Early Age of Onset Is an Independent Predictor for a Worse Response to Neoadjuvant Therapies in Sporadic Rectal Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients’ Selection
2.2. Endpoints and Variables
2.3. Statistical Analysis
3. Results
3.1. Demographics and Preoperative Data
3.2. Response to Neoadjuvant Treatment and Pathological Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Torre, L.A.; Soerjomataram, I.; Hayes, R.B.; Bray, F.; Weber, T.K.; Jemal, A. Global patterns and trends in colorectal cancer incidence in young adults. Gut 2019, 68, 2179–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuik, F.E.; Nieuwenburg, S.; Bardou, M.; Lansdorp-Vogelaar, I.; Dinis-Ribeiro, M.; Bento, M.J.; Zadnik, V.; Pellisé, M.; Esteban, L.; Kaminski, M.; et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 2019, 68, 1820–1826. [Google Scholar] [CrossRef] [PubMed]
- Lui, R.N.; Tsoi, K.K.; Ho, J.M.; Lo, C.; Chan, F.C.; Kyaw, M.H.; Sung, J.J. Global Increasing Incidence of Young-Onset Colorectal Cancer Across 5 Continents: A Joinpoint Regression Analysis of 1,922,167 Cases. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1275–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, J.J.; Chiu, H.-M.; Jung, K.-W.; Jun, J.K.; Sekiguchi, M.; Matsuda, T.; Kyaw, M.H. Increasing Trend in Young-Onset Colorectal Cancer in Asia: More Cancers in Men and More Rectal Cancers. Am. J. Gastroenterol. 2019, 114, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Ahnen, D.J.; Wade, S.W.; Jones, W.F.; Sifri, R.; Silveiras, J.M.; Greenamyer, J.; Guiffre, S.; Axilbund, J.; Spiegel, A.; You, Y.N. The Increasing Incidence of Young-Onset Colorectal Cancer: A Call to Action. Mayo Clin. Proc. 2014, 89, 216–224. [Google Scholar] [CrossRef]
- Liang, J.T.; Huang, K.C.; Cheng, A.L.; Jeng, Y.M.; Wu, M.S.; Wang, S.M. Clinicopathological and molecular biological features of colorectal cancer in patients less than 40 years of age. Br. J. Surg. 2003, 90, 205–214. [Google Scholar] [CrossRef]
- Endreseth, B.H.; Romundstad, P.; Myrvold, H.E.; Hestvik, U.E.; Bjerkeset, T.; Wibe, A. Rectal Cancer in the Young Patient. Dis. Colon Rectum 2006, 49, 993–1001. [Google Scholar] [CrossRef]
- You, Y.N.; Dozois, E.J.; Boardman, L.A.; Aakre, J.; Huebner, M.; Larson, D.W. Young-Onset Rectal Cancer: Presentation, Pattern of Care and Long-term Oncologic Outcomes Compared to a Matched Older-Onset Cohort. Ann. Surg. Oncol. 2011, 18, 2469–2476. [Google Scholar] [CrossRef]
- Foppa, C.M.; Bertuzzi, A.F.M.; Cianchi, F.M.; Carvello, M.M.; Maroli, A.; Wolthuis, A.M.; Rimassa, L.M.; Laghi, L.M.; Montorsi, M.M.; D’hoore, A.J.; et al. Rectal Cancer in Adolescent and Young Adult Patients: Pattern of Clinical Presentation and Case-Matched Comparison of Outcomes. Dis. Colon Rectum 2021, 64, 1064–1073. [Google Scholar] [CrossRef]
- Foppa, C.; Tamburello, S.; Maroli, A.; Carvello, M.; Poliani, L.; Laghi, L.; Malesci, A.; Montorsi, M.; Perea, J.; Spinelli, A. Early age of onset is an independent predictor for worse disease-free survival in sporadic rectal cancer patients. A comparative analysis of 980 consecutive patients. Eur. J. Surg. Oncol. 2022, 48, 857–863. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Azad, N.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 1139–1167. [Google Scholar] [CrossRef]
- Perea, J.; García, J.L.; Corchete, L.; Tapial, S.; Olmedillas-López, S.; Vivas, A.; García-Olmo, D.; Urioste, M.; Goel, A.; González-Sarmiento, R. A clinico-pathological and molecular analysis reveals differences between solitary (early and late-onset) and synchronous rectal cancer. Sci. Rep. 2021, 11, 2202. [Google Scholar] [CrossRef]
- Kolarich, A.; George, T.J., Jr.; Hughes, S.J.; Delitto, D.; Allegra, C.J.; Hall, W.A.; Chang, G.J.; Tan, S.A.; Shaw, C.M.; Iqbal, A. Rectal cancer patients younger than 50 years lack a survival benefit from NCCN guideline-directed treatment for stage II and III disease. Cancer 2018, 124, 3510–3519. [Google Scholar] [CrossRef] [Green Version]
- Guillem, J.G.; Chessin, D.B.; Cohen, A.M.; Shia, J.; Mazumdar, M.; Enker, W.; Paty, P.B.; Weiser, M.R.; Klimstra, D.; Saltz, L.; et al. Long-term Oncologic Outcome Following Preoperative Combined Modality Therapy and Total Mesorectal Excision of Locally Advanced Rectal Cancer. Ann. Surg. 2005, 241, 829–838. [Google Scholar] [CrossRef]
- Foppa, C.; Maroli, A.; Lauricella, S.; Luberto, A.; La Raja, C.; Bunino, F.; Carvello, M.; Sacchi, M.; De Lucia, F.; Clerico, G.; et al. Different Oncologic Outcomes in Early-Onset and Late-Onset Sporadic Colorectal Cancer: A Regression Analysis on 2073 Patients. Cancers 2022, 14, 6239. [Google Scholar] [CrossRef]
- Erlandsson, J.; Holm, T.; Pettersson, D.; Berglund, A.; Cedermark, B.; Radu, C.; Johansson, H.; Machado, M.; Hjern, F.; Hallböök, O.; et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): A multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 2017, 18, 336–346. [Google Scholar] [CrossRef]
- Zhou, Z.R.; Liu, S.-X.; Zhang, T.-S.; Chen, L.-X.; Xia, J.; Hu, Z.-D.; Li, B. Short-course preoperative radiotherapy with immediate surgery versus long-course chemoradiation with delayed surgery in the treatment of rectal cancer: A systematic review and meta-analysis. Surg. Oncol. 2014, 23, 211–221. [Google Scholar] [CrossRef]
- Aref, A.; Abdalla, A. Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: Induction or Consolidation Chemotherapy? J. Clin. Oncol. 2022, 40, 2515–2519. [Google Scholar] [CrossRef]
- Dworak, O.; Keilholz, L.; Hoffmann, A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int. J. Colorectal Dis. 1997, 12, 19–23. [Google Scholar] [CrossRef]
- Park, J.-G.; Vasen, H.F.A.; Park, K.J.; Peltomaki, P.; de Leon, M.P.; Rodriguez-Bigas, M.A.; Lubinski, J.; Beck, N.E.; Bisgaard, M.-L.; Miyaki, M.; et al. Suspected hereditary nonpolyposis colorectal cancer. Dis. Colon Rectum 1999, 42, 710–715. [Google Scholar] [CrossRef]
- Steinhagen, E.; Shia, J.; Riedel, E.; Nash, G.M.; Weiser, M.R.; Temple, L.K.; Paty, P.B.; Guillem, J.G. Response to Neoadjuvant Therapy in Patients with Early Age-of-Onset Rectal Cancer. Dis. Colon Rectum 2013, 56, 58–63. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Wu, Y.; Xu, M.; Liu, X.; Guan, G. Worse treatment response to neoadjuvant chemoradiotherapy in young patients with locally advanced rectal cancer. BMC Cancer 2020, 20, 854. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, T.; Conradi, L.-C.; Beissbarth, T.; Ermert, H.; Homayounfar, K.; Middel, P.; Rüschoff, J.; Wolff, H.A.; Schüler, P.; Ghadimi, B.M.; et al. Enrichment of CD133-expressing cells in rectal cancers treated with preoperative radiochemotherapy is an independent marker for metastasis and survival. Cancer 2013, 119, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, S.; Tanaka, K.; Toiyama, Y.; Yokoe, T.; Okugawa, Y.; Ioue, Y.; Miki, C.; Kusunoki, M. Correlation of CD133, OCT4, and SOX2 in Rectal Cancer and Their Association with Distant Recurrence After Chemoradiotherapy. Ann. Surg. Oncol. 2009, 16, 3488–3498. [Google Scholar] [CrossRef] [PubMed]
- Orsini, R.G.; Verhoeven, R.H.; Lemmens, V.E.; van Steenbergen, L.N.; de Hingh, I.H.; Nieuwenhuijzen, G.A.; Rutten, H.J. Comparable survival for young rectal cancer patients, despite unfavourable morphology and more advanced-stage disease. Eur. J. Cancer 2015, 51, 1675–1682. [Google Scholar] [CrossRef]
- Patel, S.G.; Ahnen, D.J. Colorectal Cancer in the Young. Curr. Gastroenterol. Rep. 2018, 20, 15. [Google Scholar] [CrossRef]
- Saraiva, M.R.; Rosa, I.; Claro, I. Early-onset colorectal cancer: A review of current knowledge. World J. Gastroenterol. 2023, 29, 1289–1303. [Google Scholar] [CrossRef]
- Barbaro, B.; Leccisotti, L.; Vecchio, F.M.; Di Matteo, M.; Serra, T.; Salsano, M.; Poscia, A.; Coco, C.; Persiani, R.; Alfieri, S.; et al. The potential predictive value of MRI and PET-CT in mucinous and nonmucinous rectal cancer to identify patients at high risk of metastatic disease. Br. J. Radiol. 2017, 90, 20150836. [Google Scholar] [CrossRef] [Green Version]
- Reggiani Bonetti, L.; Lionti, S.; Domati, F.; Pagliani, G.; Mattioli, E.; Barresi, V. Histological grading based on poorly differentiated clusters is predictive of tumour response and clinical outcome in rectal carcinoma treated with neoadjuvant chemoradiotherapy. Histopathology 2017, 71, 393–405. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, T.; Xiao, L.; Yang, S.; Liu, Q.; Gao, Y.; Chen, G.; Xiao, W. Total Neoadjuvant Therapy (TNT) versus Standard Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis. Oncologist 2021, 26, e1555–e1566. [Google Scholar] [CrossRef]
- Kong, J.C.; Soucisse, M.; Michael, M.; Tie, J.; Ngan, S.Y.; Leong, T.; McCormick, J.; Warrier, S.K.; Heriot, A.G. Total Neoadjuvant Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Metaanalysis of Oncological and Operative Outcomes. Ann. Surg. Oncol. 2021, 28, 7476–7486. [Google Scholar] [CrossRef]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ Preservation in Patients with Rectal Adenocarcinoma Treated With Total Neoadjuvant Therapy. J. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef]
- Kim, S.H.; Chang, H.J.; Kim, D.Y.; Park, J.W.; Baek, J.Y.; Kim, S.Y.; Park, S.C.; Oh, J.H.; Yu, A.; Nam, B.-H. What Is the Ideal Tumor Regression Grading System in Rectal Cancer Patients after Preoperative Chemoradiotherapy? Cancer Res. Treat. 2016, 48, 998–1009. [Google Scholar] [CrossRef] [Green Version]
Characteristics | LORC | EORC | p-Value |
---|---|---|---|
Number of patients | 326 | 79 | |
Age, years | 65.23 ± 8.73 | 43.15 ± 5.04 | <0.0001 |
Gender, females | 132 (40%) | 37 (47%) | 0.312 |
BMI, Kg/m2 | 24.87 ± 3.87 | 23.77 ± 3.99 | 0.029 |
Smoking status | 0.285 | ||
Non-smokers | 166 (51%) | 43 (54%) | |
Ex-smokers | 71 (22%) | 21 (27%) | |
Smokers | 89 (27%) | 15 (19%) | |
Preoperative CEA, ng/mL | 2.00 [1.10–3.00] | 2.00 [1.10–3.00] | 0.813 |
Postoperative CEA, ng/mL | 2.16 [1.30–2.16] | 2.16 [1.00–2.16] | 0.075 |
Comorbidities | 228 (70%) | 17 (22%) | <0.0001 |
Family history of cancer | 177 (54%) | 38 (48%) | 0.379 |
Family history of CRC | 63 (19%) | 22 (28%) | 0.123 |
Distance of the tumor from the anal verge, cm | 5.00 [4.00–8.00] | 5.00 [3.00–6.50] | 0.113 |
Length of the tumor, cm | 5.00 [4.00–6.00] | 5.00 [4.00–6.00] | 0.866 |
Lumen circumference occupancy, % | 62 [40–95] | 65 [50–95] | 0.453 |
MRI-based T | 0.712 | ||
cT2 | 35 (10.7%) | 7 (9%) | |
cT3 | 255 (78%) | 61 (77%) | |
cT4 | 36 (11%) | 11 (14%) | |
MRI-based positive lymph nodes | 283 (87%) | 69 (87%) | 1.000 |
Type of neoadjuvant therapy | <0.0001 | ||
Chemoradiotherapy | 312 (96%) | 67 (85%) | |
Short-course radiotherapy | 10 (3%) | -- | |
Total neoadjuvant therapy | 4 (1%) | 12 (15%) | |
Adverse reactions to neoadjuvant therapy | 85 (26%) | 24 (30%) | 0.480 |
G1 | 33 (39%) | 10 (42%) | |
G2 | 32 (38%) | 12 (50%) | |
G3 | 14 (16%) | 2 (8%) | |
G4 | 6 (7%) | -- | |
Unplanned neoadjuvant interruption/modification | 18 (5%) | 3 (4%) | 0.778 |
Suspension | 14 (77%) | -- | 0.082 |
Reduction or modification | 4 (23%) | 3 (100%) | 0.138 |
Time from neoadjuvant end to surgery, days | 83 [69–92] | 82 [67–90] | 0.358 |
Characteristics | LORC | EORC | p-Value |
---|---|---|---|
Number of patients | 326 | 79 | |
Tumoral pathological stage (AJCC, 8th edition) | 0.606 | ||
Stage 0 | 77 (24%) | 17 (22%) | |
Stage I | 83 (25%) | 16 (20%) | |
Stage II | 91 (28%) | 23 (29%) | |
Stage III | 75 (23%) | 23 (29%) | |
Pathological tumoral classification | 0.709 | ||
ypT0 | 83 (25%) | 19 (24%) | |
ypT1 | 25 (8%) | 6 (8%) | |
ypT2 | 79 (24%) | 14 (18%) | |
ypT3 | 125 (39%) | 36 (46%) | |
ypT4 | 14 (4%) | 4 (4%) | |
Pathological node classification | 0.640 | ||
ypN0 | 240 (74%) | 53 (67%) | |
ypN1 | 53 (16%) | 16 (20%) | |
ypN2 | 20 (6%) | 7 (9%) | |
ypN1c | 13 (4%) | 3 (4%) | |
Resection margins status | 0.690 | ||
R0 | 319 (98%) | 77 (98%) | |
R1 | 7 (2%) | 2 (2%) | |
Positive circumferential margin | 5 (1%) | 1 (1%) | 1.000 |
Distance of the tumor from the distal margin, cm | 2.00 [1.17–3.00] | 2.00 [1.20–2.40] | 0.392 |
Number of lymph nodes harvested | 19 [14–24] | 20 [15–26] | 0.312 |
Lymph-node ratio | 0.00 [0.00–0.00] | 0.00 [0.00–0.07] | 0.151 |
Mucinous component | 17 (5%) | 8 (10%) | 0.126 |
Signet-ring cell component | 3 (1%) | 2 (2%) | 0.252 |
Extramural invasion | 49 (15%) | 13 (16%) | 0.730 |
Lymphovascuar invasion | 44 (13%) | 16 (20%) | 0.157 |
Perineural invasion | 39 (12%) | 15 (19%) | 0.138 |
Tumor deposits | 24 (7%) | 7 (9%) | 0.640 |
Microsatellite instability | 2 (1%) | 2 (2%) | 0.172 |
Mutations (KRAS/BRAF/NRAS/Pi3KCa) | 20 (6%) | 9 (11%) | 0.140 |
Tumor regression (Dworak + LN classification) | 0.124 | ||
Grade 0 | 5 (1%) | 1 (1%) | |
Grade 1 | 32 (10%) | 12 (15%) | |
Grade 2 | 78 (24%) | 26 (33%) | |
Grade 3 | 134 (41%) | 23 (29%) | |
Grade 4 | 77 (24%) | 17 (24%) | |
Incomplete tumor regression | 115 (35%) | 39 (49%) | 0.028 |
Downstaging from pre-treatment T3/T4 | 158/291 (54%) | 34/72 (47%) | 0.294 |
Downstaging from cN+ to ypN0 * | 213/258 (82.5%) | 47/63 (75%) | 0.149 |
Downstaging on T and N * | 133/291 (45.7%) | 28/72 (38.8%) | 0.297 |
Tumor regression (Dworak + LN classification) * | 0.219 | ||
Grade 0 | 5 (1.9%) | 1 (1.4%) | |
Grade 1 | 29 (10%) | 11 (15.3%) | |
Grade 2 | 70 (25%) | 23 (32%) | |
Grade 3 | 121 (40.5%) | 21 (26.3%) | |
Grade 4 | 66 (22.6%) | 16 (25%) | |
Incomplete tumor regression | 104 (35.7%) | 35 (48.6%) | 0.044 |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
OR/MD | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age of onset (vs. LORC) | 1.79 | 1.09 to 2.94 | 0.028 | 1.79 | 1.02 to 3.16 | 0.042 |
Gender (vs. male) | 0.83 | 0.55 to 1.25 | 0.407 | |||
BMI, Kg/m2 | −0.02 | −0.81 to 0.76 | 0.952 | |||
Smoking status (vs. non-smokers) | 0.047 | 0.030 | ||||
Ex-smokers | 1.15 | 0.66 to 2.02 | 0.615 | |||
Smokers | 2.03 | 1.19 to 3.45 | 0.009 | |||
CRC familiarity | 1.04 | 0.64 to 1.71 | 0.900 | |||
Tumor–anal verge, cm | −0.40 | −0.97 to 0.17 | 0.166 | |||
Length of tumor, cm | −0.60 | −1.01 to −0.19 | 0.004 | 1.12 | 0.99 to 1.25 | 0.059 |
Circumference occupancy, % | −9.95 | −15.43 to −4.48 | <0.0001 | 1.01 | 0.99 to 1.02 | 0.077 |
MRI T stage (vs. T2) | 0.016 | 0.531 | ||||
T3 | 1.58 | 0.69 to 3.59 | 0.270 | |||
T4 | 1.65 | 0.59 to 4.63 | 0.336 | |||
MRI positive lymph nodes | 1.22 | 0.66 to 2.25 | 0.547 | |||
Neoadjuvant type (vs. chemoradio) | 0.028 | 0.186 | ||||
Short-course radiotherapy | 4.04 | 0.88 to 18.47 | 0.072 | |||
Total neoadjuvant therapy | 1.91 | 0.60 to 6.02 | 0.270 | |||
Neoadjuvant interruption | 1.24 | 0.51 to 3.00 | 0.650 | |||
Diagnosis-surgery, days | −11.15 | −31.89 to 9.58 | 0.290 | |||
Mucinous component | 2.11 | 0.93 to 4.79 | 0.089 | |||
Signet-ring cells | 2.47 | 0.41 to 14.97 | 0.373 | |||
Neoadjuvant end-surgery, days | −1.65 | −11.39 to 8.09 | 0.739 | |||
Extramural invasion | 3.97 | 2.24 to 7.04 | <0.0001 | 2.34 | 1.18 to 4.66 | 0.015 |
Lymphovascular invasion | 3.41 | 1.93 to 6.03 | <0.0001 | 1.98 | 0.99 to 3.97 | 0.052 |
Perineural invasion | 3.27 | 1.80 to 5.93 | <0.0001 | 1.31 | 0.62 to 2.77 | 0.484 |
Tumor deposits | 2.42 | 1.15 to 5.09 | 0.021 | 1.40 | 0.59 to 3.31 | 0.433 |
Microsatellite instability | 0.54 | 0.06 to 5.24 | 1.000 | |||
Mutations | 1.83 | 0.86 to 3.89 | 0.163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foppa, C.; Maroli, A.; Luberto, A.; La Raja, C.; Spaggiari, P.; Bonifacio, C.; De Zanet, S.; Montorsi, M.; Piscuoglio, S.; Terracciano, L.M.; et al. Early Age of Onset Is an Independent Predictor for a Worse Response to Neoadjuvant Therapies in Sporadic Rectal Cancer Patients. Cancers 2023, 15, 3750. https://doi.org/10.3390/cancers15143750
Foppa C, Maroli A, Luberto A, La Raja C, Spaggiari P, Bonifacio C, De Zanet S, Montorsi M, Piscuoglio S, Terracciano LM, et al. Early Age of Onset Is an Independent Predictor for a Worse Response to Neoadjuvant Therapies in Sporadic Rectal Cancer Patients. Cancers. 2023; 15(14):3750. https://doi.org/10.3390/cancers15143750
Chicago/Turabian StyleFoppa, Caterina, Annalisa Maroli, Antonio Luberto, Carlotta La Raja, Paola Spaggiari, Cristiana Bonifacio, Stefano De Zanet, Marco Montorsi, Salvatore Piscuoglio, Luigi Maria Terracciano, and et al. 2023. "Early Age of Onset Is an Independent Predictor for a Worse Response to Neoadjuvant Therapies in Sporadic Rectal Cancer Patients" Cancers 15, no. 14: 3750. https://doi.org/10.3390/cancers15143750
APA StyleFoppa, C., Maroli, A., Luberto, A., La Raja, C., Spaggiari, P., Bonifacio, C., De Zanet, S., Montorsi, M., Piscuoglio, S., Terracciano, L. M., Santoro, A., & Spinelli, A. (2023). Early Age of Onset Is an Independent Predictor for a Worse Response to Neoadjuvant Therapies in Sporadic Rectal Cancer Patients. Cancers, 15(14), 3750. https://doi.org/10.3390/cancers15143750