Characterization and Classification of Spatial White Matter Tract Alteration Patterns in Glioma Patients Using Magnetic Resonance Tractography: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Study Selection
2.2. Data Extraction
2.3. Data Analysis
2.4. Methodological Quality Assessment
3. Results
3.1. Study Selection
3.2. Uniformity of Classification Systems for Spatial White Matter Tract Alteration Patterns
3.3. Relation between Glioma Grade and Spatial WM Tract Alteration Patterns
3.3.1. Studies Using Jellison/Field Classification System
3.3.2. Studies Using Witwer Classification System
3.3.3. Studies Using Self-Described Classification Systems
3.4. Meta-analysis
3.4.1. Displacement of WM Tracts in LGGs versus HGGs
3.4.2. Infiltration of WM Tracts in LGGs versus HGGs
3.5. Methodological Quality Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Assaf, Y.; Pasternak, O. Diffusion Tensor Imaging (DTI)-Based White Matter Mapping in Brain Research: A Review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- Assaf, Y.; Johansen-Berg, H.; Thiebaut de Schotten, M. The role of diffusion MRI in neuroscience. NMR Biomed. 2019, 32, e3762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jbabdi, S.; Johansen-Berg, H. Tractography: Where Do We Go from Here? Brain Connect. 2011, 1, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Jeurissen, B.; Descoteaux, M.; Mori, S.; Leemans, A. Diffusion MRI Fiber Tractography of the Brain. NMR Biomed. 2019, 32, e3785. [Google Scholar] [CrossRef] [PubMed]
- Johansen-Berg, H.; Behrens, T.E.J. Just Pretty Pictures? What Diffusion Tractography Can Add in Clinical Neuroscience. Curr. Opin. Neurol. 2006, 19, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landers, M.J.; De Baene, W.; Rutten, G.J.; Mandonnet, E. The Third Branch of the Superior Longitudinal System. J. Neurosurg. Sci. 2021, 65, 548–559. [Google Scholar] [CrossRef]
- Giese, A.; Westphal, M. Glioma Invasion in the Central Nervous System. Neurosurgery 1996, 39, 235–252. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; et al. The epidemiology of glioma in adults: A “state of the science” review. Neuro-Oncol. 2014, 16, 896–913. [Google Scholar] [CrossRef] [Green Version]
- Henderson, F.; Abdullah, K.G.; Verma, R.; Brem, S. Tractography and the Connectome in Neurosurgical Treatment of Gliomas: The Premise, the Progress, and the Potential. Neurosurg. Focus 2020, 48, E6. [Google Scholar] [CrossRef] [Green Version]
- Bick, A.S.; Mayer, A.; Levin, N. From Research to Clinical Practice: Implementation of Functional Magnetic Imaging and White Matter Tractography in the Clinical Environment. J. Neurol. Sci. 2012, 312, 158–165. [Google Scholar] [CrossRef]
- Castellano, A.; Bello, L.; Michelozzi, C.; Gallucci, M.; Fava, E.; Iadanza, A.; Riva, M.; Casaceli, G.; Falini, A. Role of Diffusion Tensor Magnetic Resonance Tractography in Predicting the Extent of Resection in Glioma Surgery. Neuro. Oncol. 2012, 14, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Costabile, J.D.; Alaswad, E.; D’Souza, S.; Thompson, J.A.; Ormond, D.R. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front. Oncol. 2019, 9, 426. [Google Scholar] [CrossRef]
- Essayed, W.I.; Zhang, F.; Unadkat, P.; Cosgrove, G.R.; Golby, A.J.; O’Donnell, L.J. White Matter Tractography for Neurosurgical Planning: A Topography-Based Review of the Current State of the Art. NeuroImage. Clin. 2017, 15, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, D.; Delmaire, C.; Menjot de Champfleur, N.; Chiras, J.; Lehéricy, S. Diffusion Tractography: Methods, Validation and Applications in Patients with Neurosurgical Lesions. Neurosurg. Clin. N. Am. 2011, 22, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Potgieser, A.R.E.; Wagemakers, M.; Van Hulzen, A.L.J.; De Jong, B.M.; Hoving, E.W.; Groen, R.J.M. The Role of Diffusion Tensor Imaging in Brain Tumor Surgery: A Review of the Literature. Clin. Neurol. Neurosurg. 2014, 124, 51–58. [Google Scholar] [CrossRef]
- Vanderweyen, D.C.; Theaud, G.; Sidhu, J.; Rheault, F.; Sarubbo, S.; Descoteaux, M.; Fortin, D. The Role of Diffusion Tractography in Refining Glial Tumor Reection. Brain Struct. Funct. 2020, 225, 1413–1436. [Google Scholar] [CrossRef]
- Voets, N.L.; Bartsch, A.; Plaha, P. Brain White Matter Fibre Tracts: A Review of Functional Neuro-Oncological Relevance. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1017–1025. [Google Scholar] [CrossRef]
- Wende, T.; Hoffmann, K.T.; Meixensberger, J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J. Neurol. Surg. A. Cent. Eur. Neurosurg. 2020, 81, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Sakai, K.; Akazawa, K.; Yuen, S.; Nishimura, T. MR Tractography: A Review of Its Clinical Applications. Magn. Reson. Med. Sci. 2009, 8, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.M.; Yeh, C.H.; Poupon, C.; Calamante, F. Diffusion MRI Tractography for Neurosurgery: The Basics, Current State, Technical Reliability and Challenges. Phys. Med. Biol. 2021, 66, 15TR01. [Google Scholar] [CrossRef]
- Sanai, N.; Berger, M.S. Glioma Extent of Resection and Its Impact on Patient Outcome. Neurosurgery 2008, 62, 753–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stummer, W. E Xtent of R Esection and S Urvival in of and a Djustment for B Ias. Clin. Res. 2008, 62, 564–576. [Google Scholar] [CrossRef]
- Laurent, D.; Freedman, R.; Cope, L.; Sacks, P.; Abbatematteo, J.; Kubilis, P.; Bova, F.; Rahman, M. Impact of Extent of Resection on Incidence of Postoperative Complications in Patients with Glioblastoma. Neurosurgery 2020, 86, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Brennum, J.; Engelmann, C.M.; Thomsen, J.A.; Skjøth-Rasmussen, J. Glioma Surgery with Intraoperative Mapping-Balancing the Onco-Functional Choice. Acta Neurochir. 2018, 160, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H.; Mandonnet, E. The “Onco-Functional Balance” in Surgery for Diffuse Low-Grade Glioma: Integrating the Extent of Resection with Quality of Life. Acta Neurochir. 2013, 155, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Mandonnet, E.; Duffau, H. An Attempt to Conceptualize the Individual Onco-Functional Balance: Why a Standardized Treatment Is an Illusion for Diffuse Low-Grade Glioma Patients. Crit. Rev. Oncol. Hematol. 2018, 122, 83–91. [Google Scholar] [CrossRef]
- Field, A.S.; Alexander, A.L.; Wu, Y.C.; Hasan, K.M.; Witwer, B.; Badie, B. Diffusion Tensor Eigenvector Directional Color Imaging Patterns in the Evaluation of Cerebral White Matter Tracts Altered by Tumor. J. Magn. Reson. Imaging 2004, 20, 555–562. [Google Scholar] [CrossRef]
- Jellison, B.J.; Field, A.S.; Medow, J.; Lazar, M.; Salamat, M.S.; Alexander, A.L. Diffusion Tensor Imaging of Cerebral White Matter: A Pictorial Review of Physics, Fiber Tract Anatomy, and Tumor Imaging Patterns. Am. J. Neuroradiol. 2004, 25, 356–369. [Google Scholar]
- Witwer, B.P.; Moftakhar, R.; Hasan, K.M.; Deshmukh, P.; Haughton, V.; Field, A.; Arfanakis, K.; Noyes, J.; Moritz, C.H.; Meyerand, M.E.; et al. Diffusion-Tensor Imaging of White Matter Tracts in Patients with Cerebral Neoplasm. J. Neurosurg. 2002, 97, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.S.; Li, K.C.; Xuan, Y.; Ji, X.M.; Qin, W. Diffusion Tensor Tractography in Patients with Cerebral Tumors: A Helpful Technique for Neurosurgical Planning and Postoperative Assessment. Eur. J. Radiol. 2005, 56, 197–204. [Google Scholar] [CrossRef]
- Delgado, A.F.; Nilsson, M.; Latini, F.; Mårtensson, J.; Zetterling, M.; Berntsson, S.G.; Alafuzoff, I.; Lätt, J.; Larsson, E.-M. Preoperative Quantitative MR Tractography Compared with Visual Tract Evaluation in Patients with Neuropathologically Confirmed Gliomas Grades II and III: A Prospective Cohort Study. Radiol. Res. Pract. 2016, 2016, 7671854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Shen, X.; Shiroishi, M.S.; Pang, M.; Li, Z.; Yu, B.; Shen, G. A Pilot Study of Pre-Operative Motor Dysfunction from Gliomas in the Region of Corticospinal Tract: Evaluation with Diffusion Tensor Imaging. PLoS ONE 2017, 12, e0182795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Review Manager (RevMan) [Computer program]; Version 5.4; The Cochrane Collaboration: London, UK, 2020.
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological Index for Non-Randomized Studies (Minors): Development and Validation of a New Instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.A.; Jain, S.K.; Sinha, V.D.; Sinha, J. Preoperative Diffusion Tensor Imaging: A Landmark Modality for Predicting the Outcome and Characterization of Supratentorial Intra-Axial Brain Tumors. World Neurosurg. 2019, 124, e540–e551. [Google Scholar] [CrossRef]
- Yen, P.S.; Teo, B.T.; Chiu, C.H.; Chen, S.C.; Chiu, T.L.; Su, C.F. White Matter Tract Involvement in Brain Tumors: A Diffusion Tensor Imaging Analysis. Surg. Neurol. 2009, 72, 464–469. [Google Scholar] [CrossRef]
- Bakhshi, S.K.; Quddusi, A.; Mahmood, S.D.; Waqas, M.; Shamim, M.S.; Mubarak, F.; Enam, S.A. Diagnostic Implications of White Matter Tract Involvement by Intra-Axial Brain Tumors. Cureus J. Med. Sci. 2021, 13, e19355. [Google Scholar] [CrossRef]
- Camins, À.; Naval-Baudin, P.; Majós, C.; Sierpowska, J.; Sanmillan, J.L.; Cos, M.; Rodriguez-Fornells, A.; Gabarrós, A. Inferior Fronto-Occipital Fascicle Displacement in Temporoinsular Gliomas Using Diffusion Tensor Imaging. J. Neuroimaging 2022, 32, 638–646. [Google Scholar] [CrossRef]
- Celtikci, P.; Fernandes-Cabral, D.T.; Yeh, F.C.; Panesar, S.S.; Fernandez-Miranda, J.C. Generalized Q-Sampling Imaging Fiber Tractography Reveals Displacement and Infiltration of Fiber Tracts in Low-Grade Gliomas. Neuroradiology 2018, 60, 267–280. [Google Scholar] [CrossRef]
- Deilami, T.; Kharrazi, H.H.; Seddighi, A.S.; Tanzifi, P.; Tayebiyaljouzi, R.; Zamani, F.; Tafti, A.C. Evaluating the Possibility of Defining Cut-Off Points for Delta FA% in Order to Differentiate Four Major Types of Peri-Tumoral White Matter Tract Involvement. Iran. J. Radiol. 2015, 12, e9567. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.; Kataria, R.; Sinha, V.D. Role of Diffusion Tensor Imaging in Brain Tumor Surgery. Asian J. Neurosurg. 2018, 13, 302–306. [Google Scholar] [CrossRef]
- Shalan, M.E.; Soliman, A.Y.; Nassar, I.A.; Alarabawy, R.A. Surgical Planning in Patients with Brain Glioma Using Diffusion Tensor MR Imaging and Tractography. Egypt. J. Radiol. Nucl. Med. 2021, 52, 110. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, S.H.; Wu, G.J.; Zhang, X.L. Magnetic Resonance Diffusion Tensor Imaging and Diffusion Tensor Tractography of Human Visual Pathway. Int. J. Ophthalmol. 2012, 5, 452–458. [Google Scholar] [CrossRef]
- Zhukov, V.Y.; Goryaynov, S.A.; Ogurtsova, A.A.; Ageev, I.S.; Protskiy, S.V.; Pronin, I.N.; Tonoyan, A.S.; Kobyakov, G.L.; Nenashev, E.A.; Smirnov, A.S.; et al. Diffusion Tensor Imaging Tractography and Intraoperative Neurophysiological Monitoring in Surgery of Intracranial Tumors Located near the Pyramidal Tract. Zh. Vopr. Neirokhir. Im. N. N. Burdenko 2016, 80, 5–18. [Google Scholar] [CrossRef]
- Figley, C.R.; Uddin, M.N.; Wong, K.; Kornelsen, J.; Puig, J.; Figley, T.D. Potential Pitfalls of Using Fractional Anisotropy, Axial Diffusivity, and Radial Diffusivity as Biomarkers of Cerebral White Matter Microstructure. Front. Neurosci. 2022, 15, 799576. [Google Scholar] [CrossRef] [PubMed]
- Warrington, S.; Bryant, K.L.; Khrapitchev, A.A.; Sallet, J.; Charquero-Ballester, M.; Douaud, G.; Jbabdi, S.; Mars, R.B.; Sotiropoulos, S.N. XTRACT-Standardised Protocols for Automated Tractography in the Human and Macaque Brain. Neuroimage 2020, 217, 116923. [Google Scholar] [CrossRef] [PubMed]
- Meesters, S.; Landers, M.; Rutten, G.-J.; Florack, L. Automated tractography for brain tumor surgery: Towards clinical application. In Proceedings of the ISMRM & SMRT Annual Meeting & Exhibition, Online, 15–20 May 2021. [Google Scholar]
- Kinoshita, M.; Goto, T.; Okita, Y.; Kagawa, N.; Kishima, H.; Hashimoto, N.; Yoshimine, T. Diffusion Tensor-Based Tumor Infiltration Index Cannot Discriminate Vasogenic Edema from Tumor-Infiltrated Edema. J. Neurooncol. 2010, 96, 409–415. [Google Scholar] [CrossRef]
- Min, Z.G.; Niu, C.; Rana, N.; Ji, H.M.; Zhang, M. Differentiation of Pure Vasogenic Edema and Tumor-Infiltrated Edema in Patients with Peritumoral Edema by Analyzing the Relationship of Axial and Radial Diffusivities on 3.0T MRI. Clin. Neurol. Neurosurg. 2013, 115, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Auriat, A.M.; Borich, M.R.; Snow, N.J.; Wadden, K.P.; Boyd, L.A. Comparing a Diffusion Tensor and Non-Tensor Approach to White Matter Fiber Tractography in Chronic Stroke. Neuroimage 2015, 7, 771. [Google Scholar] [CrossRef] [Green Version]
Study | No. of Patients (Total) | No. of Patients (Grouped by Tumor Grade) | LGG (%) | HGG (%) | Tractography Method | WM Tract Pattern Classification System | Relation between Glioma Grade and Spatial WM Tract Alteration Patterns |
---|---|---|---|---|---|---|---|
Bakhshi et al. 2021 [37] | 57 | Astrocytoma: grade I (n = 3); grade II (n = 1); grade III (n = 2); GBM (n = 26) Oligodendroglioma: grade II (n = 13); grade III (n = 12) Oligoastrocytoma: grade II (n = 3); grade III (n = 3) | 30 | 70 | DTI tractography, fiber tracking protocol not specified | According to Witwer et al. (2002) [29] | LGG (n = 20): 25% displaced; 55% infiltrated; 15% disrupted HGG (n = 43): 30% displaced; 63% infiltrated; 7% disrupted |
Camins et al. 2022 [38] | 34 | Grade I ganglioglioma (n = 1); grade I pleomorphic xanthoastrocytoma (n = 1) Astrocytoma: grade II diffuse astrocytoma (n = 4); grade III anaplastic astrocytoma (n = 9); GBM (n = 14) Oligodendroglioma: grade III anaplastic oligodendroglioma (n = 5) | 18 | 82 | DTI tractography using manual deterministic fiber tracking algorithm, ROI selection method described. Tractography performed by consensus by two neuroradiologists with subspecialized experience in presurgical DTI tractography mapping | Self-described classification, partly based on Jellison et al. (2004) [28] and Field et al. (2004) [27]: Intact tract; Displaced (preserved or elevated FA); Infiltrated/edematous (reduced FA and preserved tract direction, with or without displacement); Destroyed (extremely reduced FA and loss of directional data) | LGG (n = 6): 33% displaced; 50% combined infiltrated/edematous; 0% destroyed HGG (n = 28): 11% displaced; 64% combined infiltrated/edematous; 25% destroyed |
Celtikci et al. 2018 [39] | 16 | Only grade II glioma: oligodendroglioma (n = 7); diffuse astrocytoma (n = 5); gemistocytic astrocytoma (n = 2); pleomorphic xanthoastrocytoma (n = 1); pilomyxoid astrocytoma (n = 1) | 100 | 0 | Fiber tracking using QA-based generalized deterministic algorithm. Qualitative evaluation by the consensus of first two authors, blinded to all clinical information | Self-described classification: Unaffected; Displaced (changed tract trajectory due to mass effect); Infiltrated (segment or entire peritumoral tract runs through tumor); Displaced and infiltrated simultaneously; Disruption (tract partially or completely interrupted) | 65 tracts analyzed in 16 patients (all grade II): 14% unaffected; 37% displaced; 20% infiltrated; 29% displaced & infiltrated; 0% disrupted |
Deilami et al. 2015 [40] | 11 | Not reported | 36 | 64 | DTI tractography, fiber tracking protocol not specified. ROI selection by a hand-drawn procedure, using an atlas for more accurate ROI drawing | According to Witwer et al. (2002) [29] | LGG (23 tracts analyzed in 4 patients): 65% infiltrated; 31% displaced; 4% disrupted; 0% edematous HGG (74 tracts analyzed in 7 patients): 49% infiltrated; 20% displaced; 19% disrupted; 12% edematous |
Delgado et al. 2016 * [31] | 34 | Only grade II/III glioma (n = 34) Astrocytoma: grade II (n = 9); grade III (n = 9) Oligodendroglioma: grade II (n = 13); grade III (n = 3) | 65 | 35 | DTI tractography using TrackVis software, ROI selection based on white matter atlas | Self-described classification: Dislocated (tract deviation from expected FA-color map trajectory and located outside tumor area, defined as increased T2-FLAIR signal intensity); Infiltrated (tract runs through increased T2-FLAIR tumor area). | LGG (n = 22): 55% dislocated; 77% infiltrated HGG (n = 12): 42% dislocated; 92% infiltrated |
Dubey et al. 2018 [41] | 29 | Not reported | 41 | 59 | DTI tractography using deterministic tracking algorithm. Data were reviewed by the senior faculty of neurosurgery | According to Jellison et al. (2004) [28] | LGG (n = 12): 75% displaced; 25% infiltrated/disrupted HGG (n = 17): 29% displaced; 71% infiltrated/disrupted |
Gao et al. 2017 * [32] | 45 | Astrocytoma: grade I (n = 5); grade II (n = 3); grade III (n = 15); GBM (n = 15) Oligodendroglioma: grade II (n = 5); grade III (n = 1) Gliosarcoma (n = 1) | 29 | 71 | DTI tractography, fiber tracking using line propagation technique. ROI selection method described | Combination of Witwer et al. (2002) [29] and Field et al. (2004) [27] | LGG (n = 13): 92% displaced; 8% infiltrated; 0% disruption HGG (n = 32): 28% displaced; 16% infiltrated; 56% disrupted |
Shalan et al. 2021 [42] | 20 | Not reported | 30 | 70 | DTI tractography, fiber tracking protocol not specified. ROI selection method described per tract | According to Jellison et al. (2004) [28] | LGG (n = 6): 33% unaffected; 83% displaced; 67% edematous; 17% infiltrated; 0% destructed HGG (n = 14) 0% unaffected; 71% displaced; 50% edematous; 79% infiltrated; 29% destructed. Significant difference for infiltration between the 2 groups (p = 0.018) |
Yu et al. 2005 * [30] | 12 | Astrocytoma: grade II (n = 1) grade III (n = 2) Oligodendroglioma: grade II (n = 1) Oligoastrocytoma grade III (n = 4) GBM (n = 4) | 17 | 83 | DTI tractography, using probabilistic fiber tracking in anterograde and retrograde direction. ROI selection method described per tract | Self-described classification: Simple displacement (tract location altered but integrity preserved); Displacement with disruption (reduced fibers with displacement of residual tract); Simple disruption (reduced fibers without displacement of residual tract) | LGG (6 tracts analyzed in 2 patients): 17% simple displacement; 33% simple disruption; 50% not measurably involved HGG (30 tracts analyzed in 10 patients): 7% simple displacement; 7% simple disruption; 30% displacement with disruption; 57% not measurably involved |
Zhang et al. 2012 [43] | 9 | Grade II (n = 2); grade III/IV (n = 7) | 22 | 78 | DTI tractography, fiber tracking using line propagation technique. ROI selection method described per tract | According to Witwer et al. (2002) [29] | LGG (n = 2): 100% displaced; 100% infiltrated; 0% disrupted HGG (n = 7): 0% displaced; 100% infiltrated; 100% disrupted |
Zhukov et al. 2016 [44] | 25 | Grade I (n = 2); grade II (n = 8); grade III (n = 4); grade IV (n = 11) | 40 | 60 | DTI tractography, fiber tracking protocol and ROI selection method not specified | Self-described classification: Intact (tract position far from tumor and edema, with unchanged trajectory and tract thickness); Displaced (tract trajectory is changed and runs along tumor border); Infiltrated (tract located inside tumor, with thinner tract) | LGG (n = 10): 50% intact; 30% displaced; 20% infiltrated. HGG (n = 15): 40% intact; 20% displaced; 40% infiltrated |
Study | WM Tract Pattern | Definition |
---|---|---|
Witwer et al. 2002 [29] | Displacement | Normal FA maintained relative to contralateral hemisphere corresponding tract, but tract has abnormal location or abnormal orientation on color-coded orientation map. |
Infiltration | Reduced FA, but tract remains identifiable on color-coded orientation map. | |
Disruption | Significantly reduced FA, and tract not identifiable on color-coded orientation map. | |
Edematous | Normal FA, and orientation on color-coded orientation map maintained, but tract shows high T2-weighted signal intensity. | |
Jellison et al. 2004 [28] | Displacement | Normal/slightly decreased FA with abnormal location/direction on directional color maps due to bulk mass displacement. |
Infiltration | Substantially decreased FA, and abnormal hues on directional color map. | |
Disruption | (Near-)isotropic FA, and tract not identifiable on directional color map. | |
Edematous | Substantially decreased FA with normal location/direction on directional color map. | |
Field et al. 2004 [27] | Displacement | Normal/slightly decreased FA (<25%), and normal/slightly increased apparent diffusion coefficient (ADC) (<25%) relative to contralateral hemisphere, and abnormal location/direction due to bulk mass displacement. |
Infiltration | Substantially decreased FA and increased ADC, and abnormal hues on directional color map, not due to bulk mass displacement. | |
Disruption | (Near-)isotropic FA, and tract not identifiable on directional color map. | |
Edematous | Substantially decreased FA with increased ADC, and normal location and direction on directional color map. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoodi, A.L.; Landers, M.J.F.; Rutten, G.-J.M.; Brouwers, H.B. Characterization and Classification of Spatial White Matter Tract Alteration Patterns in Glioma Patients Using Magnetic Resonance Tractography: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 3631. https://doi.org/10.3390/cancers15143631
Mahmoodi AL, Landers MJF, Rutten G-JM, Brouwers HB. Characterization and Classification of Spatial White Matter Tract Alteration Patterns in Glioma Patients Using Magnetic Resonance Tractography: A Systematic Review and Meta-Analysis. Cancers. 2023; 15(14):3631. https://doi.org/10.3390/cancers15143631
Chicago/Turabian StyleMahmoodi, Arash L., Maud J. F. Landers, Geert-Jan M. Rutten, and H. Bart Brouwers. 2023. "Characterization and Classification of Spatial White Matter Tract Alteration Patterns in Glioma Patients Using Magnetic Resonance Tractography: A Systematic Review and Meta-Analysis" Cancers 15, no. 14: 3631. https://doi.org/10.3390/cancers15143631
APA StyleMahmoodi, A. L., Landers, M. J. F., Rutten, G. -J. M., & Brouwers, H. B. (2023). Characterization and Classification of Spatial White Matter Tract Alteration Patterns in Glioma Patients Using Magnetic Resonance Tractography: A Systematic Review and Meta-Analysis. Cancers, 15(14), 3631. https://doi.org/10.3390/cancers15143631