Risk: Results from a Meta-Analysis Including New Data. Prostate 2011, 71, 1768–1779. [Google Scholar] [CrossRef]
- Nikanjam, M.; Kato, S.; Kurzrock, R. Liquid Biopsy: Current Technology and Clinical Applications. J. Hematol. Oncol. 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Pessoa, L.S.; Heringer, M.; Ferrer, V.P. CtDNA as a Cancer Biomarker: A Broad Overview. Crit. Rev. Oncol. Hematol. 2020, 155, 103109. [Google Scholar] [CrossRef]
- Barbany, G.; Arthur, C.; Liedén, A.; Nordenskjöld, M.; Rosenquist, R.; Tesi, B.; Wallander, K.; Tham, E. Cell-Free Tumour DNA Testing for Early Detection of Cancer—A Potential Future Tool. J. Intern. Med. 2019, 286, 118–136. [Google Scholar] [CrossRef] [Green Version]
- Sonpavde, G.; Agarwal, N.; Pond, G.R.; Nagy, R.J.; Nussenzveig, R.H.; Hahn, A.W.; Sartor, O.; Gourdin, T.S.; Nandagopal, L.; Ledet, E.M.; et al. Circulating Tumor DNA Alterations in Patients with Metastatic Castration-Resistant Prostate Cancer. Cancer 2019, 125, 1459–1469. [Google Scholar] [CrossRef]
- Lau, E.; McCoy, P.; Reeves, F.; Chow, K.; Clarkson, M.; Kwan, E.M.; Packwood, K.; Northen, H.; He, M.; Kingsbury, Z.; et al. Detection of CtDNA in Plasma of Patients with Clinically Localised Prostate Cancer Is Associated with Rapid Disease Progression. Genome Med. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Taavitsainen, S.; Annala, M.; Ledet, E.; Beja, K.; Miller, P.J.; Moses, M.; Nykter, M.; Chi, K.N.; Sartor, O.; Wyatt, A.W. Evaluation of Commercial Circulating Tumor DNA Test in Metastatic Prostate Cancer. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Dong, B.; Fan, L.; Yang, B.; Chen, W.; Li, Y.; Wu, K.; Zhang, F.; Dong, H.; Cheng, H.; Pan, J.; et al. Use of Circulating Tumor DNA for the Clinical Management of Metastatic Castration-Resistant Prostate Cancer: A Multicenter, Real-World Study. J. Natl. Compr. Canc. Netw. 2021, 19, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Vandekerkhove, G.; Struss, W.J.; Annala, M.; Kallio, H.M.L.; Khalaf, D.; Warner, E.W.; Herberts, C.; Ritch, E.; Beja, K.; Loktionova, Y.; et al. Circulating Tumor DNA Abundance and Potential Utility in De Novo Metastatic Prostate Cancer. Eur. Urol. 2019, 75, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Billalabeitia, E.; Conteduca, V.; Wetterskog, D.; Jayaram, A.; Attard, G. Circulating Tumor DNA in Advanced Prostate Cancer: Transitioning from Discovery to a Clinically Implemented Test. Prostate Cancer Prostatic Dis. 2019, 22, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Tukachinsky, H.; Madison, R.W.; Chung, J.H.; Gjoerup, O.V.; Severson, E.A.; Dennis, L.; Fendler, B.J.; Morley, S.; Zhong, L.; Graf, R.P.; et al. Genomic Analysis of Circulating Tumor DNA in Patients with Advanced Prostate Cancer Identifies Targetable BRCA Alterations and AR Resistance Mechanisms. Clin. Cancer Res. 2021, 27, 3094. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.J.; Gaudet, M.M.; Pal, P.; Kirchhoff, T.; Balistreri, L.; Vora, K.; Bhatia, J.; Stadler, Z.; Fine, S.W.; Reuter, V.; et al. Germline BRCA Mutations Denote a Clinicopathologic Subset of Prostate Cancer. Clin. Cancer Res. 2010, 16, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, T.; Kauff, N.D.; Mitra, N.; Nafa, K.; Huang, H.; Palmer, C.; Gulati, T.; Wadsworth, E.; Donat, S.; Robson, M.E.; et al. BRCA Mutations and Risk of Prostate Cancer in Ashkenazi Jews. Clin. Cancer Res. 2004, 10, 2918–2921. [Google Scholar] [CrossRef] [Green Version]
- Castro, E.; Goh, C.; Olmos, D.; Saunders, E.; Leongamornlert, D.; Tymrakiewicz, M.; Mahmud, N.; Dadaev, T.; Govindasami, K.; Guy, M.; et al. Germline BRCA Mutations Are Associated With Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in Prostate Cancer. J. Clin. Oncol. 2013, 31, 1748. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Yadav, S.; Ogunleye, F.; Zakalik, D. Male BRCA Mutation Carriers: Clinical Characteristics and Cancer Spectrum. BMC Cancer 2018, 18, 179. [Google Scholar] [CrossRef] [Green Version]
- Segal, N.; Ber, Y.; Benjaminov, O.; Tamir, S.; Yakimov, M.; Kedar, I.; Rosenbaum, E.; Sela, S.; Ozalvo, R.; Shavit-Grievink, L.; et al. Imaging-Based Prostate Cancer Screening among BRCA Mutation Carriers—Results from the First Round of Screening. Ann. Oncol. 2020, 31, 1545–1552. [Google Scholar] [CrossRef]
- Nukaya, T.; Sumitomo, M.; Sugihara, E.; Takeda, M.; Nohara, S.; Tanishima, S.; Takenaka, M.; Zennami, K.; Takahara, K.; Shiroki, R.; et al. Estimating Copy Number to Determine BRCA2 Deletion Status and to Expect Prognosis in Localized Prostate Cancer. Cancer Med. 2023, 12, 8154–8165. [Google Scholar] [CrossRef]
- Han, H.; Park, C.K.; Cho, N.H.; Lee, J.; Jang, W.S.; Ham, W.S.; Choi, Y.D.; Cho, K.S. Characteristics of BRCA2 Mutated Prostate Cancer at Presentation. Int. J. Mol. Sci. 2022, 23, 13426. [Google Scholar] [CrossRef]
- Zhu, Q.; Han, S.X.; Zhou, C.Y.; Cai, M.J.; Dai, L.P.; Zhang, J.Y. Autoimmune Response to PARP and BRCA1/BRCA2 in Cancer. Oncotarget 2015, 6, 11575. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef]
- Annala, M.; Vandekerkhove, G.; Khalaf, D.; Taavitsainen, S.; Beja, K.; Warner, E.W.; Sunderland, K.; Kollmannsberger, C.; Eigl, B.J.; Finch, D.; et al. Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate Cancer. Cancer Discov. 2018, 8, 444–457. [Google Scholar] [CrossRef] [Green Version]
- van der Doelen, M.J.; Isaacsson Velho, P.; Slootbeek, P.H.J.; Pamidimarri Naga, S.; Bormann, M.; van Helvert, S.; Kroeze, L.I.; van Oort, I.M.; Gerritsen, W.R.; Antonarakis, E.S.; et al. Impact of DNA Damage Repair Defects on Response to Radium-223 and Overall Survival in Metastatic Castration-Resistant Prostate Cancer. Eur. J. Cancer 2020, 136, 16–24. [Google Scholar] [CrossRef]
- Nicolosi, P.; Ledet, E.; Yang, S.; Michalski, S.; Freschi, B.; O’Leary, E.; Esplin, E.D.; Nussbaum, R.L.; Sartor, O. Prevalence of Germline Variants in Prostate Cancer and Implications for Current Genetic Testing Guidelines. JAMA Oncol. 2019, 5, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Momozawa, Y.; Sasai, R.; Usui, Y.; Shiraishi, K.; Iwasaki, Y.; Taniyama, Y.; Parsons, M.T.; Mizukami, K.; Sekine, Y.; Hirata, M.; et al. Expansion of Cancer Risk Profile for BRCA1 and BRCA2 Pathogenic Variants. JAMA Oncol. 2022, 8, 871–878. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, J.; Gu, W.; Qin, X.; Dai, B.; Lin, G.; Gan, H.; Freedland, S.J.; Zhu, Y.; Ye, D. Germline DNA Repair Gene Mutation Landscape in Chinese Prostate Cancer Patients. Eur. Urol. 2019, 76, 280–283. [Google Scholar] [CrossRef]
- Darst, B.F.; Wan, P.; Sheng, X.; Bensen, J.T.; Ingles, S.A.; Rybicki, B.A.; Nemesure, B.; John, E.M.; Fowke, J.H.; Stevens, V.L.; et al. A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. Eur. Urol. 2020, 78, 316–320. [Google Scholar] [CrossRef]
- Cybulski, C.; Wokołorczyk, D.; Kluźniak, W.; Jakubowska, A.; Górski, B.; Gronwald, J.; Huzarski, T.; Kashyap, A.; Byrski, T.; Dȩbniak, T.; et al. An Inherited NBN Mutation Is Associated with Poor Prognosis Prostate Cancer. Br. J. Cancer 2012, 108, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Neff, R.T.; Senter, L.; Salani, R. BRCA Mutation in Ovarian Cancer: Testing, Implications and Treatment Considerations. Ther. Adv. Med. Oncol. 2017, 9, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, A.; Ho, C.Y.S.; Shin, V.Y.; Ng, A.T.L.; Chan, T.L.; Ma, E.S.K. Molecular Characteristics of Asian Male BRCA-Related Cancers. Breast Cancer Res. Treat. 2023, 198, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Barnicle, A.; Sibilla, C.; Lai, Z.; Corcoran, C.; Barrett, J.C.; Adelman, C.A.; Qiu, P.; Easter, A.; Dearden, S.; et al. Detection of BRCA1, BRCA2, and ATM Alterations in Matched Tumor Tissue and Circulating Tumor DNA in Patients with Prostate Cancer Screened in PROfound. Clin. Cancer Res. 2022, 29, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Eeles, R. The Role of BRCA1 and BRCA2 in Prostate Cancer. Asian J. Androl. 2012, 14, 409. [Google Scholar] [CrossRef] [Green Version]
- Sztupinszki, Z.; Diossy, M.; Krzystanek, M.; Borcsok, J.; Pomerantz, M.M.; Tisza, V.; Spisak, S.; Rusz, O.; Csabai, I.; Freedman, M.L.; et al. Detection of Molecular Signatures of Homologous Recombination Deficiency in Prostate Cancer with or without BRCA1/2 Mutations. Clin. Cancer Res. 2020, 26, 2673. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.N.; Domchek, S.M.; Nathanson, K.L.; Robson, M.E. Population Frequency of Germline BRCA1/2 Mutations. J. Clin. Oncol. 2016, 34, 4183–4185. [Google Scholar] [CrossRef]
- Adjiri, A. DNA Mutations May Not Be the Cause of Cancer. Oncol. Ther. 2017, 5, 85. [Google Scholar] [CrossRef]
- Gann, P.H. Risk Factors for Prostate Cancer. Rev. Urol. 2002, 4, S3. [Google Scholar]
- Sánchez-Herrero, E.; Serna-Blasco, R.; Robado de Lope, L.; González-Rumayor, V.; Romero, A.; Provencio, M. Circulating Tumor DNA as a Cancer Biomarker: An Overview of Biological Features and Factors That May Impact on CtDNA Analysis. Front. Oncol. 2022, 12, 3410. [Google Scholar] [CrossRef]
- Zill, O.A.; Banks, K.C.; Fairclough, S.R.; Mortimer, S.A.; Vowles, J.V.; Mokhtari, R.; Gandara, D.R.; Mack, P.C.; Odegaard, J.I.; Nagy, R.J.; et al. The Landscape of Actionable Genomic Alterations in Cell-Free Circulating Tumor DNA from 21,807 Advanced Cancer Patients. Clin. Cancer Res. 2018, 24, 3528–3538. [Google Scholar] [CrossRef] [Green Version]
- Cescon, D.W.; Bratman, S.V.; Chan, S.M.; Siu, L.L. Circulating Tumor DNA and Liquid Biopsy in Oncology. Nat. Cancer 2020, 1, 276–290. [Google Scholar] [CrossRef]
- Clatot, F. Review CtDNA and Breast Cancer. Recent Results Cancer Res. 2020, 215, 231–252. [Google Scholar] [CrossRef]
- Alese, O.B.; Cook, N.; Ortega-Franco, A.; Ulanja, M.B.; Tan, L.; Tie, J. Circulating Tumor DNA: An Emerging Tool in Gastrointestinal Cancers. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 279–298. [Google Scholar] [CrossRef]
- Arisi, M.F.; Dotan, E.; Fernandez, S.V. Circulating Tumor DNA in Precision Oncology and Its Applications in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 4441. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Gassa, A.; Buchner, D.; Alakus, H.; Dong, Q.; Ren, N.; Liu, M.; Odenthal, M.; Stippel, D.; et al. Circulating Tumor DNA as an Emerging Liquid Biopsy Biomarker for Early Diagnosis and Therapeutic Monitoring in Hepatocellular Carcinoma. Int. J. Biol. Sci. 2020, 16, 1551. [Google Scholar] [CrossRef]
- Hall, M.J.; Reid, J.E.; Burbidge, L.A.; Pruss, D.; Deffenbaugh, A.M.; Frye, C.; Wenstrup, R.J.; Ward, B.E.; Scholl, T.A.; Noll, W.W. BRCA1 and BRCA2 Mutations in Women of Different Ethnicities Undergoing Testing for Hereditary Breast-Ovarian Cancer. Cancer 2009, 115, 2222–2233. [Google Scholar] [CrossRef] [Green Version]
Biomarker | First Author | Year of Publication | Country | Method of Detection | Specimen | High Expression | Total | Citation |
---|---|---|---|---|---|---|---|---|
Circulating tumor DNA | Guru Sonpavde | 2019 | USA | genomic profiling | Blood | 482 | 514 | [20] |
circulating tumor DNA | Edmund Lau | 2020 | Australia | genome sequencing | plasma | 2 | 8 | [21] |
circulating tumor DNA | Sinja Taavitsainen | 2019 | Canada | The Guardant360 commercial ctDNA assay | blood | 14 | 24 | [22] |
circulating tumor DNA | Baijun Dong | 2021 | China | targeted next-generation sequencing test | plasma | 292 | 306 | [23] |
circulating tumor DNA | Gillian Vandekerkhove | 2019 | Canada | targeted next-generation sequencing test | plasma cell-free DNA (cfDNA) | 26 | 35 | [24] |
circulating tumor DNA | Anuradha Jayaram | 2021 | UK | targeted next-generation sequencing test | plasma | 110 | 311 | [25] |
circulating tumor DNA | Hanna Tukachinsky | 2021 | USA | Hybrid-capture-based gene panel NGS assays | plasma | 3127 | 3334 | [26] |
BRCA1 | David J. Gallagher | 2010 | USA | PCR | blood | 6 | 832 | [27] |
BRCA1 | Tomas Kirchhoff | 2004 | USA | genotyping | blood | 5 | 251 | [28] |
BRCA1 | Elena Castro | 2013 | UK | genetic testing | genome sequenced samples | 18 | 2019 | [29] |
BRCA1 | Mohammed Ibrahim | 2018 | USA | genetic testing | genome sequenced samples | 2 | 13 | [30] |
BRCA1 | Segal N. | 2020 | Israel | gene sequencing | genome sequenced samples | 23 | 45 | [31] |
BRCA1 | Takuhisa Nukaya | 2023 | Japan | PleSSision-Rapid test | formalin-fixed paraffin embedded tissues | 6 | 126 | [32] |
BRCA1 | Hyunho Han | 2022 | Korea | Targeted DNA and RNA sequencing | formalin-fixed paraffin-embedded | 26 | 126 | [33] |
BRCA1 | Qing Zhu | 2015 | China | ELISA | serum | 30 | 107 | [34] |
BRCA1 | Colin. C. Pritchard | 2016 | USA | whole-exome sequencing of germline and tumor DNA | buccal swabs, buffy coats, or whole blood | 6 | 629 | [35] |
BRCA1 | Matti Annala | 2018 | Canada | whole-exome sequencing of germline and tumor DNA | blood | 1 | 319 | [36] |
BRCA1 | Pedro Isaacsson Velho | 2020 | USA | next-generation sequencing (NGS) | saliva | 2 | 150 | [37] |
BRCA1 | Piper Nicolosi | 2019 | USA | gene sequencing | blood and saliva | 38 | 3459 | [38] |
BRCA1 | Yukihide Momozawa | 2022 | Japan | multiplex polymerase chain reaction–based target sequence method | from a Japanese nationwide biobank | 14 | 7636 | [39] |
BRCA1 | Yishuo Wua | 2019 | China | genetic testing | retrospective data | 3 | 1694 | [40] |
BRCA1 | Burcu F. Darst | 2021 | USA | gene sequencing | DNA samples | 15 | 2770 | [41] |
BRCA1 | Cezary Cybulski | 2013 | Poland | genotyping | blood | 2 | 390 | [42] |
BRCA2 | Qing Zhu | 2015 | China | ELISA | serum | 5 | 107 | [34] |
BRCA2 | Colin C. Pritchard | 2016 | USA | whole-exome sequencing of germline and tumor DNA | buccal swabs, buffy coats, or whole blood | 37 | 692 | [35] |
No | Biomarker | PCa + Dysregulated | PCa + Total | % |
---|---|---|---|---|
1 David J. Gallagher et al., 2010 | BRCA1 | 6 | 832 | 0.7% |
BRCA2 | 20 | 832 | 2.4% | |
2 Tomas Kirchhoff et al., 2004 | BRCA1 | 5 | 251 | 2.0% |
BRCA2 | 8 | 251 | 3.2% | |
3 Elena Castro et al., 2013 | BRCA1 | 18 | 2019 | 8.8% |
BRCA2 | 61 | 2019 | 0.9% | |
4 Mohammed Ibrahim et al., 2018 | BRCA1 | 2 | 13 | 3.0% |
BRCA2 | 11 | 13 | 15.4% | |
5 Segal N. et al., 2020 | BRCA1 | 23 | 45 | 84.6% |
BRCA2 | 22 | 45 | 51.1% | |
6 Takuhisa Nukaya et al., 2023 | BRCA1 | 6 | 126 | 48.9% |
BRCA2 | 17 | 126 | 4.8% | |
7 Hyunho Han et al., 2022 | BRCA1 | 26 | 126 | 13.5% |
BRCA2 | 0 | 0 | 0% | |
8 Qing Zhu et al., 2015 | BRCA1 | 30 | 107 | 28.0% |
BRCA2 | 5 | 107 | 4.7% | |
9 Colin.C. Pritchardet al 2016 | BRCA1 | 6 | 629 | 1.0% |
BRCA2 | 37 | 692 | 5.3% | |
10 Matti Annala et al., 2018 | BRCA1 | 1 | 319 | 0.3% |
BRCA2 | 16 | 319 | 5.0% | |
11Pedro Isaacsson Velho et al., 2020 | BRCA1 | 2 | 150 | 1.3% |
BRCA2 | 9 | 150 | 6.0% | |
12 Piper Nicolosi et al., 2019 | BRCA1 | 38 | 3459 | 1.1% |
BRCA2 | 75 | 3459 | 2.2% | |
13 Yukihide Momozawa et al., 2022 | BRCA1 | 14 | 7636 | 0.2% |
BRCA2 | 38 | 7636 | 0.5% | |
14Yishuo Wua et al., 2019 | BRCA1 | 3 | 1694 | 0.2% |
BRCA2 | 20 | 1694 | 1.2% | |
15 Burcu F. Darst et al 2021 | BRCA1 | 15 | 2770 | 0.5% |
BRCA2 | 59 | 2770 | 2.1% | |
16 Cezary Cybulski et al., 2013 | BRCA1 | 2 | 390 | 0.5% |
BRCA2 | 4 | 390 | 1.0% |
Publication | CASE | Total | |
---|---|---|---|
PCa + High Expression | PCa + Low/Lack Expression | ||
1 Guru Sonpavde et al., 2019 | 482 | 32 | 514 |
2 Edmund Lau et al., 2020 | 2 | 6 | 8 |
3 Sinja Taavitsainen et al., 2019 | 14 | 10 | 24 |
4 Baijun Dong et al., 2021 | 292 | 14 | 306 |
5 Gillian Vandekerkhove et al., 2019 | 26 | 9 | 35 |
6 Anuradha Jayaram et al., 2021 | 110 | 201 | 311 |
7 Hanna Tukachinsky et al., 2021 | 3127 | 201 | 3334 |
sum | 926 | 272 | 1198 |
No | PCa + High Expression | PCa + without High Expression |
---|---|---|
1 | 94% | 6% |
2 | 25% | 75% |
3 | 58% | 42% |
4 | 95% | 5% |
5 | 74% | 26% |
6 | 35% | 65% |
7 | 94% | 6% |
sum | 89% | 11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domrazek, K.; Pawłowski, K.; Jurka, P. Usefulness of BRCA and ctDNA as Prostate Cancer Biomarkers: A Meta-Analysis. Cancers 2023, 15, 3452. https://doi.org/10.3390/cancers15133452
Domrazek K, Pawłowski K, Jurka P. Usefulness of BRCA and ctDNA as Prostate Cancer Biomarkers: A Meta-Analysis. Cancers. 2023; 15(13):3452. https://doi.org/10.3390/cancers15133452
Chicago/Turabian StyleDomrazek, Kinga, Karol Pawłowski, and Piotr Jurka. 2023. "Usefulness of BRCA and ctDNA as Prostate Cancer Biomarkers: A Meta-Analysis" Cancers 15, no. 13: 3452. https://doi.org/10.3390/cancers15133452
APA StyleDomrazek, K., Pawłowski, K., & Jurka, P. (2023). Usefulness of BRCA and ctDNA as Prostate Cancer Biomarkers: A Meta-Analysis. Cancers, 15(13), 3452. https://doi.org/10.3390/cancers15133452