Venous Thromboembolism and Primary Thromboprophylaxis in Perioperative Pancreatic Cancer Care
Abstract
:Simple Summary
Abstract
1. Introduction
2. Incidence of VTE in Patients with PDAC
3. Risk Factors of PDAC-Associated Thrombosis
3.1. General Individual Risk Factors
3.2. Stage- and Tumor-Location-Related Risk Factors
3.3. PDAC-Treatment-Related Risk Factors
4. Selecting Patients at Risk of VTE
4.1. Biomarkers for VTE Risk in PDAC
4.2. VTE Risk Assessment Tools in PDAC
5. Primary Thromboprophylaxis in PDAC
LMWH | DOAC | |||||
---|---|---|---|---|---|---|
Study | CONKO-004 Pelzer et al. (2015) [97] | FRAGEM Maraveyas et al. (2012) [96] | PROTECHT Agnelli et al. (2009) [98] | SAVE-ONCO Agnelli et al. (2012) [99] | AVERT Carrier et al. (2019) [100,101] | CASSINI Vadhan-Raj et al. (2020) [102] |
Cancer stage | LAPC or metastatic | LAPC, recurrent or metastatic | LAPC or metastatic | LAPC or metastatic | Newly diagnosed or progression, all cancer stages | All stages |
No metastases (I/C) | 26/22 | 52/41 LAPC: 31/26 Metastatic: 29/37 | - | - | - | 39/36 Stage I/II: 21/15 Stage III: 14/17 Stage IV: 61/65 |
Chemotherapy regimen | Gemcitabine or Gemcitabine+ 5-FU+Cisplatin | Gemcitabine | - | - | - | 5-FU-based or gemcitabine-based or gemcitabine+ Capecitabine /5-FU |
Study intervention (I) | Chemotherapy alone or chemotherapy plus enoxaparin 1 mg/kg once daily | Gemcitabine alone or gemcitabine plus dalteparin 200 IU/kg once daily for 4 weeks followed by 150 IU/kg once daily for 8 weeks | Nadroparin 3800 IU once daily or placebo | Semuloparin 20 mg once daily versus placebo | Apixaban 2.5 mg twice daily or placebo | Rivaroxaban 10 mg once daily or placebo |
Duration intervention | 3 months | 12 weeks | Duration chemotherapy | Duration chemotherapy | 180 days | 180 days |
Follow-up | 3 months | 100 days | Duration intervention plus 10 days | Duration intervention plus 3 days | 210 days | 180 days |
VTE (I/C) | 1.3% vs. 10.2% p = 0.001 NNT = 11 | 3% vs. 23% p = 0.002 NNT = 6 | 5.9% vs. 8.3% NNT = 42 | 2.4% vs. 10.9% NNT = 12 | 5% vs. 16% p = 0.039 NNT = 9 | 3.7% vs. 10.1% NNT = 15 |
MB (I/C) | 4.5% vs. 3.4% NS NNH = 76 | 3.2% vs. 3.4% NS | - | - | 5% vs. 3% NS NNH = 50 | 1.5% vs. 2.3% NS NNH = 125 |
6. Effects of Primary Thromboprophylaxis on Survival in Patients with PDAC
7. Current Guidelines on Thromboprophylaxis in PDAC
8. Postoperative Thromboprophylaxis in Patients with Resectable Pancreatic Cancer Undergoing Pancreatectomy
9. Contraindications to Primary Thromboprophylaxis
9.1. Drug–Drug Interactions of Chemotherapy and Thromboprophylaxis
9.2. Interruption of Primary Thromboprophylaxis during Neoadjuvant Chemotherapy
Chemotherapy-Induced Thrombocytopenia
10. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer. 2018, 103, 356–387. [Google Scholar] [CrossRef]
- Huang, L.; Jansen, L.; Balavarca, Y.; Molina-Montes, E.; Babaei, M.; Van Der Geest, L.; Lemmens, V.; Van Eycken, L.; De Schutter, H.; Johannesen, T.B.; et al. Resection of pancreatic cancer in Europe and USA: An international large-scale study highlighting large variations. Gut 2019, 68, 130–139. [Google Scholar] [CrossRef]
- Versteijne, E.; van Dam, J.L.; Suker, M.; Janssen, Q.P.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; et al. Neoadjuvant Chemoradiotherapy Versus Upfront Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Long-Term Results of the Dutch Randomized PREOPANC Trial. J. Clin. Oncol. 2022, 40, 1220–1230. [Google Scholar] [CrossRef]
- Janssen, Q.P.; van Dam, J.L.; Bonsing, B.A.; Bos, H.; Bosscha, K.P.; Coene, P.P.L.O.; van Eijck, C.H.J.; de Hingh, I.H.J.T.; Karsten, T.M.; van der Kolk, M.B.; et al. Total neoadjuvant FOLFIRINOX versus neoadjuvant gemcitabine-based chemoradiotherapy and adjuvant gemcitabine for resectable and borderline resectable pancreatic cancer (PREOPANC-2 trial): Study protocol for a nationwide multicenter randomized controlled trial. BMC Cancer. 2021, 21, 300. [Google Scholar] [CrossRef]
- Perioperative or Adjuvant mFOLFIRINOX for Resectable Pancreatic Cancer—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04927780?term=preopanc&draw=2&rank=2 (accessed on 3 February 2023).
- Ghaneh, P.; Palmer, D.; Cicconi, S.; Jackson, R.; Halloran, C.M.; Rawcliffe, C.; Sripadam, R.; Mukherjee, S.; Soonawalla, Z.; Wadsley, J.; et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): A four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 157–168. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Duong, M.M.; Sohal, D.P.S.; Gandhi, N.S.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L.I.; Chiorean, E.G.; Guthrie, K.A.; Lowy, A.M.; et al. Surgical Outcome Results from SWOG S1505: A Randomized Clinical Trial of mFOLFIRINOX vs. Gemcitabine/nab-Paclitaxel for Perioperative Treatment of Resectable Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2020, 272, 481. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Meyers, J.P.; Herman, J.M.; Choung, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.D.W.; Schwartz, L.H.; Behr, S.; et al. Alliance A021501: Preoperative mFOLFIRINOX or mFOLFIRINOX Plus Hypofractionated Radiation Therapy (RT) for Borderline Resectable (BR) Adenocarcinoma of the Pancreas. J. Clin. Oncol. 2021, 39 (Suppl. 3), 377. Available online: https://doi-org.mu.idm.oclc.org/101200/JCO2021393_suppl377 (accessed on 16 May 2023). [CrossRef]
- Sohal, D.P.S.; Duong, M.; Ahmad, S.A.; Gandhi, N.S.; Beg, M.S.; Wang-Gillam, A.; Wade, J.L.; Chiorean, E.G.; Guthrie, K.A.; Lowy, A.M.; et al. Efficacy of Perioperative Chemotherapy for Resectable Pancreatic Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 421–427. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Meyers, J.; Herman, J.M.; Chuong, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.; Schwartz, L.; Behr, S.; et al. Efficacy of Preoperative mFOLFIRINOX vs mFOLFIRINOX Plus Hypofractionated Radiotherapy for Borderline Resectable Adenocarcinoma of the Pancreas: The A021501 Phase 2 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1263–1270. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Wun, T.; White, R.H. Epidemiology of cancer-related venous thromboembolism. Best Pract. Res. Clin. Haematol. 2009, 22, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, A.S.; Soff, G.A.; Capanu, M.; Crosbie, C.; Shah, M.A.; Kelsen, D.P.; Denton, B.; Gardos, S.; O'Reilly, E.M. Analysis of incidence and clinical outcomes in patients with thromboembolic events and invasive exocrine pancreatic cancer. Cancer 2012, 118, 3053–3061. [Google Scholar] [CrossRef] [PubMed]
- Blom, J.W.; Osanto, S.; Rosendaal, F.R. High risk of venous thrombosis in patients with pancreatic cancer: A cohort study of 202 patients. Eur. J. Cancer 2006, 42, 410–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishigaki, K.; Nakai, Y.; Isayama, H.; Saito, K.; Hamada, T.; Takahara, N.; Mizuno, S.; Mohri, D.; Kogure, H.; Matsubara, S.; et al. Thromboembolisms in Advanced Pancreatic Cancer: A Retrospective Analysis of 475 Patients. Pancreas 2017, 46, 1069–1075. [Google Scholar] [CrossRef]
- Mandalà, M.; Reni, M.; Cascinu, S.; Barni, S.; Floriani, I.; Cereda, S.; Berardi, R.; Mosconi, S.; Torri, V.; Labianca, R. Venous thromboembolism predicts poor prognosis in irresectable pancreatic cancer patients. Ann. Oncol. 2007, 18, 1660–1665. [Google Scholar] [CrossRef]
- Menapace, L.A.; Peterson, D.R.; Berry, A.; Sousou, T.; Khorana, A.A. Symptomatic and incidental thromboembolism are both associated with mortality in pancreatic cancer. Thromb. Haemost. 2011, 106, 371–378. [Google Scholar] [CrossRef]
- Muñoz Martín, A.J.; García Alfonso, P.; Rupérez Blanco, A.B.; Pérez Ramírez, S.; Blanco Codesido, M.; Martín Jiménez, M. Incidence of venous thromboembolism (VTE) in ambulatory pancreatic cancer patients receiving chemotherapy and analysis of Khorana’s predictive model. Clin. Transl. Oncol. 2014, 16, 927–930. [Google Scholar] [CrossRef]
- Berger, A.K.; Singh, H.M.; Werft, W.; Muckenhuber, A.; Sprick, M.R.; Trumpp, A.; Weichert, W.; Jäger, D.; Springfeld, C. High prevalence of incidental and symptomatic venous thromboembolic events in patients with advanced pancreatic cancer under palliative chemotherapy: A retrospective cohort study. Pancreatology 2017, 17, 629–634. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, E.J.; Kim, D.S.; Choi, Y.J.; Lee, S.Y.; Kim, H.J.; Seo, H.Y.; Kim, J.S. Early venous thromboembolism at the beginning of palliative chemotherapy is a poor prognostic factor in patients with metastatic pancreatic cancer: A retrospective study. BMC Cancer 2018, 18, 260. [Google Scholar] [CrossRef]
- Frere, C.; Bournet, B.; Gourgou, S.; Fraisse, J.; Canivet, C.; Connors, J.M.; Buscail, L.; Farge, D.; Carrère, N.; Muscari, F.; et al. Incidence of Venous Thromboembolism in Patients with Newly Diagnosed Pancreatic Cancer and Factors Associated with Outcomes. Gastroenterology 2020, 158, 1346–1358.e4. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Ay, C.; Di Nisio, M.; Gerotziafas, G.; Jara-Palomares, L.; Langer, F.; Lecumberri, R.; Mandala, M.; Maraveyas, A.; Pabinger, I.; et al. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann. Oncol. 2023, 34, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Farge, D.; Frere, C.; Connors, J.M.; A Khorana, A.; Kakkar, A.; Ay, C.; Muñoz, A.; Brenner, B.; Prata, P.H.; Brilhante, D.; et al. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol. 2022, 23, e334–e347. [Google Scholar] [CrossRef] [PubMed]
- Gillen, S.; Schuster, T.; Büschenfelde CMZum Friess, H.; Kleeff, J. Preoperative/neoadjuvant therapy in pancreatic cancer: A systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010, 7, e1000267. [Google Scholar] [CrossRef] [Green Version]
- Versteijne, E.; Vogel, J.A.; Besselink, M.G.; Busch, O.R.C.; Wilmink, J.W.; Daams, J.; van Eijck, C.H.J.; Koerkamp, B.G.; Rasch, C.R.N.; van Tienhoven, G. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br. J. Surg. 2018, 105, 946–958. [Google Scholar] [CrossRef] [Green Version]
- Krepline, A.N.; Christians, K.K.; George, B.; Ritch, P.S.; Erickson, B.A.; Tolat, P.; Evans, D.B.; Tsai, S. Venous thromboembolism prophylaxis during neoadjuvant therapy for resectable and borderline resectable pancreatic cancer—Is it indicated? J. Surg. Oncol. 2016, 114, 581–586. [Google Scholar] [CrossRef]
- Walma, M.S.; Brada, L.J.; Patuleia, S.I.; Blomjous, J.G.; Bollen, T.L.; Bosscha, K.; Bruijnen, R.C.; Busch, O.R.; Creemers, G.-J.; Daams, F.; et al. Treatment strategies and clinical outcomes in consecutive patients with locally advanced pancreatic cancer: A multicenter prospective cohort. Eur. J. Surg. Oncol. 2021, 47, 699–707. [Google Scholar] [CrossRef]
- Katz, M.H.G.; Shi, Q.; Ahmad, S.A.; Herman, J.M.; Marsh, R.D.W.; Collisson, E.; Schwartz, L.; Frankel, W.; Martin, R.; Conway, W.; et al. Preoperative Modified FOLFIRINOX Treatment Followed by Capecitabine-Based Chemoradiation for Borderline Resectable Pancreatic Cancer: Alliance for Clinical Trials in Oncology Trial A021101. JAMA Surg. 2016, 151, e161137. [Google Scholar] [CrossRef] [Green Version]
- Barrau, M.; Maoui, K.; Le Roy, B.; Roblin, X.; Mismetti, P.; Phelip, J.-M.; Williet, N. Early venous thromboembolism is a strong prognostic factor in patients with advanced pancreatic ductal adenocarcinoma. J. Cancer Res. Clin. Oncol. 2021, 147, 3447–3454. [Google Scholar] [CrossRef]
- Tahara, J.; Shimizu, K.; Otsuka, N.; Akao, J.; Takayama, Y.; Tokushige, K. Gemcitabine plus nab-paclitaxel vs. FOLFIRINOX for patients with advanced pancreatic cancer. Cancer Chemother. Pharmacol. 2018, 82, 245–250. [Google Scholar] [CrossRef]
- Hanna-Sawires, R.G.; Groen, J.V.; Hamming, A.; Tollenaar, R.A.; Mesker, W.E.; Luelmo, S.A.; Vahrmeijer, A.L.; Bonsing, B.A.; Versteeg, H.H.; Klok, F.; et al. Incidence, timing and risk factors of venous thromboembolic events in patients with pancreatic cancer. Thromb. Res. 2021, 207, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Connolly, G.C.; Francis, C.W. Cancer-associated thrombosis. Hematol. Am. Soc. Hematol. Educ. Program. 2013, 2013, 684–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razak, N.B.A.; Jones, G.; Bhandari, M.; Berndt, M.C.; Metharom, P. Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers 2018, 10, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergati, M.; Della-Morte, D.; Ferroni, P.; Cereda, V.; Tosetto, L.; La Farina, F.; Guadagni, F.; Roselli, M. Increased risk of chemotherapy-associated venous thromboembolism in elderly patients with cancer. Rejuvenation Res. 2013, 16, 224–231. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007, 110, 2339–2346. [Google Scholar] [CrossRef]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Fisher, R.I.; Kuderer, N.M.; Lyman, G.H. Thromboembolism in hospitalized neutropenic cancer patients. J. Clin. Oncol. 2006, 24, 484–490. [Google Scholar] [CrossRef]
- Agnelli, G.; Bolis, G.; Capussotti, L.; Scarpa, R.M.; Tonelli, F.; Bonizzoni, E.; Moia, M.; Parazzini, F.; Rossi, R.; Sonaglia, F.; et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: The @RISTOS project. Ann. Surg. 2006, 243, 89–95. [Google Scholar] [CrossRef]
- Spencer, F.A.; Emery, C.; Lessard, D.; Anderson, F.; Emani, S.; Aragam, J.; Becker, R.C.; Goldberg, R.J. The Worcester Venous Thromboembolism Study A Population-Based Study of the Clinical Epidemiology of Venous Thromboembolism. J. Gen. Intern. Med. 2006, 21, 722. [Google Scholar] [CrossRef]
- Lyman, G.H.; Culakova, E.; Poniewierski, M.S.; Kuderer, N.M. Morbidity, mortality and costs associated with venous thromboembolism in hospitalized patients with cancer. Thromb. Res. 2018, 164 (Suppl. 1), S112–S118. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Lyman, G.H. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer 2005, 104, 2822–2829. [Google Scholar] [CrossRef] [PubMed]
- Al Diab, A.I. Cancer-related venous thromboembolism: Insight into underestimated risk factors. Hematol. Oncol. Stem Cell Ther. 2010, 3, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorana, A.A.; Connolly, G.C. Assessing risk of venous thromboembolism in the patient with cancer. J. Clin. Oncol. 2009, 27, 4839–4847. [Google Scholar] [CrossRef]
- Horsted, F.; West, J.; Grainge, M.J. Risk of Venous Thromboembolism in Patients with Cancer: A Systematic Review and Meta-Analysis. PLoS Med. 2012, 9, e1001275. [Google Scholar] [CrossRef]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Heit, J.A.; Silverstein, M.D.; Mohr, D.N.; Petterson, T.M.; O’Fallon, W.M.; Melton, L.J. Risk factors for deep vein thrombosis and pulmonary embolism: A population-based case-control study. Arch. Intern. Med. 2000, 160, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Khorana, A.A.; Dalal, M.; Lin, J.; Connolly, G.C. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer 2013, 119, 648–655. [Google Scholar] [CrossRef]
- Otten, H.-M.M.B.; Mathijssen, J.; Cate, H.T.; Soesan, M.; Inghels, M.; Richel, D.J.; Prins, M.H. Symptomatic venous thromboembolism in cancer patients treated with chemotherapy: An underestimated phenomenon. Arch. Intern. Med. 2004, 164, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Khorana, A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [Green Version]
- Blanco, A.B.R.; Martin, A.J.M.; Alfonso, P.G.; Suarez, S.A.; Podesta, M.C.; Cabello, S.C.; Solís, R.M.; Ataz, D.L.-T.; Blanco-Codesido, M.; Martin, M. Incidence and prediction of venous thromboembolism (VTE) in ambulatory patients (pts) with pancreas cancer receiving chemotherapy. J. Clin. Oncol. 2012, 30 (Suppl. 4), 368. Available online: https://doi-org.mu.idm.oclc.org/101200/jco2012304_suppl368 (accessed on 16 May 2023). [CrossRef]
- Suker, M.; Beumer, B.R.; Sadot, E.; Marthey, L.; E Faris, J.; A Mellon, E.; El-Rayes, B.F.; Wang-Gillam, A.; Lacy, J.; Hosein, P.J.; et al. FOLFIRINOX for locally advanced pancreatic cancer: A systematic review and patient-level meta-analysis. Lancet Oncol. 2016, 17, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rombouts, S.J.; Walma, M.S.; Vogel, J.A.; Van Rijssen, L.B.; Wilmink, J.W.; Mohammad, N.H.; Van Santvoort, H.C.; Molenaar, I.Q.; Besselink, M.G. Systematic Review of Resection Rates and Clinical Outcomes After FOLFIRINOX-Based Treatment in Patients with Locally Advanced Pancreatic Cancer. Ann. Surg. Oncol. 2016, 23, 4352–4360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moik, F.; Van Es, N.; Posch, F.; Di Nisio, M.; Fuereder, T.; Preusser, M.; Pabinger, I.; Ay, C. Gemcitabine and Platinum-Based Agents for the Prediction of Cancer-Associated Venous Thromboembolism: Results from the Vienna Cancer and Thrombosis Study. Cancers 2020, 12, 2493. [Google Scholar] [CrossRef] [PubMed]
- Seng, S.; Liu, Z.; Chiu, S.K.; Proverbs-Singh, T.; Sonpavde, G.; Choueiri, T.K.; Tsao, C.K.; Yu, M.; Hahn, N.M.; Oh, W.K.; et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: A systematic review and meta-analysis. J. Clin. Oncol. 2012, 30, 4416–4426. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.X.; Lin, F.; Sun, Y.J.; Tang, L.N.; Shen, Z.; Yao, Y. Risk of venous and arterial thromboembolic events in cancer patients treated with gemcitabine: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2013, 76, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Angelini, D.E.; Radivoyevitch, T.; McCrae, K.R.; Khorana, A.A. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. Am. J. Hematol. 2019, 94, 780–785. [Google Scholar] [CrossRef]
- Levin, J.; Conley, C.L. Thrombocytosis Associated with Malignant Disease. Arch. Intern. Med. 1964, 114, 497–500. [Google Scholar] [CrossRef]
- Hisada, Y.; Mackman, N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017, 130, 1499–1506. [Google Scholar] [CrossRef]
- Simanek, R.; Vormittag, R.; Ay, C.; Alguel, G.; Dunkler, D.; Schwarzinger, I.; Steger, G.; Jaeger, U.; Zielinski, C.; Pabinger, I. High platelet count associated with venous thromboembolism in cancer patients: Results from the Vienna Cancer and Thrombosis Study (CATS). J. Thromb. Haemost. 2010, 8, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Simanek, R.; Vormittag, R.; Dunkler, D.; Alguel, G.; Koder, S.; Kornek, G.; Marosi, C.; Wagner, O.; Zielinski, C.; et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: Results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008, 112, 2703–2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poruk, K.E.; Firpo, M.A.; Huerter, L.M.; Scaife, C.L.; Emerson, L.L.; Boucher, K.M.; Jones, K.A.; Mulvihill, S.J. Serum platelet factor 4 is an independent predictor of survival and venous thromboembolism in patients with pancreatic adenocarcinoma. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2605–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blix, K.; Jensvoll, H.; Brækkan, S.K.; Hansen, J.B. White blood cell count measured prior to cancer development is associated with future risk of venous thromboembolism—The Tromsø study. PLoS ONE 2013, 8, e73447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overvad, T.F.; Ording, A.G.; Nielsen, P.B.; Skjøth, F.; Albertsen, I.E.; Noble, S.; Vistisen, A.K.; Gade, I.L.; Severinsen, M.T.; Piazza, G.; et al. Validation of the Khorana score for predicting venous thromboembolism in 40 218 patients with cancer initiating chemotherapy. Blood Adv. 2022, 6, 2967. [Google Scholar] [CrossRef]
- Mulder, F.I.; Candeloro, M.; Kamphuisen, P.; Di Nisio, M.; Bossuyt, P.M.; Guman, N.; Smit, K.; Büller, H.R.; Van Es, N. The Khorana score for prediction of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Haematologica 2019, 104, 1277–1287. [Google Scholar] [CrossRef] [Green Version]
- Pabinger, I.; van Es, N.; Heinze, G.; Posch, F.; Riedl, J.; Reitter, E.-M.; Di Nisio, M.; Cesarman-Maus, G.; Kraaijpoel, N.; Zielinski, C.C.; et al. A clinical prediction model for cancer-associated venous thromboembolism: A development and validation study in two independent prospective cohorts. Lancet Haematol. 2018, 5, e289–e298. [Google Scholar] [CrossRef]
- Muñoz, A.; Ay, C.; Grilz, E.; López, S.; Font, C.; Pachón, V.; Castellón, V.; Martínez-Marín, V.; Salgado, M.; Martínez, E.; et al. A Clinical-Genetic Risk Score for Predicting Cancer-Associated Venous Thromboembolism: A Development and Validation Study Involving Two Independent Prospective Cohorts. J. Clin. Oncol. 2023, 41, 2911–2925. [Google Scholar] [CrossRef]
- Li, A.; La, J.; May, S.B.; Guffey, D.; da Costa, W.L.; Amos, C.I.; Bandyo, R.; Milner, E.M.; Kurian, K.M.; Chen, D.C.; et al. Derivation and Validation of a Clinical Risk Assessment Model for Cancer-Associated Thrombosis in Two Unique US Health Care Systems. J. Clin. Oncol. 2023, 41, 2926–2938. [Google Scholar] [CrossRef]
- Cella, C.A.; Di Minno, G.; Carlomagno, C.; Arcopinto, M.; Cerbone, A.M.; Matano, E.; Tufano, A.; Lordick, F.; De Simone, B.; Muehlberg, K.S.; et al. Preventing Venous Thromboembolism in Ambulatory Cancer Patients: The ONKOTEV Study. Oncologist 2017, 22, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Ay, C.; Dunkler, D.; Simanek, R.; Thaler, J.; Koder, S.; Marosi, C.; Zielinski, C.; Pabinger, I. Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: Results from the vienna cancer and thrombosis study. J. Clin. Oncol. 2011, 29, 2099–2103. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Burbury, K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer—Results, practical issues and proposed strategies for future risk prediction models. Thromb. Res. 2016, 148, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, G.; Carpenedo, M.; Verga, M.; Mastrogiacomo, O.; Fagnani, D.; Lanfredini, M.; Milani, M.; Cimminiello, C. D-dimer before chemotherapy might predict venous thromboembolism. Blood Coagul. Fibrinolysis 2009, 20, 170–175. [Google Scholar] [CrossRef]
- Ay, C.; Vormittag, R.; Dunkler, D.; Simanek, R.; Chiriac, A.-L.; Drach, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: Results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2009, 27, 4124–4129. [Google Scholar] [CrossRef]
- Faille, D.; Bourrienne, M.-C.; de Raucourt, E.; de Chaisemartin, L.; Granger, V.; Lacroix, R.; Panicot-Dubois, L.; Hammel, P.; Lévy, P.; Ruszniewski, P.; et al. Biomarkers for the risk of thrombosis in pancreatic adenocarcinoma are related to cancer process. Oncotarget 2018, 9, 26453–26465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westrick, R.; Eitzman, D. Plasminogen activator inhibitor-1 in vascular thrombosis. Curr. Drug Targets 2007, 8, 996–1002. [Google Scholar] [CrossRef]
- Thaler, J.; Ay, C.; Mackman, N.; Bertina, R.M.; Kaider, A.; Marosi, C.; Key, N.S.; Barcel, D.A.; Scheithauer, W.; Kornek, G.; et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J. Thromb. Haemost. 2012, 10, 1363–1370. [Google Scholar] [CrossRef]
- Khorana, A.A.; Ahrendt, S.A.; Ryan, C.K.; Francis, C.W.; Hruban, R.H.; Hu, Y.C.; Hostetter, G.; Harvey, J.; Taubman, M.B. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin. Cancer Res. 2007, 13, 2870–2875. [Google Scholar] [CrossRef] [Green Version]
- Khorana, A.A.; Francis, C.W.; Menzies, K.E.; Wang, J.-G.; Hyrien, O.; Hathcock, J.; Mackman, N.; Taubman, M.B. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J. Thromb. Haemost. 2008, 6, 1983–1985. [Google Scholar] [CrossRef] [Green Version]
- Bharthuar, A.; Khorana, A.A.; Hutson, A.; Wang, J.-G.; Key, N.S.; Mackman, N.; Iyer, R.V. Circulating microparticle tissue factor, thromboembolism and survival in pancreaticobiliary cancers. Thromb. Res. 2013, 132, 180–184. [Google Scholar] [CrossRef]
- van Es, N.; Hisada, Y.; Di Nisio, M.; Cesarman, G.; Kleinjan, A.; Mahé, I.; Otten, H.-M.; Kamphuisen, P.W.; Berckmans, R.J.; Büller, H.R.; et al. Extracellular vesicles exposing tissue factor for the prediction of venous thromboembolism in patients with cancer: A prospective cohort study. Thromb. Res. 2018, 166, 54–59. [Google Scholar] [CrossRef]
- Boone, B.A.; Zenati, M.S.; Rieser, C.; Hamad, A.; Al Abbas, A.; Zureikat, A.; Hogg, M.E.; Neal, M.D.; Zeh, H.J. Risk of Venous Thromboembolism for Patients with Pancreatic Ductal Adenocarcinoma Undergoing Preoperative Chemotherapy Followed by Surgical Resection. Ann. Surg. Oncol. 2019, 26, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Woei-A-Jin, F.J.; Tesselaar, M.E.; Garcia Rodriguez, P.; Romijn, F.P.; Bertina, R.M.; Osanto, S. Tissue factor-bearing microparticles and CA19.9: Two players in pancreatic cancer-associated thrombosis? Br. J. Cancer. 2016, 115, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, J.; Konings, J.; Yan, Q.; Kelchtermans, H.; Kremers, R.; de Laat, B.; Roest, M. A novel assay for studying the involvement of blood cells in whole blood thrombin generation. J. Thromb. Haemost. 2020, 18, 1291–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef]
- Chen, A.; Stecker, E.; Warden, B.A. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. J. Am. Heart Assoc. 2020, 9, 17559. [Google Scholar] [CrossRef]
- Streiff, M.B.; Holmstrom, B.; Angelini, D.; Ashrani, A.; Elshoury, A.; Fanikos, J.; Fertrin, K.Y.; Fogerty, A.E.; Gao, S.; Goldhaber, S.Z.; et al. Cancer-Associated Venous Thromboembolic Disease, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 1181–1201. [Google Scholar] [CrossRef]
- Ruch, J.M.; Bellile, E.; Hawley, A.E.; Anderson, M.A.; Wakefield, T.W.; Sood, S.L. Prediction of Venous Thromboembolism (VTE) in Patients with Pancreatic Cancer Using Clinical Data, Biomarkers, and VTE Risk Models. Blood 2012, 120, 3398. [Google Scholar] [CrossRef]
- van Es, N.; Franke, V.F.; Middeldorp, S.; Wilmink, J.W.; Büller, H.R. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer. Thromb. Res. 2017, 150, 30–32. [Google Scholar] [CrossRef]
- Kruger, S.; Haas, M.; Burkl, C.; Goehring, P.; Kleespies, A.; Roeder, F.; Gallmeier, E.; Ormanns, S.; Westphalen, C.B.; Heinemann, V.; et al. Incidence, outcome and risk stratification tools for venous thromboembolism in advanced pancreatic cancer—A retrospective cohort study. Thromb. Res. 2017, 157, 9–15. [Google Scholar] [CrossRef]
- Adrián, S.G.; González, A.R.; de Castro, E.M.; Olmos, V.P.; Morán, L.O.; del Prado, P.M.; Fernández, M.S.; Burón, J.D.C.; Escobar, I.G.; Galán, J.M.; et al. Incidence, risk factors, and evolution of venous thromboembolic events in patients diagnosed with pancreatic carcinoma and treated with chemotherapy on an outpatient basis. Eur. J. Intern. Med. 2022, 105, 30–37. [Google Scholar] [CrossRef]
- van Es, N.; Ventresca, M.; Di Nisio, M.; Zhou, Q.; Noble, S.; Crowther, M.; Briel, M.; Garcia, D.; Lyman, G.H.; Macbeth, F.; et al. The Khorana score for prediction of venous thromboembolism in cancer patients: An individual patient data meta-analysis. J. Thromb. Haemost. 2020, 18, 1940–1951. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Shaw, J.R.; Key, N.S.; Ilich, A.; Mallick, R.; Wells, P.S.; Carrier, M. D-Dimer Enhances Risk-Targeted Thromboprophylaxis in Ambulatory Patients with Cancer. Oncologist 2020, 25, 1075–1083. [Google Scholar] [CrossRef]
- Godinho, J.; Casa-Nova, M.; Moreira-Pinto, J.; Simões, P.; Branco, F.P.; Leal-Costa, L.L.; Faria, A.; Lopes, F.; Teixeira, J.A.; Passos-Coelho, J.L. ONKOTEV Score as a Predictive Tool for Thromboembolic Events in Pancreatic Cancer-A Retrospective Analysis. Oncologist 2020, 25, e284–e290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maraveyas, A.; Waters, J.; Roy, R.; Fyfe, D.; Propper, D.; Lofts, F.; Sgouros, J.; Gardiner, E.; Wedgwood, K.; Ettelaie, C.; et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. Eur. J. Cancer 2012, 48, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, U.; Opitz, B.; Deutschinoff, G.; Stauch, M.; Reitzig, P.C.; Hahnfeld, S.; Müller, L.; Grunewald, M.; Stieler, J.M.; Sinn, M.; et al. Efficacy of Prophylactic Low-Molecular Weight Heparin for Ambulatory Patients with Advanced Pancreatic Cancer: Outcomes from the CONKO-004 Trial. J. Clin. Oncol. 2015, 33, 2028–2034. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Gussoni, G.; Bianchini, C.; Verso, M.; Mandalà, M.; Cavanna, L.; Barni, S.; Labianca, R.; Buzzi, F.; Scambia, G.; et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: A randomised, placebo-controlled, double-blind study. Lancet Oncol. 2009, 10, 943–949. [Google Scholar] [CrossRef]
- Agnelli, G.; George, D.J.; Kakkar, A.K.; Fisher, W.; Lassen, M.R.; Mismetti, P.; Mouret, P.; Chaudhari, U.; Lawson, F.; Turpie, A.G. Semuloparin for Thromboprophylaxis in Patients Receiving Chemotherapy for Cancer. N. Engl. J. Med. 2012, 366, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 711–719. [Google Scholar] [CrossRef]
- Ladha, D.; Mallick, R.; Wang, T.F.; Caiano, L.; Wells, P.S.; Carrier, M. Efficacy and safety of apixaban for primary prevention in gastrointestinal cancers: A post-hoc analysis of the AVERT trial. Thromb. Res. 2021, 202, 151–154. [Google Scholar] [CrossRef]
- Vadhan-Raj, S.; McNamara, M.G.; Venerito, M.; Riess, H.; O'Reilly, E.M.; Overman, M.J.; Zhou, X.; Vijapurkar, U.; Kaul, S.; Wildgoose, P.; et al. Rivaroxaban thromboprophylaxis in ambulatory patients with pancreatic cancer: Results from a pre-specified subgroup analysis of the randomized CASSINI study. Cancer Med. 2020, 9, 6196–6204. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Soff, G.A.; Kakkar, A.K.; Vadhan-Raj, S.; Riess, H.; Wun, T.; Streiff, M.B.; Garcia, D.A.; Liebman, H.A.; Belani, C.P.; et al. Rivaroxaban for Thromboprophylaxis in High-Risk Ambulatory Patients with Cancer. N. Engl. J. Med. 2019, 380, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.; Becattini, C.; Beyer-Westendorf, J.; Vanni, S.; Nitti, C.; Re, R.; Manina, G.; Pomero, F.; Cappelli, R.; Conti, A.; et al. Definition of major bleeding: Prognostic classification. J. Thromb. Haemost. 2020, 18, 2852–2860. [Google Scholar] [CrossRef] [PubMed]
- Frere, C.; Crichi, B.; Bournet, B.; Canivet, C.; Abdallah, N.A.; Buscail, L.; Farge, D. Primary Thromboprophylaxis in Ambulatory Pancreatic Cancer Patients Receiving Chemotherapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cancers 2020, 12, 2028. [Google Scholar] [CrossRef] [PubMed]
- Vadhan-Raj, S.; McNamara, M.G.; Venerito, M.; Riess, H.; O'Reilly, E.M.; Overman, M.J.; Zhou, X.; Vijapurkar, U.; Kaul, S.; Wildgoose, P.; et al. Rivaroxaban thromboprohylaxis in ambulatory patients with pancreatic cancer: Results from a prespecified subgroup analysis of the CASSINI study. J. Clin. Oncol. 2019, 37 (Suppl. 15), 4016. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Ventresca, M.; Crowther, M.; Briel, M.; Zhou, Q.; Noble, S.; Macbeth, F.; Griffiths, G.; Garcia, D.; Lyman, G.H.; et al. Evaluating prophylactic heparin in ambulatory patients with solid tumours: A systematic review and individual participant data meta-analysis. Lancet Haematol. 2020, 7, e746–e755. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Gates, L.E.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Guideline Update. J. Clin. Oncol. 2023, 38, 496–520. [Google Scholar] [CrossRef]
- Rasmussen, M.S.; Jorgensen, L.N.; Wille-Jørgensen, P.; Nielsen, J.D.; Horn, A.; Mohn, A.C.; Sømod, L.; Olsen, B. Prolonged prophylaxis with dalteparin to prevent late thromboembolic complications in patients undergoing major abdominal surgery: A multicenter randomized open-label study. J. Thromb. Haemost. 2006, 4, 2384–2390. [Google Scholar] [CrossRef]
- Bergqvist, D.; Agnelli, G.; Cohen, A.T.; Eldor, A.; Nilsson, P.E.; Le Moigne-Amrani, A.; Dietrich-Neto, F. Duration of Prophylaxis against Venous Thromboembolism with Enoxaparin after Surgery for Cancer. N. Engl. J. Med. 2002, 346, 975–980. [Google Scholar] [CrossRef]
- Roch, A.M.; Kilbane, E.M.; Nguyen, T.; Ceppa, E.P.; Zyromski, N.J.; Schmidt, C.M.; Nakeeb, A.; House, M.G. Portal Vein Thrombosis After Venous Reconstruction During Pancreatectomy: Timing and Risks. J. Gastrointest. Surg. 2022, 26, 2148–2157. [Google Scholar] [CrossRef]
- Dua, M.M.; Tran, T.B.; Klausner, J.; Hwa, K.J.; Poultsides, G.A.; Norton, J.A.; Visser, B.C. Pancreatectomy with vein reconstruction: Technique matters. HPB 2015, 17, 824–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH): An International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007, 142, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Lermite, E.; Sommacale, D.; Piardi, T.; Arnaud, J.-P.; Sauvanet, A.; Dejong, C.H.; Pessaux, P. Complications after pancreatic resection: Diagnosis, prevention and management. Clin. Res. Hepatol Gastroenterol. 2013, 37, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Kunstman, J.W.; Goldman, D.A.; Gönen, M.; Balachandran, V.P.; D’angelica, M.I.; Kingham, T.P.; Jarnagin, W.R.; Allen, P.J. Outcomes after Pancreatectomy with Routine Pasireotide Use. J. Am. Coll Surg. 2019, 228, 161–170.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sood, D.; Kuchta, K.; Paterakos, P.; Schwarz, J.L.; Rojas, A.; Choi, S.H.; Vining, C.C.; Talamonti, M.S.; Hogg, M.E. Extended postoperative thromboprophylaxis after pancreatic resection for pancreatic cancer is associated with decreased risk of venous thromboembolism in the minimally invasive approach. J. Surg. Oncol. 2023, 127, 413–425. [Google Scholar] [CrossRef]
- Hayashi, H.; Morikawa, T.; Yoshida, H.; Motoi, F.; Okada, T.; Nakagawa, K.; Mizuma, M.; Naitoh, T.; Katayose, Y.; Unno, M. Safety of postoperative thromboprophylaxis after major hepatobiliary- pancreatic surgery in Japanese patients. Surg. Today 2014, 44, 1660–1668. [Google Scholar] [CrossRef]
- Hanna-Sawires, R.G.; Groen, J.V.; Klok, F.A.; Tollenaar, R.A.E.M.; Mesker, W.E.; Swijnenburg, R.J.; Vahrmeijer, A.L.; Bonsing, B.A.; Mieog, J.S.D. Outcomes following pancreatic surgery using three different thromboprophylaxis regimens. Br. J. Surg. 2019, 106, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, D.; Nakagawa, S.; Umezaki, N.; Yamao, T.; Kitano, Y.; Yamamura, K.; Kaida, T.; Arima, K.; Imai, K.; Yamashita, Y.-I.; et al. Efficacy and safety of postoperative anticoagulation prophylaxis with enoxaparin in patients undergoing pancreatic surgery: A prospective trial and literature review. Pancreatology 2017, 17, 464–470. [Google Scholar] [CrossRef]
- Groen, J.V.; Stommel, M.W.; Sarasqueta, A.F.; Besselink, M.G.; Brosens, L.A.; van Eijck, C.H.; Molenaar, I.Q.; Verheij, J.; de Vos-Geelen, J.; Wasser, M.N.; et al. Surgical management and pathological assessment of pancreatoduodenectomy with venous resection: An international survey among surgeons and pathologists. HPB 2021, 23, 80–89. [Google Scholar] [CrossRef]
- Clancy, T.E.; Baker, E.H.; Maegawa, F.A.; Raoof, M.; Winslow, E.; House, M.G. AHPBA guidelines for managing VTE prophylaxis and anticoagulation for pancreatic surgery. HPB 2022, 24, 575–585. [Google Scholar] [CrossRef]
- Khorana, A.A.; Vadhan-Raj, S.; Kuderer, N.M.; Wun, T.; Liebman, H.; Soff, G.; Belani, C.; O'Reilly, E.M.; McBane, R.; Eikelboom, J.; et al. Rivaroxaban for Preventing Venous Thromboembolism in High-Risk Ambulatory Patients with Cancer: Rationale and Design of the CASSINI Trial. Rationale and Design of the CASSINI Trial. Thromb. Haemost. 2017, 117, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I. Low-Molecular-Weight Heparins. N. Engl. J. Med. 1997, 337, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Mueck, W.; Kubitza, D.; Becka, M. Co-administration of rivaroxaban with drugs that share its elimination pathways: Pharmacokinetic effects in healthy subjects. Br. J. Clin. Pharmacol. 2013, 76, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Gnoth, M.J.; Buetehorn, U.; Muenster, U.; Schwarz, T.; Sandmann, S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J. Pharmacol. Exp. Ther. 2011, 338, 372–380. [Google Scholar] [CrossRef]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed]
- Watkins, P.B.; Murray, S.A.; Winkelman, L.G.; Heuman, D.M.; Wrighton, S.A.; Guzelian, P.S. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J. Clin. Invest. 1989, 83, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Deyme, L.; Barbolosi, D.; Gattacceca, F. Population pharmacokinetics of FOLFIRINOX: A review of studies and parameters. Cancer Chemother Pharmacol. 2019, 83, 27–42. [Google Scholar] [CrossRef]
- Munoz, L.A.; de Mestier, L.; Lamallem, H.; Jaïs, B.; Maire, F.; Lévy, P.; Rebours, V.; Hammel, P. Gastrointestinal bleeding in patients with pancreatic cancer: Causes and haemostatic treatments. United Eur. Gastroenterol. J. 2020, 8, 1106. [Google Scholar] [CrossRef]
- Xin, Y.-N.; Liu, G.-P.; Hu, X.-K.; Zhang, Z.-L.; Xu, R.; Sun, C.-J.; Xuan, S.-Y. Portal hypertension caused by pancreatic cancer: Multidetector computed tomography diagnosis and multivariate analysis of variceal hemorrhage. J. Cancer Res. Ther. 2020, 16, 1672–1677. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, C.; Liu, X. Characteristics of gastrointestinal hemorrhage associated with pancreatic cancer: A retrospective review of 246 cases. Mol Clin. Oncol. 2015, 3, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Philip, P.A.; Lacy, J.; Portales, F.; Sobrero, A.; Pazo-Cid, R.; Mozo, J.L.M.; Kim, E.J.; Dowden, S.; Zakari, A.; Borg, C.; et al. Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): A multicentre, open-label phase 2 study. Lancet Gastroenterol. Hepatol. 2020, 5, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Leader, A.; Ambaglio, C.; Bagoly, Z.; Castaman, G.; Elalamy, I.; Lecumberri, R.; Niessner, A.; Pabinger, I.; Szmit, S.; et al. EHA Guidelines on Management of Antithrombotic Treatments in Thrombocytopenic Patients with Cancer. Hemasphere 2022, 6, e750. [Google Scholar] [CrossRef] [PubMed]
Study | Study Size | Cancer Stage, n (%) | Chemotherapy, n (%) | VTE Incidence • Stage, n (%) | VTE incidence • Chemotherapy, n (%) |
---|---|---|---|---|---|
Prospective | |||||
Frere et al., 2020 [22] | 731 | RPC: 208 (29.0) BRPC: 105 (14.6) LAPC: 212 (26.9) | - | Total: 97 (19) • RPC: 31 (21) • BRPC: 17 (11) • LAPC: 49 (33) | - |
Krepline et al., 2016 [27] | 260 | RPC: 109 (42) BRPC: 151 (58) | 5-FU: 98 (37) Gemcitabine: 84 (32) Platinum agent: 110 (42) | Total: 26 (10) • RPC: 9 (8) • BRPC: 17 (11) | • 5-FU: 13/98 (13) • Gemcitabine: 5/84 (6) • Platinum agent: 13/110 12) |
Walma et al., 2021 [28] | 326 | LAPC: 326 (100) | FOLFIRINOX: 252 (77) Nab-paclitaxel/gemcitabine: 33 (10) Gemcitabine: 41 (13) | Total: 20/326 (6) | • FOLFIRINOX: 17/252 (7) • Nab-paclitaxel/ gemcitabine: 2/33 (6) • Gemcitabine: 1/41 (2) |
Katz et al., 2016 [29] | 22 | BRPC: 22 (100) | mFOLFIRINOX: 22/22 (100) | Total: 3 (14) | • mFOLFIRINOX: 3/22 (14) |
Retrospective | |||||
Barreau et al., 2021 [30] | 174 | LAPC: 56 (32) | - | Total: 46 (26) LAPC: 13 (23) | |
Tahara et al., 2018 [31] | 27 | LAPC: 21 (78) Metastatic: 6 (22) | FOLFIRINOX: 10 (37) Nab-paclitaxel/gemcitabine: 11 (41) | Total: 6/27 (22) a | • FOLFIRINOX: 5 (42) • Nab-paclitaxel/gemcitabine 1 (7) |
Hanna-Sawires et al., 2021 [32] | 361 | I: 62 (17) II: 152 (42) III: 61 (17) | FOLFIRINOX: 6 Gemcitabine/radiotherapy: 11 | Total: 64/361 (18) I: 7/62 (11) II: 24/152 (38) III: 9/61 (14) During neoadjuvant therapy: 2 (3) |
Predictors | Khorana Score [67] | Vienna Model [68] | ONCOTHROMB [69] | Li Model [70] | ONKOTEV [71] |
---|---|---|---|---|---|
Cancer characteristics | |||||
Cancer type | X | X | X | X | X |
Cancer stage | X | X | X | ||
Vascular/lymphatic compression | X | ||||
Patient characteristics | |||||
Previous VTE | X | X | |||
Immobilization | X | ||||
Recent hospitalization >3 days | X | ||||
BMI | X | X | X | X | |
Asian/Pacific islander | X | ||||
Biomarkers | |||||
Hemoglobin or use of RBC growth factors | X | X | X | ||
Leukocytes | X | X | X | ||
Platelet count | X | X | X | ||
D-dimer | X | ||||
Soluble P-selectin | |||||
Genetic germline mutations | X |
Guideline | Recommendation | Contraindications | Duration | Thromboprophylaxis Regimen |
---|---|---|---|---|
ASCO (2023) [108] | Start thromboprophylaxis in outpatients with a Khorana score ≥ 2, starting a new chemotherapy regimen | • Bleeding risk • Drug–drug interaction | - | Apixaban (2.5 mg PO twice daily), rivaroxaban (10 mg PO once daily) or LMWH |
ESMO (2023) [23] | Start thromboprophylaxis in ambulatory PDAC patients on first-line anticancer treatment | - | Maximum of 3 months | LMWH at higher dose: 150/IU/kg dalteparin or 1 mg/kg enoxaparin |
ITAC (2022) [24] | • Start thromboprophylaxis in ambulatory patients with a Khorana score ≥ 2, receiving anticancer therapy • Start thromboprophylaxis in ambulatory patients with locally advanced or metastatic PDAC treated with anticancer therapy | • High bleeding risk • Active bleeding | - | Apixaban (2.5 mg PO twice daily), rivaroxaban (10 mg PO once daily) or LMWH |
NCCN (2021) [88] | Start thromboprophylaxis in outpatients with a Khorana score ≥ 2, receiving/starting chemotherapy | • Active bleeding • Thrombocytopenia (platelet count < 50,000/µL) • Hemorrhagic coagulopathy or known bleeding disorder in the absence of replacement therapy • Indwelling neuraxial catheters • Neuraxial anesthesia/lumbar puncture • Interventional spine and pain procedures | Up to 6 months or longer, if the risk persists | • Patients with Khorona score ≥ 2: apixaban (2.5 mg PO twice daily), rivaroxaban (10 mg PO once daily) or LMWH • Patients with advanced unresectable or metastatic PDAC: dalteparin 200 IU/kg SC daily 1 month, then 150 IU/kg SC daily 2 months or enoxaparin 1 mg/kg daily 3 months, then 40 mg SC daily a |
FRAGEM Trial [96] | CONKO 004 Trial [97] | CASSINI Trial [122] | AVERT Trial [101] | |
---|---|---|---|---|
Thromboprophylaxis | Dalteparin, 200 IU/kg, once daily | Enoxaparin, 1 mg/kg, once daily | Rivaroxaban, 10 mg, once daily | Apixaban, 2.5 mg, twice daily |
Exclusion criteria | Karnofsky performance status < 60 | Karnofsky performance status < 60 | ECOG performance status ≥ 3 | |
Body weight < 45 kg or > 100 kg | Body weight < 40 kg | |||
CrCl < 50 mL/min | CrCl < 30 mL/min | CrCl < 30 mL/min | CrCl < 30 mL/min | |
• Platelets < 100 × 109/L • Absolute neutrophil count < 2 × 109/L • White cell count < 3 × 109/L • INR > 1.5 • Adequate liver function Bilirubin > 1.5 upper limit of normal | • Platelets <100 × 109/L • White cell count < 3.5 × 109/L | • Platelets < 50 × 109/L | ||
• Obvious contraindication to anticoagulation | • Major hemorrhage within the last 2 weeks • Severely impaired coagulation • Active gastrointestinal ulcers • Major surgery within the last 2 weeks | • Bleeding diathesis • Hemorrhagic lesions • Active bleeding • Conditions with a high risk of bleeding | • Increased risk of significant bleeding • Hepatic disease with coagulopathy | |
• Anticoagulation treatment • Antiplatelet treatment (i.e., Aspirin > 75 mg, clopidogrel, etc.) | • Anticoagulation treatment | • Anticoagulation treatment • Medication contraindicated with apixaban |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willems, R.A.L.; Michiels, N.; Lanting, V.R.; Bouwense, S.; van den Broek, B.L.J.; Graus, M.; Klok, F.A.; Groot Koerkamp, B.; de Laat, B.; Roest, M.; et al. Venous Thromboembolism and Primary Thromboprophylaxis in Perioperative Pancreatic Cancer Care. Cancers 2023, 15, 3546. https://doi.org/10.3390/cancers15143546
Willems RAL, Michiels N, Lanting VR, Bouwense S, van den Broek BLJ, Graus M, Klok FA, Groot Koerkamp B, de Laat B, Roest M, et al. Venous Thromboembolism and Primary Thromboprophylaxis in Perioperative Pancreatic Cancer Care. Cancers. 2023; 15(14):3546. https://doi.org/10.3390/cancers15143546
Chicago/Turabian StyleWillems, R. A. L., N. Michiels, V. R. Lanting, S. Bouwense, B. L. J. van den Broek, M. Graus, F. A. Klok, B. Groot Koerkamp, B. de Laat, M. Roest, and et al. 2023. "Venous Thromboembolism and Primary Thromboprophylaxis in Perioperative Pancreatic Cancer Care" Cancers 15, no. 14: 3546. https://doi.org/10.3390/cancers15143546
APA StyleWillems, R. A. L., Michiels, N., Lanting, V. R., Bouwense, S., van den Broek, B. L. J., Graus, M., Klok, F. A., Groot Koerkamp, B., de Laat, B., Roest, M., Wilmink, J. W., van Es, N., Mieog, J. S. D., ten Cate, H., & de Vos-Geelen, J. (2023). Venous Thromboembolism and Primary Thromboprophylaxis in Perioperative Pancreatic Cancer Care. Cancers, 15(14), 3546. https://doi.org/10.3390/cancers15143546