A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China
Abstract
:Simple Summary
Abstract
1. Introduction
2. IHNI-1 System and Its Clinical Research
2.1. IHNI-1 System
2.2. Clinical Research at IHNI-1
3. NeuPex System and Its Clinical Research
3.1. NeuPex AB-BNCT System
3.2. NeuMANTA Treatment Planning System
3.3. The First Investigator-Initiated Trial at XHH BNCT Center
4. Recent Development and the Challenges
4.1. Development of Compact Neutron Source Device
4.2. Development of Boron Agents
4.3. Challenges in Practice
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barth, R.F.; Soloway, A.H.; Brugger, R.M. Boron Neutron Capture Therapy of Brain Tumors: Past History, Current Status, and Future Potential. Cancer Investig. 1996, 14, 534–550. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects. Clin. Cancer Res. 2005, 11, 3987–4002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, R.F.; Vicente, M.H.; Harling, O.K.; Kiger, W.; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I.; et al. Current Status of Boron Neutron Capture Therapy of High Grade Gliomas and Recurrent Head and Neck Cancer. Radiat. Oncol. 2012, 7, 146. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y. A New Technology on Binary Targeting Radiation Therapy of Cancer: Neutron Capture Therapy (NCT) and the In-Hospital Neutron Irradiator (IHNI). Chin. J. Nat. 2009, 31, 125–131+135. [Google Scholar]
- Zhou, Y. The boron neutron capture therapy(BNCT) status to go into the new era. Strateg. Study Chin. Acad. Eng. 2012, 14, 4–13. [Google Scholar]
- Li, Y.; Xia, P.; Wu, X.; Zou, S.; Peng, D.; Lu, J.; Hong, J.; Zhang, Z.; Liu, T.; Zhou, Y. Start-Up of the First In-Hospital Neutron Irradiator (IHNI-1) & Presentation of the BNCT Development Status in China. In Proceedings of the ICNCT-BuenosAires, Argentina: Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, 25–29 October 2010; pp. 371–374. [Google Scholar]
- Li, Y.; Xia, P.; Peng, D.; Zou, S.; Wu, X.; Zhang, J.; Zhang, Y.; Zhang, Z.; Liu, T.; Zhou, Y. Construction of in-hospital neutron irradiator. Strateg. Study Chin. Acad. Eng. 2012, 14, 17–19. [Google Scholar]
- Li, Y.; Peng, D.; Zou, S.; Wu, X.; Zhang, J.; Zhang, Z.; Xia, P.; Zuo, X.; Liu, T.; Zhou, Y. Test operation of in-hospital neutron irradiator. Strateg. Study Chin. Acad. Eng. 2012, 14, 23–27. [Google Scholar]
- Li, Y.; Xia, P.; Peng, D.; Zou, S.; Wu, X.; Zhang, J.; Zhang, Z.; Gao, J.; Wang, L.; Fu, J.; et al. Performance and characteristic of in-hospital neutron irradiator. Strateg. Study Chin. Acad. Eng. 2012, 14, 20–22+27. [Google Scholar]
- Zhang, Z.; Liu, T. A Review of the Development of In-Hospital Neutron Irradiator-1 and Boron Neutron Capture Therapy Clinical Research on Malignant Melanoma. Ther. Radiol. Oncol. 2018, 2, 49. [Google Scholar] [CrossRef]
- Yong, Z.; Song, Z.; Zhou, Y.; Liu, T.; Zhang, Z.; Zhao, Y.; Chen, Y.; Jin, C.; Chen, X.; Lu, J.; et al. Boron Neutron Capture Therapy for Malignant Melanoma: First Clinical Case Report in China. Chin. J. Cancer Res. 2016, 28, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yong, Z.; Jin, C.; Song, Z.; Zhu, S.; Liu, T.; Chen, Y.; Chong, Y.; Chen, X.; Zhou, Y. Biodistribution Studies of Boronophenylalanine in Different Types of Skin Melanoma. Appl. Radiat. Isot. 2020, 163, 109215. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Advances in Boron Neutron Capture Therapy; International Atomic Energy Agency: Vienna, Austria, 2023. [Google Scholar]
- Zhang, Z.; Chong, Y.; Chen, X.; Jin, C.; Yang, L.; Liu, T. PGNAA System Preliminary Design and Measurement of In-Hospital Neutron Irradiator for Boron Concentration Measurement. Appl. Radiat. Isot. 2015, 106, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, C.; Song, M.; Li, W.; Yao, S.; Diao, L.; Yao, Y.; Zhang, Z.; Gao, J.; Zhang, Y. Preliminary characterization of radiation fields of IHNI-1 for BNCT. Strateg. Study Chin. Acad. Eng. 2012, 14, 106–112. [Google Scholar]
- Chen, J.; Li, C.; Li, W.; Song, M.; Zhang, Z. Neutron Spectra Measurement of IHNI-I BNCT Beam With Multi—Sphere Spectrometer. At. Energy Sci. Technol. 2014, 48, 2127. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Li, C.; Song, M.; Zhang, Z. Fast Neutron Fluence Rate Measurement for the Neutron Beams at IHNI-1. J. Isot. 2017, 30, 170–174. [Google Scholar]
- Fukuda, H.; Hiratsuka, J.; Honda, C.; Kobayashi, T.; Yoshino, K.; Karashima, H.; Takahashi, J.; Abe, Y.; Kanda, K.; Ichihashi, M.; et al. Boron Neutron Capture Therapy of Malignant Melanoma Using 10 B-Paraboronophenylalanine with Special Reference to Evaluation of Radiation Dose and Damage to the Normal Skin. Radiat. Res. 1994, 138, 435. [Google Scholar] [CrossRef] [PubMed]
- Coderre, J.A. The Radiation Biology of Boron Neutron Capture Therapy. Radiat. Res. 1999, 151, 1–18. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Wu, W.; Liang, T.; Xing, Q.; Zhang, Z.; Liu, Z.; Liu, Y.; Pan, J.; Zhu, S.; et al. Principles and Clinical Applications of Boron Neutron Capture Therapy. Med. J. Peking Union Med. Coll. Hosp. 2023, 14, 698–705. [Google Scholar] [CrossRef]
- Tanaka, H.; Mitsumoto, T.; Ono, K. Realization of the world’s first accelerator BNCT system using a cyclotron. J. Part. Accel. Soc. Jpn. 2020, 17, 81–85. [Google Scholar] [CrossRef]
- Chen, J.; Teng, Y.; Zhong, W.; Yang, H.; Hong, Q.; Liu, Y. Development of Monte Carlo Based Treatment Planning System for BNCT. J. Phys. Conf. Ser. 2022, 2313, 012012. [Google Scholar] [CrossRef]
- Zhong, W.; Chen, J.; Teng, Y.; Liu, Y. Introduction to the Monte Carlo dose engine COMPASS for BNCT. Sci. Rep. 2023, 13, 11965. [Google Scholar] [CrossRef] [PubMed]
- Rong, L.; Mu, Z.; Zhou, W.; Wan, M.; Xie, Z.; Wang, B.; Liu, M.; Li, J.; Xu, X.; Zhang, H. RF power source system for boron neutron capture therapy test facility. High. Power Laser Part. Beams 2021, 33, 053007. [Google Scholar] [CrossRef]
- Chen, J.; Tong, J.; Hu, Z.; Han, X.; Tang, B.; Yu, Q.; Zhang, R.; Zhao, C.; Xu, J.; Fu, S.; et al. Evaluation of Neutron Beam Characteristics for D-BNCT01 Facility. Nucl. Sci. Tech. 2022, 33, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Li, N.; Guan, X.; Gu, L. Design of Beam Shaping Assembly for Accelerator-based Boron Neutron Capture Therapy and Study on Its Clinical Parameter. At. Energy Sci. Technol. 2022, 56, 1440–1447. [Google Scholar] [CrossRef]
- Ji, L.; Guan, F.; An, S.; Zheng, X.; Song, G.; Zhang, T.; Guan, L.; Wang, S.; Li, M. Structural Optimization Design on Central Region of High Intensity Proton Cyclotron for Boron Neutron Capture Therapy. At. Energy Sci. Technol. 2021, 55, 730–737. [Google Scholar]
- Li, H.; Su, H.; Lv, Y.; Luo, H.; Hui, X.; Wang, J.; Ma, B.; Lu, Y.; Wang, S. Design of a Compact RFQ Linac for the Transportable Neutron Source. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1042, 167254. [Google Scholar] [CrossRef]
- Hu, J.; Qiao, Z.; Fan, L.; Tang, Y.; Cao, L.; Zu, T.; He, Q.; Li, Z.; Wang, S. Calculation of Thermal Neutron Scattering Data of MgF2 and Its Effect on Beam Shaping Assembly for BNCT. Nucl. Eng. Technol. 2023, 55, 1280–1286. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Lv, Y.; Xie, Y.; Qiao, Z.; Li, J.; Fan, J.; Li, H.; Li, Z.; Wang, S. Simulations on the Thermal and Mechanical Performance of the Rotating Target System of Accelerator-Driven Neutron Source for Boron Neutron Capture Therapy (BNCT). Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1053, 168340. [Google Scholar] [CrossRef]
- Qiao, Z.; Ma, B.; Rong, B.; Jiang, Q.; Wang, S. Beam Shaping Assembly Design of Li(p,n) Neutron Source with a Rotating Target for Boron Neutron Capture Therapy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1052, 168249. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Zhang, Z.; Duan, D.; Zhang, Z.; Liu, H.; Liu, T.; Liu, Z. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS Appl. Mater. Interfaces 2018, 10, 43387–43395. [Google Scholar] [CrossRef]
- Shi, Y.; Fu, Q.; Li, J.; Liu, H.; Zhang, Z.; Liu, T.; Liu, Z. Covalent Organic Polymer as a Carborane Carrier for Imaging-Facilitated Boron Neutron Capture Therapy. ACS Appl. Mater. Interfaces 2020, 12, 55564–55573. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, Z.; Fu, Q.; Shen, X.; Zhang, Z.; Sun, W.; Wang, J.; Sun, J.; Zhang, Z.; Liu, T.; et al. Localized Nuclear Reaction Breaks Boron Drug Capsules Loaded with Immune Adjuvants for Cancer Immunotherapy. Nat. Commun. 2023, 14, 1884. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Shi, Y.; Du, P.; Zhang, Z.; Liu, T.; Zhang, R.; Liu, Z. On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy. ACS Nano 2019, 13, 13843–13852. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dai, K.; Li, J.; Shi, Y.; Zhang, Z.; Liu, T.; Xie, J.; Zhang, R.; Liu, Z. A Boron-10 Nitride Nanosheet for Combinational Boron Neutron Capture Therapy and Chemotherapy of Tumor. Biomaterials 2021, 268, 120587. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, Q.; Lu, C.; Xiao, H.; Guo, Z.; Duan, D.; Zhang, Z.; Liu, T.; Liu, Z. Boron Encapsulated in a Liposome Can Be Used for Combinational Neutron Capture Therapy. Nat. Commun. 2022, 13, 2143. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Zhang, Z.; Liu, H.; Lang, L.; Liu, T.; Chen, X.; Liu, Z. A Metabolically Stable Boron-Derived Tyrosine Serves as a Theranostic Agent for Positron Emission Tomography Guided Boron Neutron Capture Therapy. Bioconjugate Chem. 2019, 30, 2870–2878. [Google Scholar] [CrossRef]
- Li, Z.; Kong, Z.; Chen, J.; Li, J.; Li, N.; Yang, Z.; Wang, Y.; Liu, Z. 18F-Boramino Acid PET/CT in Healthy Volunteers and Glioma Patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3113–3121. [Google Scholar] [CrossRef]
- Duan, D.; Han, Y.; Tu, Z.; Guo, H.; Zhang, Z.; Shi, Y.; Li, J.; Sun, Q.; Chen, J.; Li, Z.; et al. Gadolinium Neutron Capture Reaction-Induced Nucleodynamic Therapy Potentiates Antitumor Immunity. CCS Chem. 2023, 1–14. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Zhang, Z.; Li, J.; Chen, K.; Liang, H.; Lv, L.; Chang, Y.; Liu, S.; Yang, W.; et al. Multifunctional High Boron Content MOFs Nano-Co-Crystals for Precise Boron Neutron Capture Therapy for Brain Glioma in Situ. Nano Today 2022, 45, 101558. [Google Scholar] [CrossRef]
- Li, J.; Kong, J.; Ma, S.; Li, J.; Mao, M.; Chen, K.; Chen, Z.; Zhang, J.; Chang, Y.; Yuan, H.; et al. Exosome-Coated 10 B Carbon Dots for Precise Boron Neutron Capture Therapy in a Mouse Model of Glioma In Situ. Adv. Funct. Mater. 2021, 31, 2100969. [Google Scholar] [CrossRef]
- Mi, P.; Yanagie, H.; Dewi, N.; Yen, H.-C.; Liu, X.; Suzuki, M.; Sakurai, Y.; Ono, K.; Takahashi, H.; Cabral, H.; et al. Block Copolymer-Boron Cluster Conjugate for Effective Boron Neutron Capture Therapy of Solid Tumors. J. Control. Release 2017, 254, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, Y.; Huang, Y.; Zhang, Z.; Yang, W.; Du, Z.; Zhou, Y. Targeting Glioma Stem Cells Enhances Anti-Tumor Effect of Boron Neutron Capture Therapy. Oncotarget 2016, 7, 43095–43108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Cai, F.; Hwang, K.C.; Zhou, Y.; Zhang, Z.; Liu, X.; Ma, S.; Yang, Y.; Yao, Y.; Feng, M.; et al. Folate Receptor-Mediated Boron-10 Containing Carbon Nanoparticles as Potential Delivery Vehicles for Boron Neutron Capture Therapy of Nonfunctional Pituitary Adenomas. Sci. China Life Sci. 2013, 56, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhou, Q.; Chen, J.; Tong, J.; Liang, T.; Zhao, L. Doxorubicin-conjugated 10B4C nanoparticles: Preparation and application in combined boron neutron capture therapy/chemotherapy. Chin. Sci. Bull. 2022, 67, 1546–1554. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, D.; Yi, Y.; Wang, Y.; Cui, Z.; Chen, X.; Ma, Q.; Song, F.; Zhu, B.; Zhao, Z.; et al. Chitosan-Lactobionic Acid-Thioctic Acid-Modified Hollow Mesoporous Silica Composite Loaded with Carborane for Boron Neutron Capture Therapy of Hepatocellular Carcinoma. Mater. Des. 2022, 223, 111196. [Google Scholar] [CrossRef]
- Ailuno, G.; Balboni, A.; Caviglioli, G.; Lai, F.; Barbieri, F.; Dellacasagrande, I.; Florio, T.; Baldassari, S. Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment. Cells 2022, 11, 4029. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Current Status of Neutron Capture Therapy; International Atomic Energy Agency: Vienna, Austria, 2001. [Google Scholar]
Measured Values | Calculated Values | |||||
---|---|---|---|---|---|---|
φth/cm−2·s−1 | φepi/cm−2·s−1 | φf/cm−2·s−1 | φth/cm−2·s−1 | φepi/cm−2·s−1 | φf/cm−2·s−1 | |
Thermal beam | 1.90 × 109 (1 ± 0.016) | 1.05 × 108 (1 ± 0.027) | 2.29 × 107 (1 ± 0.146) | 1.87 × 109 (1 ± 0.018) | 9.59 × 107 (1 ± 0.084) | 2.04 × 107 (1 ± 0.151) |
Epithermal beam | 1.91 × 107 (1 ± 0.016) | 4.90 × 108 (1 ± 0.027) | 6.94 × 107 (1 ± 0.073) | 1.82 × 107 (1 ± 0.121) | 5.03 × 108 (1 ± 0.028) | 6.02 × 107 (1 ± 0.083) |
Measured Values | Calculated Values | |
---|---|---|
Kγ/Gy·h−1 | Kγ/Gy·h−1 | |
Thermal beam | 1.01 (1 ± 0.112) | 0.50 (1 ± 0.091) |
Epithermal beam | 1.05 (1 ± 0.112) | 0.36 (1 ± 0.110) |
1. All patients must meet the following requirements: A. Age between 18 and 80 years, with no gender restrictions. B. An Eastern Cooperative Oncology Group (ECOG) performance score between 0 and 2. C. The tumor-to-normal tissue boron concentration ratio (TNR) should be N > 2.5, as suggested by the L-18F-BPA-PET/CT examination. D. Expected survival time not less than 3 months. |
2. Patients with recurrent refractory head and neck malignant tumors must also meet the following requirements: A. Histologically confirmed head and neck malignant tumors, including nasopharynx, nasal cavity, paranasal sinus, oropharynx, oral cavity, hypopharynx, and larynx. B. Being at stages III and IV and having failed standard treatment, being unwilling to accept standard treatment, or being unable to be treated in other ways, as per the guidelines of the Chinese Society of Clinical Oncology (CSCO). C. According to RECIST1.1, at least one assessable tumor lesion. |
3. Patients with primary malignant brain tumors must also meet the following requirements: A. Histologically confirmed primary malignant brain tumors, CNS WHO Grade III or Grade IV. B. Patients with measurable lesions according to the RANO (2010) standards. |
Developer | Name of the Project | Location | Accelerator Type | Target | Proton Beam Energy (MeV) | Beam Curren (mA) | Current Status | Citation |
---|---|---|---|---|---|---|---|---|
Neuboron | NeuPex | Xiamen Humanity Hospital, Xiamen, China | Electrostatic Tandem | Li | 2.35 | 10 | Clinical research | [13] |
IHEP | D-BNCT01 | Dongguan Neutron Science Center, Dongguan, China | RFQ | Li | 3.5 | 4.5 | BNCT research | [24,25] |
IHEP | D-BNCT02 | Dongguan People’s Hospital, Dongguan, China | RFQ | Li | 2.8 | 20 | Commissioning | [25] |
LU | - | Fujian Medical University Union Hospital, Putian, China | RFQ | Li | 2.5 | 30 | Commission complete | [26] |
CIAE | CIAE-14 | Tai’an Central Hospital, Tai’an, China | Cyclotron | Be | 14 | 1 | Under construction | [27] |
XJTU | X-TANS | - | RFQ | Li | 2.5 | 10 | Under development | [28,29,30,31] |
Agent | Type | Injection | Max Boron in Tumor (ppm) | Tumor/Blood Ratio | Efficacy | Safety | Drug Loading Property | Imaging Property | Citation |
---|---|---|---|---|---|---|---|---|---|
BPN (boronated porphyrin nanocomplex) | Nanoparticle (micelle) | Intravenous injection | 125.17 ± 13.54 (five-time injection) | 33.85 ± 5.73 (five injections) | Tumor growth was suppressed and survival was prolonged | No obvious weight changes or abnormity of major organs | N | Y (PET-CT) | [32] |
BCOPs (carborane-loaded covalent organic polymers) | Nanoparticle (micelle) | Intravenous injection | 84.93 ± 2.68 (three injections) | 7.46 ± 0.66 (three injections) | Tumor growth was suppressed and survival was prolonged | No significant pathological damage or changes in major organs | N | Y (PET-CT) | [33] |
B-COFs (carborane-based covalent organic frameworks) | Nanoparticle (COF) | Intratumoral injection | 19.8 (24 h) | N.A. | Tumor growth was delayed over 40 days and survival was prolonged | No obvious loss of body weight and the results of serum biochemical test, routine blood analysis, and Hematoxylin-Eosin staining of major organs showed negligible systemic toxicity | Y | Y (PET-CT) | [34] |
PTL@BNNPs (phase-transitioned lysozyme decorated boron nitride nanoparticles) | Nanoparticle (nanosheet) | Intravenous injection | Above 120 (24 h) | 2.71 ± 0.96 (24 h) | Tumor growth was suppressed and survival was prolonged | No obvious histological abnormality | N | Y (PET-CT) | [35] |
BNNSs (boron nitride nanosheets) | Nanoparticle (boron nanosheet) | Intravenous injection | Above 20 (24 h) | 2.4 (24 h) | Tumor growth was suppressed and survival was prolonged | No abnormalities were observed in major organs | Y | Y (PET-CT) | [36] |
Boronsome (carborane-derived liposome) | Nanoparticle (liposome) | Intravenous injection | 93 (12 h) | 4.2 (12 h) | The tumor volume shrank to 1/5 after about 3 weeks (PARPi-boronsome) and survival was prolonged | No systemic toxicity or side effects | Y | Y (PET-CT) | [37] |
FBY (boron-derived tyrosine) | Small molecular | Intravenous injection | 19.59 ± 0.47 (1 h) | 3.13 ± 0.50 (1 h) | Tumor growth was suppressed and survival was prolonged | No obvious weight changes or abnormity of major organs | N | Y (PET-CT) | [38] |
157Gd-TCPP MOFs (MOF fabricated by Gd3+ and porphyrin derivative) | Nanoparticle (MOF) | Intratumoral injection | 95.1 ± 43.7 (8 d) | Above 800 (8 d) | Tumor growth was suppressed and survival was prolonged | No obvious weight changes or abnormity of major organs | N | Y (PET-CT) | [40] |
Zr-TCPP MOFs nano-co-crystals loaded with boric acids | Nanoparticle (MNC and MOFs nano-co-crystal) | Intravenous injection | 67.50 ± 4.20 (2 h) | 3.80 ± 0.35 (2 h) | Tumor growth was suppressed and survival was prolonged | No obvious weight changes | N | Y (PET-CT) | [41] |
BCD-Exos (exosome-coated 10B carbon dots) | Nanoparticle (carbon dots) | Intravenous injection | 107.07 ± 1.58 (4 h) | 5.28 ± 0.29 (4 h) | Tumor growth was suppressed and survival was prolonged | No obvious abnormity of major organs | N | Y (Fluorescence imaging) | [42] |
PEG-b-P(Glu-SS-BSH) (PEGylated BSH-polymer conjugate) | Nanoparticle (micelle) | Intravenous injection | 128 (24 h) | ~10 (24 h) | Tumor growth was suppressed | No visible damage of surrounding skin/tissue or body weight loss | N | N | [43] |
PD-CD133/BSH (folate receptor-mediated boron-10 containing carbon nanoparticles) | Antibody (boron conjugated antibody) | Intratumoral injection | 25.7 ± 5.8 (12 h, with 100 mg/kg BSH) | ~2.7 (12 h, with 100 mg/kg BSH) | The survival of mouse was prolonged | N.A. | N | N | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Chong, Y.; Liu, Y.; Pan, J.; Huang, C.; Sun, Q.; Liu, Z.; Zhu, X.; Shao, Y.; Jin, C.; et al. A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China. Cancers 2023, 15, 4060. https://doi.org/10.3390/cancers15164060
Zhang Z, Chong Y, Liu Y, Pan J, Huang C, Sun Q, Liu Z, Zhu X, Shao Y, Jin C, et al. A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China. Cancers. 2023; 15(16):4060. https://doi.org/10.3390/cancers15164060
Chicago/Turabian StyleZhang, Zizhu, Yizheng Chong, Yuanhao Liu, Jianji Pan, Cheng Huang, Qi Sun, Zhibo Liu, Xiayang Zhu, Yujun Shao, Congjun Jin, and et al. 2023. "A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China" Cancers 15, no. 16: 4060. https://doi.org/10.3390/cancers15164060
APA StyleZhang, Z., Chong, Y., Liu, Y., Pan, J., Huang, C., Sun, Q., Liu, Z., Zhu, X., Shao, Y., Jin, C., & Liu, T. (2023). A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China. Cancers, 15(16), 4060. https://doi.org/10.3390/cancers15164060