Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Long Non-Coding RNAs in TNBC
3. Circular RNAs in TNBC
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pac. J. Cancer Prev. 2016, 17, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed]
- Dawson, S.J.; Provenzano, E.; Caldas, C. Triple negative breast cancers: Clinical and prognostic implications. Eur. J. Cancer 2009, 45 (Suppl. 1), 27–40. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.; Moretti, E.; Siclari, O.; Migliaccio, I.; Santarpia, L.; D’Incalci, M.; Piccolo, S.; Veronesi, A.; Zambelli, A.; Sal, G.D.; et al. Targeting Triple Negative Breast Cancer: Is P53 the Answer? Cancer Treat Rev. 2013, 39, 541–550. [Google Scholar] [CrossRef]
- Hudis, C.A.; Gianni, L. Triple-Negative Breast Cancer: An Unmet Medical Need. Oncologist 2011, 16 (Suppl. 1), 1–11. [Google Scholar] [CrossRef]
- Khosravi-Shahi, P.; Cabezón-Gutiérrez, L.; Custodio-Cabello, S. Metastatic Triple Negative Breast Cancer: Optimizing Treatment Options, New and Emerging Targeted Therapies. Asia-Pac. J. Clin. Oncol. 2018, 14, 32–39. [Google Scholar] [CrossRef]
- Deveson, I.W.; Brunck, M.E.; Blackburn, J.; Tseng, E.; Hon, T.; Clark, T.A.; Clark, M.B.; Crawford, J.; Dinger, M.E.; Nielsen, L.K.; et al. Universal Alternative Splicing of Noncoding Exons. Cell Syst. 2018, 6, 245–255.e5. [Google Scholar] [CrossRef]
- Martin, C.J.; Moorehead, R.A. Polycomb repressor complex 2 function in breast cancer (Review). Int. J. Oncol. 2020, 57, 1085–1094. [Google Scholar] [CrossRef]
- Oliva-Rico, D.; Herrera, L.A. Regulated expression of the lncRNA TERRA and its impact on telomere biology. Mech. Ageing Dev. 2017, 167, 16–23. [Google Scholar] [CrossRef]
- Venkatesh, J.; Wasson, M.D.; Brown, J.M.; Fernando, W.; Marcato, P. LncRNA-miRNA Axes in Breast Cancer: Novel Points of Interaction for Strategic Attack. Cancer Lett. 2021, 509, 81–88. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Luo, W.; Li, F.; Xiao, J.; Qin, S.; Wang, Z.; Song, X.; Wang, Y.; Jin, F.; et al. Single-cell RNA-sequencing analysis identifies host long noncoding RNA MAMDC2-AS1 as a co-factor for HSV-1 nuclear transport. Int. J. Biol. Sci. 2020, 16, 1586–1603. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Weidmann, C.A.; Hilimire, T.A.; Yee, E.; Hatfield, B.M.; Schneekloth, J.S.; Weeks, K.M.; Novina, C.D. Targeting the Oncogenic Long Non-coding RNA SLNCR1 by Blocking Its Sequence-Specific Binding to the Androgen Receptor. Cell Rep. 2020, 30, 541–554.e5. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shen, J.; Chan, M.T.; Wu, W.K.K. TUG1: A pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif. 2016, 49, 471–475. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Welden, J.R.; Stamm, S. Pre-mRNA structures forming circular RNAs. Biochim. Et Biophys. Acta Gene Regul. Mech. 2019, 1862, 194410. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Xu, C.; Liu, J.; Chen, J.; Li, G.; Huang, B.; Pan, Y.; Zhang, Y.; Wei, Q. Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity. Nat. Commun. 2023, 14, 351. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, J.; He, Y.; Meng, N.; Yan, G.-R. Peptides/Proteins Encoded by Non-coding RNA: A Novel Resource Bank for Drug Targets and Biomarkers. Front. Pharmacol. 2018, 9, 1295. [Google Scholar] [CrossRef]
- Xu, S.-T.; Xu, J.-H.; Zheng, Z.-R.; Zhao, Q.-Q.; Zeng, X.-S.; Cheng, S.-X.; Liang, Y.-H.; Hu, Q.-F. Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed. Pharmacother. 2017, 96, 14–21. [Google Scholar] [CrossRef]
- Liu, M.; Xing, L.-Q.; Liu, Y.-J. A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine 2017, 96, e6222. [Google Scholar] [CrossRef]
- Mei, J.; Hao, L.; Wang, H.; Xu, R.; Liu, Y.; Zhu, Y.; Liu, C. Systematic characterization of non-coding RNAs in triple-negative breast cancer. Cell Prolif. 2020, 53, e12801. [Google Scholar] [CrossRef]
- Chen, Q.-N.; Wei, C.-C.; Wang, Z.-X.; Sun, M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget 2016, 8, 1925–1936. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhao, W.; Zhang, H.; Chu, Z.; Liu, H.; Fang, X.; Tang, D. Long non-coding RNA ANRIL promotes chemoresistance in triple-negative breast cancer via enhancing aerobic glycolysis. Life Sci. 2022, 306, 120810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, F.; Xie, X.; Shen, Y. Prognostic Value of Long Non-Coding RNAs in Triple Negative Breast Cancer: A PRISMA-Compliant Meta-Analysis. Medicine 2020, 99, e21861. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dohogne, Z.; Yang, J.; Liu, Y.; Soibam, B. Predictors of breast cancer cell types and their prognostic power in breast cancer patients. BMC Genom. 2018, 19, 137. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Liu, Y.R.; Xu, X.E.; Jin, X.; Hu, X.; Yu, K.D.; Shao, Z.M. Transcriptome analysis of triple-negative breast cancer reveals an integrated mRNA-lncRNA signature with predictive and prognostic value. Cancer Res. 2016, 76, 2105–2114. [Google Scholar] [CrossRef]
- Zhong, C.; Xie, Z.; Shen, J.; Jia, Y.; Duan, S. LINC00665: An Emerging Biomarker for Cancer Diagnostics and Therapeutics. Cells 2022, 11, 1540. [Google Scholar] [CrossRef]
- Guo, B.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Wang, Y.; Zhang, S.; Wu, R.; Lu, J.; et al. Micropeptide CIP 2A- BP encoded by LINC 00665 inhibits triple-negative breast cancer progression. EMBO J. 2019, 39, e102190. [Google Scholar] [CrossRef]
- Collina, F.; Aquino, G.; Brogna, M.; Cipolletta, S.; Buonfanti, G.; De Laurentiis, M.; Di Bonito, M.; Cantile, M.; Botti, G. LncRNA HOTAIR up-regulation is strongly related with lymph nodes metastasis and LAR subtype of Triple Negative Breast Cancer. J. Cancer 2019, 10, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Di Agostino, S.; Vahabi, M.; Turco, C.; Fontemaggi, G. Secreted Non-Coding RNAs: Functional Impact on the Tumor Microenvironment and Clinical Relevance in Triple-Negative Breast Cancer. Non-Coding RNA 2022, 8, 5. [Google Scholar] [CrossRef]
- Kong, X.; Liu, W.; Kong, Y. Roles and expression profiles of long non-coding RNAs in triple-negative breast cancers. J. Cell. Mol. Med. 2017, 22, 390–394. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.-C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Shi, H.; Li, H.; Li, L.; Fang, R.; Cai, X.; Liu, B.; Zhang, X.; Ye, L. HBXIP and LSD1 Scaffolded by lncRNA Hotair Mediate Transcriptional Activation by c-Myc. Cancer Res. 2016, 76, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Overstreet, A.-M.; Chen, M.-S.; Wang, J.; Zhao, H.-J.; Ho, P.-C.; Smith, M.; Wang, S.-C. Combined inhibition of EGFR and c-ABL suppresses the growth of triple-negative breast cancer growth through inhibition of HOTAIR. Oncotarget 2015, 6, 11150–11161. [Google Scholar] [CrossRef]
- Li, Z.; Qian, J.; Li, J.; Zhu, C. Knockdown of Lncrna-Hotair Downregulates the Drug-Resistance of Breast Cancer Cells to Doxorubicin Via the Pi3k/Akt/Mtor Signaling Pathway. Exp. Ther. Med. 2019, 18, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Eades, G.; Wolfson, B.; Zhang, Y.; Li, Q.; Yao, Y.; Zhou, Q. lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Mol. Cancer Res. 2015, 13, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Zhao, Y.; Li, Z.; Yao, R.; Ma, M.; Gao, Y.; Zhao, L.; Zhang, Y.; Huang, B.; Lu, J. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis. 2014, 5, e1287. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, B.; Zhu, H.; Qu, X.; Zhao, L.; Tan, Y.; Jiang, Y.; Liao, M.; Wu, X. Inhibition of long non-coding RNA ROR reverses resistance to Tamoxifen by inducing autophagy in breast cancer. Tumor Biol. 2017, 39, 1010428317705790. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, Y.; Zhou, Z.; Ma, M.; Fu, K. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed. Pharmacother. 2017, 95, 922–928. [Google Scholar] [CrossRef]
- Mekky, R.Y.; Ragab, M.F.; Manie, T.; Attia, A.A.; Youness, R.A. MALAT-1: Immunomodulatory lncRNA hampering the innate and the adaptive immune arms in triple negative breast cancer. Transl. Oncol. 2023, 31, 101653. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Liang, L.; Li, J.; Chen, Y.-X. Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 11480–11484. [Google Scholar]
- Sha, S.; Yuan, D.; Liu, Y.; Han, B.; Zhong, N.; Liu, Z. Targeting long non-coding RNA DANCR inhibits triple negative breast cancer progression. Biol. Open 2017, 6, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhou, H.; Li, D.; Zhi, Y.; Liu, Y.; Li, J.; Wang, F. LncRNA DANCR upregulation induced by TUFT1 promotes malignant progression in triple negative breast cancer via miR-874-3p-SOX2 axis. Exp. Cell Res. 2020, 396, 112331. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, A.M.; Sun, Z.; Ayat, N.; Schilb, A.; Liu, X.; Jiang, H.; Sun, D.; Scheidt, J.; Qian, V.; He, S.; et al. Systemic Delivery of Tumor-Targeting siRNA Nanoparticles against an Oncogenic LncRNA Facilitates Effective Triple-Negative Breast Cancer Therapy. Bioconjug. Chem. 2019, 30, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Shin, V.Y.; Chen, J.; Cheuk, I.W.Y.; Siu, M.-T.; Ho, C.-W.; Wang, X.; Jin, H.; Kwong, A. Long non-coding RNA NEAT1 confers oncogenic role in triple-negative breast cancer through modulating chemoresistance and cancer stemness. Cell Death Dis. 2019, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ke, H.; Zhang, H.; Ma, Y.; Ao, L.; Zou, L.; Yang, Q.; Zhu, H.; Nie, J.; Wu, C.; et al. LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis. 2018, 9, 805. [Google Scholar] [CrossRef]
- Xu, J.; Wu, K.J.; Jia, Q.J.; Ding, X.F. Roles of Mirna and Lncrna in Triple-Negative Breast Cancer. J. Zhejiang Univ. Sci. B 2020, 21, 673–689. [Google Scholar] [CrossRef]
- Wang, L.; Luan, T.; Zhou, S.; Lin, J.; Yang, Y.; Liu, W.; Tong, X.; Jiang, W. LncRNA HCP5 promotes triple negative breast cancer progression as a ceRNA to regulate BIRC3 by sponging miR-219a-5p. Cancer Med. 2019, 8, 4389–4403. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Xiao, H.; Deng, X. Serum lncRNA TINCR Serve as a Novel Biomarker for Predicting the Prognosis in Triple-Negative Breast Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820965574. [Google Scholar] [CrossRef]
- Zhang, M.L.; Liu, W.W.; Li, W.D. Imbalance of Molecular Module of Tincr-Mir-761 Promotes the Metastatic Potential of Early Triple Negative Breast Cancer and Partially Offsets the Anti-Tumor Activity of Luteolin. Cancer Manag. Res. 2021, 13, 1877–1886. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Zhu, C.; Wang, K. lncRNA PVT1: A novel oncogene in multiple cancers. Cell. Mol. Biol. Lett. 2022, 27, 1877–1886. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Sang, Y.; Yu, B.; Lv, D.; Zhang, W.; Feng, H. LncRNA PVT1 regulates triple-negative breast cancer through KLF5/beta-catenin signaling. Oncogene 2018, 37, 4723–4734. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, R.; Ye, Z.; Wang, Y.; Li, X.; Chen, W.; Zhang, M.; Cai, C. PVT1 affects EMT and cell proliferation and migration via regulating p21 in triple-negative breast cancer cells cultured with mature adipogenic medium. Acta Biochim. Biophys. Sin. 2018, 50, 1211–1218. [Google Scholar] [CrossRef]
- Palcau, A.C.; Canu, V.; Donzelli, S.; Strano, S.; Pulito, C.; Blandino, G. CircPVT1: A pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Mol. Cancer 2022, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Traversa, D.; Simonetti, G.; Tolomeo, D.; Visci, G.; Macchia, G.; Ghetti, M.; Martinelli, G.; Kristensen, L.S.; Storlazzi, C.T. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br. J. Cancer 2021, 126, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, K.; Shi, L.; Zhang, Q.; Zhang, S. CircPVT1 Promoted the Progression of Breast Cancer by Regulating MiR-29a-3p-Mediated AGR2-HIF-1α Pathway. Cancer Manag. Res. 2020, 12, 11477–11490. [Google Scholar] [CrossRef]
- Yi, J.; Wang, L.; Hu, G.; Zhang, Y.; Du, J.; Ding, J.; Ji, X.; Shen, H.; Huang, H.; Ye, F.; et al. CircPVT1 promotes ER-positive breast tumorigenesis and drug resistance by targeting ESR1 and MAVS. EMBO J. 2023, 42, e112408. [Google Scholar] [CrossRef]
- Ji, J.; Dai, X.; Yeung, S.C.J.; He, X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag. Res. 2019, 11, 2729–2737. [Google Scholar] [CrossRef]
- Zheng, S.; Li, M.; Miao, K.; Xu, H. lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. J. Cell. Biochem. 2020, 121, 2225–2235. [Google Scholar] [CrossRef]
- Li, X.; Hou, L.; Yin, L.; Zhao, S. LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. J. Biosci. 2020, 45, 45. [Google Scholar] [CrossRef]
- Lan, F.; Zhang, X.; Li, H.; Yue, X.; Sun, Q. Serum exosomal lncRNA XIST is a potential non-invasive biomarker to diagnose recurrence of triple-negative breast cancer. J. Cell. Mol. Med. 2021, 25, 7602–7607. [Google Scholar] [CrossRef]
- Yu, F.; Wang, L.; Zhang, B. Long non-coding RNA DRHC inhibits the proliferation of cancer cells in triple negative breast cancer by downregulating long non-coding RNA HOTAIR. Oncol. Lett. 2019, 18, 3817–3822. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N.; Liu, Y.; Su, P.; Liang, Y.; Li, Y.; Wang, X.; Chen, T.; Song, X.; Sang, Y.; et al. Correction: Epigenetic Regulation of NAMPT by NAMPT-AS Drives Metastatic Progression in Triple-Negative Breast Cancer. Cancer Res. 2021, 81, 3145. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, N.; Song, P.; Fu, Y.; Ren, Y.; Li, Z.; Wang, J. LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif. 2020, 53, e12855. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; Han, J. HIF1A-AS2 predicts poor prognosis and regulates cell migration and invasion in triple-negative breast cancer. J. Cell. Biochem. 2019, 120, 10513–10518. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, N.; Watabe, K.; Lu, Z.; Wu, F.; Xu, M.; Mo, Y.-Y. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis. 2014, 5, e1008. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, S.; Li, H.; Lv, M.; Lu, C. Long noncoding RNAs (lncRNAs) in triple negative breast cancer. J. Cell. Physiol. 2017, 232, 3226–3233. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.; Yang, Y.; Xiang, T.; Song, W.; Liu, S. Microarray expression profiling of dysregulated long non-coding RNAs in triple-negative breast cancer. Cancer Biol. Ther. 2015, 16, 856–865. [Google Scholar] [CrossRef]
- Guo, S.; Jian, L.; Tao, K.; Chen, C.; Yu, H.; Liu, S. Novel Breast-Specific Long Non-coding RNA LINC00993 Acts as a Tumor Suppressor in Triple-Negative Breast Cancer. Front. Oncol. 2019, 9, 1325. [Google Scholar] [CrossRef]
- Chen, B.; Wei, W.; Huang, X.; Xie, X.; Kong, Y.; Dai, D.; Yang, L.; Wang, J.; Tang, H.; Xie, X. circEPSTI1 as a Prognostic Marker and Mediator of Triple-Negative Breast Cancer Progression. Theranostics 2018, 8, 4003–4015. [Google Scholar] [CrossRef]
- Liang, H.; Huang, W.; Wang, Y.; Ding, L.; Zeng, L. Overexpression of MiR-146a-5p Upregulates lncRNA HOTAIR in Triple-Negative Breast Cancer Cells and Predicts Poor Prognosis. Technol. Cancer Res. Treat. 2019, 18, 1533033819882949. [Google Scholar] [CrossRef]
- Tao, S.; He, H.; Chen, Q. Estradiol induces HOTAIR levels via GPER-mediated miR-148a inhibition in breast cancer. J. Transl. Med. 2015, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Chang, L.-C.; Chen, K.-B.; Wang, S.-C. Aptamer-guided targeting of the intracellular long-noncoding RNA HOTAIR. Am. J. Cancer Res. 2021, 11, 945–954. [Google Scholar]
- Abdel-Latif, M.; Riad, A.; Soliman, R.A.; Elkhouly, A.M.; Nafae, H.; Gad, M.Z.; Motaal, A.A.; Youness, R.A. MALAT-1/p53/miR-155/miR-146a ceRNA circuit tuned by methoxylated quercitin glycoside alters immunogenic and oncogenic profiles of breast cancer. Mol. Cell. Biochem. 2022, 477, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Barsoum, F.S.; Awad, A.S.; Hussein, N.H.; Eissa, R.A.; El Tayebi, H.M. MALAT-1: LncRNA ruling miR-182/PIG-C/mesothelin triad in triple negative breast cancer. Pathol. Res. Pract. 2020, 216, 153274. [Google Scholar] [CrossRef]
- Elbasateeny, S.S.; Yassin, M.A.; Mokhtar, M.M.; Ismail, A.M.; Ebian, H.F.; Hussein, S.; Shazly, S.A.; Abdelwabab, M.M. Prognostic Implications of MALAT1 and BACH1 Expression and Their Correlation with CTCs and Mo-MDSCs in Triple Negative Breast Cancer and Surgical Management Options. Int. J. Breast Cancer 2022, 2022, 8096764. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Rahman, U.; Győrffy, B.; Adams, B.D. linc00673 (ERRLR01) is a prognostic indicator of overall survival in breast cancer. Transcription 2017, 9, 17–29. [Google Scholar] [CrossRef]
- Lin, A.; Li, C.; Xing, Z.; Hu, Q.; Liang, K.; Han, L.; Wang, C.; Hawke, D.H.; Wang, S.; Zhang, Y.; et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nature 2016, 18, 213–224. [Google Scholar] [CrossRef]
- Augoff, K.; McCue, B.; Plow, E.F.; Sossey-Alaoui, K. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol. Cancer 2012, 11, 5. [Google Scholar] [CrossRef]
- Beilharz, T.H.; Humphreys, D.T.; Clancy, J.L.; Thermann, R.; Martin, D.I.; Hentze, M.W.; Preiss, T. MicroRNA-Mediated Messenger RNA Deadenylation Contributes to Translational Repression in Mammalian Cells. PLoS ONE 2009, 4, e6783. [Google Scholar] [CrossRef]
- Bi, M.; Zheng, L.; Chen, L.; He, J.; Yuan, C.; Ma, P.; Zhao, Y.; Hu, F.; Tang, W.; Sheng, M. ln RNA LINC01234 promotes triple-negative breast cancer progression through regulating the miR-429/SYNJ1 axis. Am. J. Transl. Res. 2021, 13, 11399–11412. [Google Scholar]
- Koduru, S.V.; Tiwari, A.K.; Leberfinger, A.; Hazard, S.W.; Kawasawa, Y.I.; Mahajan, M.; Ravnic, D.J. A comprehensive NGS data analysis of differentially regulated miRNAs, piRNAs, lncRNAs and sn/snoRNAs in triple negative breast cancer. J. Cancer 2017, 8, 578–596. [Google Scholar] [CrossRef]
- Han, C.; Li, X.; Fan, Q.; Liu, G.; Yin, J. CCAT1 promotes triple-negative breast cancer progression by suppressing miR-218/ZFX signaling. Aging 2019, 11, 4858–4875. [Google Scholar] [CrossRef]
- Jin, X.; Xu, X.-E.; Jiang, Y.-Z.; Liu, Y.-R.; Sun, W.; Guo, Y.-J.; Ren, Y.-X.; Zuo, W.-J.; Hu, X.; Huang, S.-L.; et al. The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Sci. Adv. 2019, 5, eaat9820. [Google Scholar] [CrossRef]
- Wang, X.; Chen, T.; Zhang, Y.; Zhang, N.; Li, C.; Li, Y.; Liu, Y.; Zhang, H.; Zhao, W.; Chen, B.; et al. Long noncoding RNA Linc00339 promotes triple-negative breast cancer progression through miR-377-3p/HOXC6 signaling pathway. J. Cell. Physiol. 2019, 234, 13303–13317. [Google Scholar] [CrossRef]
- Chen, F.-Y.; Zhou, Z.-Y.; Zhang, K.-J.; Pang, J.; Wang, S.-M. Long non-coding RNA MIR100HG promotes the migration, invasion and proliferation of triple-negative breast cancer cells by targeting the miR-5590-3p/OTX1 axis. Cancer Cell Int. 2020, 20, 508. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Yu, S.; Liu, D.; Sun, L. LncmiRHG-MIR100HG: A new budding star in cancer. Front. Oncol. 2022, 12, 997532. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, D.; Huynh, T.T.; Konda, P.; Dean, C.; Cruickshank, B.M.; Sultan, M.; Coyle, K.M.; Gujar, S.; Marcato, P. ALDH1A3-regulated long non-coding RNA NRAD1 is a potential novel target for triple-negative breast tumors and cancer stem cells. Cell Death Differ. 2019, 27, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhong, G.; Zhang, H.; Yu, B.; Wei, F.; Luo, L.; Kang, Y.; Wu, J.; Jiang, J.; Li, Y.; et al. LncRNA DANCR upregulates PI3K/AKT signaling through activating serine phosphorylation of RXRA. Cell Death Dis. 2018, 9, 1167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guan, X.; Tang, J. The Long Non-Coding Rna Landscape in Triple-Negative Breast Cancer. Cell Prolif. 2021, 54, e12966. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-S.; Chou, C.-H.; Lin, C.-H.; Yao, Y.-C.; Cheng, H.-C.; Li, H.-Y.; Chuang, Y.-C.; Yang, C.-N.; Ger, L.-P.; Chen, Y.-C.; et al. A novel long non-coding RNA linc-ZNF469-3 promotes lung metastasis through miR-574-5p-ZEB1 axis in triple negative breast cancer. Oncogene 2018, 37, 4662–4678. [Google Scholar] [CrossRef]
- Shi, F.; Xiao, F.; Ding, P.; Qin, H.; Huang, R. Long Noncoding RNA Highly Up-regulated in Liver Cancer Predicts Unfavorable Outcome and Regulates Metastasis by MMPs in Triple-negative Breast Cancer. Arch. Med. Res. 2016, 47, 446–453. [Google Scholar] [CrossRef]
- Gooding, A.J.; Zhang, B.; Gunawardane, L.; Beard, A.; Valadkhan, S.; Schiemann, W.P. The lncRNA BORG facilitates the survival and chemoresistance of triple-negative breast cancers. Oncogene 2018, 38, 2020–2041. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.A.; Gooding, A.J.; Valadkhan, S.; Schiemann, W.P. lncRNA BORG: TRIM28 complexes drive metastatic progression by inducing α6 integrin/CD49f expression in breast cancer stem cells. Mol. Cancer Res. 2021, 19, 2068–2080. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Yu, Z.; Xing, J.; Liu, H.; Zhou, S.; Huang, Y.; Lin, J.; Jiang, W.; Wang, L. LncRNA HCP5-Encoded Protein Regulates Ferroptosis to Promote the Progression of Triple-Negative Breast Cancer. Cancers 2023, 15, 1880. [Google Scholar] [CrossRef]
- Wu, J.; Chen, H.; Ye, M.; Wang, B.; Zhang, Y.; Sheng, J.; Meng, T. Corrigendum to “Downregulation of Long Noncoding Rna Hcp5 Contributes to Cisplatin Resistance in Human Triple-Negative Breast Cancer Via Regulation of PTEN Expression” [Biomed. Pharmacother. 115 (2019) 108869]. Biomed. Pharmacother. 2020, 122, 109789. [Google Scholar] [CrossRef] [PubMed]
- Youness, R.A.; Hafez, H.M.; Khallaf, E.; Assal, R.A.; Abdel Motaal, A.; Gad, M.Z. The long noncoding RNA sONE represses triple-negative breast cancer aggressiveness through inducing the expression of miR-34a, miR-15a, miR-16, and let-7a. J. Cell. Physiol. 2019, 234, 20286–20297. [Google Scholar] [CrossRef] [PubMed]
- Kansara, S.; Pandey, V.; Lobie, P.E.; Sethi, G.; Garg, M.; Pandey, A.K. Mechanistic Involvement of Long Non-Coding RNAs in Oncotherapeutics Resistance in Triple-Negative Breast Cancer. Cells 2020, 9, 1511. [Google Scholar] [CrossRef]
- Wang, N.; Hou, M.; Zhan, Y.; Sheng, X. LncRNA PTCSC3 inhibits triple-negative breast cancer cell proliferation by downregulating lncRNA H19. J. Cell. Biochem. 2019, 120, 15083–15088. [Google Scholar] [CrossRef]
- Song, X.; Liu, Z.; Yu, Z. LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta Biochim. Et Biophys. Sin. 2019, 51, 386–392. [Google Scholar] [CrossRef]
- Wang, O.; Yang, F.; Liu, Y.; Lv, L.; Ma, R.; Chen, C.; Wang, J.; Tan, Q.; Cheng, Y.; Xia, E.; et al. C-MYC-Induced Upregulation of Lncrna SNHG12 Regulates Cell Proliferation, Apoptosis and Migration in Triple-Negative Breast Cancer. Am. J. Transl. Res. 2017, 9, 533–545. [Google Scholar]
- Luo, L.; Tang, H.; Ling, L.; Li, N.; Jia, X.; Zhang, Z.; Wang, X.; Shi, L.; Yin, J.; Qiu, N.; et al. LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer. Oncogene 2018, 37, 6166–6179. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Li, Q.; Dinglin, X.; Xu, Y.; You, K.; Hong, H.; Hu, Q.; Zhang, W.; Li, C.; Tan, Y.; et al. Nanoparticles (Nps)-Meditated Lncrna Afap1-As1 Silencing to Block Wnt/Beta-Catenin Signaling Pathway for Synergistic Reversal of Radioresistance and Effective Cancer Radiotherapy. Adv. Sci. 2020, 7, 2000915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, P.; Tang, H.; Xie, X.; Kong, Y.; Song, C.; Qiu, X.; Xiao, X. Afap1-As1 Promotes Epithelial-Mesenchymal Transition and Tumorigenesis through Wnt/Beta-Catenin Signaling Pathway in Triple-Negative Breast Cancer. Front. Pharmacol. 2018, 9, 1248. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhong, J.; Yu, P.; Zhao, Q.; Huang, T. YY1-regulated LINC00152 promotes triple negative breast cancer progression by affecting on stability of PTEN protein. Biochem. Biophys. Res. Commun. 2018, 509, 448–454. [Google Scholar] [CrossRef]
- Wu, J.; Shuang, Z.; Zhao, J.; Tang, H.; Liu, P.; Zhang, L.; Xie, X.; Xiao, X. Linc00152 promotes tumorigenesis by regulating DNMTs in triple-negative breast cancer. Biomed. Pharmacother. 2018, 97, 1275–1281. [Google Scholar] [CrossRef]
- Lee, J.; Jung, J.H.; Chae, Y.S.; Park, H.Y.; Kim, W.W.; Lee, S.J.; Jeong, J.-H.; Kang, S.H. Long Noncoding RNA snaR Regulates Proliferation, Migration and Invasion of Triple-negative Breast Cancer Cells. Anticancer. Res. 2016, 36, 6289–6296. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Han, B.; Wu, X.; Hao, J.; Dong, X.; Shen, Q.; Pang, H. Knockdown of lncRNA H19 restores chemo-sensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol. Appl. Pharmacol. 2018, 359, 55–61. [Google Scholar] [CrossRef]
- Li, Y.; Ma, H.Y.; Hu, X.W.; Qu, Y.Y.; Wen, X.; Zhang, Y.; Xu, Q.Y. Lncrna H19 Promotes Triple-Negative Breast Cancer Cells Invasion and Metastasis through the P53/Tnfaip8 Pathway. Cancer Cell Int. 2020, 20, 200. [Google Scholar] [CrossRef]
- Mou, E.; Wang, H. LncRNA LUCAT1 facilitates tumorigenesis and metastasis of triple-negative breast cancer through modulating miR-5702. Biosci. Rep. 2019, 39, BSR20190489. [Google Scholar] [CrossRef]
- Sun, E.; Liu, X.; Lu, C.; Liu, K. Long Non-Coding RNA TTN-AS1 Regulates the Proliferation, Invasion and Migration of Triple-Negative Breast Cancer by Targeting miR-211-5p. Mol. Med. Rep. 2021, 23, 45. [Google Scholar] [CrossRef]
- Bermejo, J.L.; Huang, G.; Manoochehri, M.; Mesa, K.G.; Schick, M.; Silos, R.G.; Ko, Y.-D.; Brüning, T.; Brauch, H.; Lo, W.-Y.; et al. Long intergenic noncoding RNA 299 methylation in peripheral blood is a biomarker for triple-negative breast cancer. Epigenomics 2019, 11, 81–93. [Google Scholar] [CrossRef]
- Manoochehri, M.; Jones, M.; Tomczyk, K.; Fletcher, O.; Schoemaker, M.J.; Swerdlow, A.J.; Borhani, N.; Hamann, U.; Borhani, N.; Hamann, U. DNA methylation of the long intergenic noncoding RNA 299 gene in triple-negative breast cancer: Results from a prospective study. Sci. Rep. 2020, 10, 11762. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, Y.; Shang, L.; Qiu, Y.; Shen, N.; Wang, J.; Adam, T.; Wei, W.; Song, Q.; Li, J.; et al. LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling. Oncogene 2023, 42, 1419–1437. [Google Scholar] [CrossRef]
- Luo, N.; Zhang, K.; Li, X.; Hu, Y. ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J. Cell. Biochem. 2020, 121, 4176–4187. [Google Scholar] [CrossRef]
- Yang, J.; Meng, X.; Yu, Y.; Pan, L.; Zheng, Q.; Lin, W. LncRNA POU3F3 promotes proliferation and inhibits apoptosis of cancer cells in triple-negative breast cancer by inactivating caspase 9. Biosci. Biotechnol. Biochem. 2019, 83, 1117–1123. [Google Scholar] [CrossRef]
- Niu, L.; Fan, Q.; Yan, M.; Wang, L. LncRNA NRON down-regulates lncRNA snaR and inhibits cancer cell proliferation in TNBC. Biosci. Rep. 2019, 39, BSR20190468. [Google Scholar] [CrossRef]
- Liu, L.; Yu, D.; Shi, H.; Li, J.; Meng, L. Reduced Lncrna Aim Enhances the Malignant Invasion of Triple-Negative Breast Cancer Cells Mainly by Activating Wnt/Beta-Catenin/Mtor/Pi3k Signaling. Die Pharm. Int. J. Pharm. Sci. 2017, 72, 599–603. [Google Scholar]
- Wang, L.; Liu, D.; Wu, X.; Zeng, Y.; Li, L.; Hou, Y.; Li, W.; Liu, Z. Long non-coding RNA (LncRNA) RMST in triple-negative breast cancer (TNBC): Expression analysis and biological roles research. J. Cell. Physiol. 2018, 233, 6603–6612. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, W.; Xu, L.; Chen, Y.; Xu, Y.; Yuan, L. Long Non-Coding RNA PVT1 Regulates the Resistance of the Breast Cancer Cell Line MDA-MB-231 to Doxorubicin via Nrf2. Technol. Cancer Res. Treat. 2020, 19, 1533033820980763. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Li, D.; Shen, Z.; Zhang, K.; Bi, Z.; Li, Y. Long Non-Coding RNA MNX1-AS1 Promotes Progression of Triple Negative Breast Cancer by Enhancing Phosphorylation of Stat3. Front. Oncol. 2020, 10, 1108. [Google Scholar] [CrossRef]
- Xu, Z.; Gu, Y.; Lei, Y.; Teng, L. LncRNA AC093850.2 predicts poor outcomes in patients with triple-negative breast cancer and motivates tumor progression by sponging miR-4299. Acta Biochim. Pol. 2023, 70, 83–89. [Google Scholar] [CrossRef]
- Zheng, S.; Fu, W.; Huang, Q.; Zhou, J.; Lu, K.; Gu, J.; Ma, R.; Guo, G. LncRNA PRKCQ-AS1 Regulates Paclitaxel Resistance in Triple-Negative Breast Cancer Cells through Mir-361-5p/Pik3c3 Mediated Autophagy. Clin. Exp. Pharmacol. Physiol. 2023, 50, 431–442. [Google Scholar] [CrossRef]
- Sang, K.; Yi, T.; Pan, C.; Zhou, J.; Yu, L. Long Non-coding RNA LINC01224 Promotes the Malignant Behaviors of Triple Negative Breast Cancer Cells via Regulating the miR-193a-5p/NUP210 Axis. Mol. Biotechnol. 2022, 65, 624–636. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Qian, X.; Xu, X.; Lv, P. Long non-coding RNA LINC01559 serves as a competing endogenous RNA accelerating triple-negative breast cancer progression. Biomed. J. 2022, 45, 512–521. [Google Scholar] [CrossRef]
- Aini, S.; Bolati, S.; Ding, W.; Liu, S.; Su, P.; Aili, S.; Naman, Y.; Xuekelaiti, K. LncRNA SNHG10 suppresses the development of doxorubicin resistance by downregulating miR-302b in triple-negative breast cancer. Bioengineered 2022, 13, 11430–11439. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Wang, J.; Zhao, J.; Zhao, X.; Zhang, C.; Han, P.; Geng, C. Long non-coding RNA linc00921 suppresses tumorigenesis and epithelial-to-mesenchymal transition of triple-negative breast cancer via targeting miR-9-5p/LZTS2 axis. Hum. Cell 2022, 35, 909–923. [Google Scholar] [CrossRef]
- Chen, L.-L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 2020, 21, 475–490. [Google Scholar] [CrossRef]
- Tarrero, L.C.; Ferrero, G.; Miano, V.; De Intinis, C.; Ricci, L.; Arigoni, M.; Riccardo, F.; Annaratone, L.; Castellano, I.; Calogero, R.A.; et al. Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget 2018, 9, 14580–14596. [Google Scholar] [CrossRef]
- Lü, L.; Sun, J.; Shi, P.; Kong, W.; Xu, K.; He, B.; Zhang, S.; Wang, J. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 2017, 8, 44096–44107. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Z.; Chen, C.; Hu, Q.; Fu, Z.; Chen, J.; Wang, Z.; Wang, Q.; Li, A.; Marks, J.R.; et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Lett. 2018, 430, 179–192. [Google Scholar] [CrossRef]
- He, R.; Liu, P.; Xie, X.; Zhou, Y.; Liao, Q.; Xiong, W.; Li, X.; Li, G.; Zeng, Z.; Tang, H. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J. Exp. Clin. Cancer Res. 2017, 36, 145. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Wang, Y.; Li, X.; Wang, R.; Kang, Y.; Xue, X.; Meng, R.; Wei, Q.; Feng, X. Upregulation of circ-UBAP2 Predicts Poor Prognosis and Promotes Triple-Negative Breast Cancer Progression through the miR-661/MTA1 Pathway. Biochem. Biophys. Res. Commun. 2018, 505, 996–1002. [Google Scholar] [CrossRef]
- Tang, H.; Huang, X.; Wang, J.; Yang, L.; Kong, Y.; Gao, G.; Zhang, L.; Chen, Z.-S.; Xie, X. circKIF4A acts as a prognostic factor and mediator to regulate the progression of triple-negative breast cancer. Mol. Cancer 2019, 18, 23. [Google Scholar] [CrossRef]
- Huang, J.; Deng, X.; Chen, X.; Chang, Z.; Lu, Q.; Tang, A.; Liu, P. Circular RNA KIF4A Promotes Liver Metastasis of Breast Cancer by Reprogramming Glucose Metabolism. J. Oncol. 2022, 2022, 8035083. [Google Scholar] [CrossRef]
- Yang, S.J.; Wang, D.D.; Zhong, S.L.; Chen, W.Q.; Wang, F.L.; Zhang, J.; Xu, W.; Xu, D.; Zhang, Q.; Li, J.; et al. Tumor-Derived Exosomal circPSMA1 Facilitates the Tumorigenesis, Metastasis, and Migration in Triple-Negative Breast Cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell. Death Dis. 2021, 12, 420. [Google Scholar] [CrossRef]
- Que, T.; Song, Y.; Liu, Z.; Zheng, S.; Long, H.; Li, Z.; Liu, Y.; Zhou, J.; Zhang, X.; Fang, W.; et al. Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 2015, 34, 4952–4963. [Google Scholar] [CrossRef]
- Zhang, J.-F.; He, M.-L.; Fu, W.-M.; Wang, H.; Chen, L.-Z.; Zhu, X.; Chen, Y.; Xie, D.; Lai, P.; Chen, G.; et al. Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology 2011, 54, 2137–2148. [Google Scholar] [CrossRef]
- Chen, T.; Wang, X.; Li, C.; Zhang, H.; Liu, Y.; Han, D.; Li, Y.; Li, Z.; Luo, D.; Zhang, N.; et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene 2021, 40, 2756–2771. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Jiang, L.; Lu, L.; Dai, T.; Li, A.; Chen, Y.; Zhang, L. Circwac Induces Chemotherapeutic Resistance in Triple-Negative Breast Cancer by Targeting Mir-142, Upregulating Wwp1 and Activating the Pi3k/Akt Pathway. Mol. Cancer 2021, 20, 43. [Google Scholar] [CrossRef]
- Wang, S.T.; Liu, L.B.; Li, X.M.; Wang, Y.F.; Xie, P.J.; Li, Q.; Wang, R.; Wei, Q.; Kang, Y.H.; Meng, R.; et al. Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/β-catenin pathway. Neoplasma 2019, 66, 232–239. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J. Natl. Cancer Inst. 2018, 110, 304–315. [Google Scholar] [CrossRef]
- Ye, F.; Gao, G.; Zou, Y.; Zheng, S.; Zhang, L.; Ou, X.; Xie, X.; Tang, H. circFBXW7 Inhibits Malignant Progression by Sponging miR-197-3p and Encoding a 185-aa Protein in Triple-Negative Breast Cancer. Mol. Ther. Nucleic Acids 2019, 18, 88–98. [Google Scholar] [CrossRef]
- Zou, Y.; Zheng, S.; Xiao, W.; Xie, X.; Yang, A.; Gao, G.; Xiong, Z.; Xue, Z.; Tang, H.; Xie, X. circRAD18 sponges miR-208a/3164 to promote triple-negative breast cancer progression through regulating IGF1 and FGF2 expression. Carcinogenesis 2019, 12, 1469–1479. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.D.; Xing, X.J.; Liang, Z.T.; Xia, Z.H.; Zhao, Y. CircRNA_069718 promotes cell proliferation and invasion in triple-negative breast cancer by activating Wnt/β-catenin pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5315–5322. [Google Scholar]
- Xing, Z.; Wang, R.; Wang, X.; Liu, J.; Zhang, M.; Feng, K.; Wang, X. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis. Cell Death Discov. 2021, 7, 218. [Google Scholar] [CrossRef]
- Kong, Y.; Yang, L.; Wei, W.; Lyu, N.; Zou, Y.; Gao, G.; Ou, X.; Xie, X.; Tang, H. CircPLK1 sponges miR-296-5p to facilitate triple-negative breast cancer progression. Epigenomics 2019, 11, 1163–1176. [Google Scholar] [CrossRef]
- Sang, M.; Meng, L.; Liu, S.; Ding, P.; Chang, S.; Ju, Y.; Liu, F.; Gu, L.; Lian, Y.; Geng, C. Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs. Mol. Cancer Res. 2018, 16, 1665–1675. [Google Scholar] [CrossRef]
- Xu, J.-Z.; Shao, C.-C.; Wang, X.-J.; Zhao, X.; Chen, J.-Q.; Ouyang, Y.-X.; Feng, J.; Zhang, F.; Huang, W.-H.; Ying, Q.; et al. circTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axis. Cell Death Dis. 2019, 10, 175. [Google Scholar] [CrossRef]
- Zeng, K.; He, B.; Yang, B.B.; Xu, T.; Chen, X.; Xu, M.; Liu, X.; Sun, H.; Pan, Y.; Wang, S. The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer 2018, 17, 160. [Google Scholar] [CrossRef]
- Li, J.; Ma, M.; Yang, X.; Zhang, M.; Luo, J.; Zhou, H.; Huang, N.; Xiao, F.; Lai, B.; Lv, W.; et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol. Cancer 2020, 19, 142. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, J.; Jin, W.; Sun, Y.; Xu, Y.; Wang, Y.; Liang, X.; Su, D. CircNR3C2 promotes HRD1-mediated tumor-suppressive effect via sponging miR-513a-3p in triple-negative breast cancer. Mol. Cancer 2021, 20, 25. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, M.; Xing, L.; Yang, R.; Wang, X.; Jiang, R.; Zhang, L.; Chen, J. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol. Cancer 2020, 19, 73. [Google Scholar] [CrossRef]
- Dou, D.; Ren, X.; Han, M.; Xu, X.; Ge, X.; Gu, Y.; Wang, X.; Zhao, S. CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-negative breast cancer by regulating miR-512-3p/CDCA3 axis. Cancer Cell Int. 2020, 20, 454. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Lan, J.; Wan, Y.; Zhu, X. Circular RNA circRPPH1 promotes triple-negative breast cancer progression via the miR-556-5p/YAP1 axis. Am. J. Transl. Res. 2020, 12, 6220–6234. [Google Scholar]
- Yu, J.; Shen, W.; Xu, J.; Gong, B.; Gao, B.; Zhu, J. circUSP42 Is Downregulated in Triple-Negative Breast Cancer and Associated with Poor Prognosis. Technol. Cancer Res. Treat. 2020, 19, 1533033820950827. [Google Scholar] [CrossRef]
- Wang, S.; Liu, F.; Ma, H.; Cui, X.; Yang, S.; Qin, R. circCDYL Acts as a Tumor Suppressor in Triple Negative Breast Cancer by Sponging miR-190a-3p and Upregulating TP53INP1. Clin. Breast Cancer 2020, 20, 422–430. [Google Scholar] [CrossRef]
- Pei, X.; Zhang, Y.; Wang, X.; Xue, B.; Sun, M.; Li, H. Circular RNA circ-ZEB1 acts as an oncogene in triple negative breast cancer via sponging miR-448. Int. J. Biochem. Cell Biol. 2020, 126, 105798. [Google Scholar] [CrossRef]
- Liu, P.; Zou, Y.; Li, X.; Yang, A.; Ye, F.; Zhang, J.; Wei, W.; Kong, Y. circGNB1 Facilitates Triple-Negative Breast Cancer Progression by Regulating miR-141-5p-IGF1R Axis. Front. Genet. 2020, 11, 193. [Google Scholar] [CrossRef]
- He, D.; Yang, X.; Kuang, W.; Huang, G.; Liu, X.; Zhang, Y. The Novel Circular RNA Circ-PGAP3 Promotes the Proliferation and Invasion of Triple Negative Breast Cancer by Regulating the miR-330-3p/Myc Axis. OncoTargets Ther. 2020, 13, 10149–10159. [Google Scholar] [CrossRef]
- Xiao, W.; Zheng, S.; Zou, Y.; Yang, A.; Xie, X.; Tang, H.; Xie, X. CircAHNAK1 inhibits proliferation and metastasis of triple-negative breast cancer by modulating miR-421 and RASA1. Aging 2019, 11, 12043–12056. [Google Scholar] [CrossRef]
- Ma, J.; Fang, L.; Yang, Q.; Hibberd, S.; Du, W.W.; Wu, N.; Yang, B.B. Posttranscriptional regulation of AKT by circular RNA angiomotin-like 1 mediates chemoresistance against paclitaxel in breast cancer cells. Aging 2019, 11, 11369–11381. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, Y.; Zhao, L.; Su, L.; Luo, J. Circular Rna-Mto1 Suppresses Breast Cancer Cell Viability and Reverses Monastrol Resistance through Regulating the Traf4/Eg5 Axis. Int. J. Oncol. 2018, 53, 1752–1762. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, J.; He, Y.; Yi, G.; Rong, L.; Zheng, L.; Zhan, T.; Zhou, C. Circ_0062558 promotes growth, migration, and glutamine metabolism in triple-negative breast cancer by targeting the miR-876-3p/SLC1A5 axis. Arch. Gynecol. Obstet. 2022, 306, 1643–1655. [Google Scholar] [CrossRef]
- Shen, B.J.; Yang, Y.F.; Zhang, X.X. Hsa_Circ_0001925 Promotes Malignant Progression in Triple-Negative Breast Cancer Via Mir-1299/Yy1 Axis. Thorac. Cancer 2023, 14, 746–757. [Google Scholar] [CrossRef]
- Turco, C.; Esposito, G.; Iaiza, A.; Goeman, F.; Benedetti, A.; Gallo, E.; Daralioti, T.; Perracchio, L.; Sacconi, A.; Pasanisi, P.; et al. MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Commun. Biol. 2022, 5, 598. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Zhang, Z.; Lai, Y.; Lin, X.; Lin, B.; Ma, M.; Liang, X.; Li, X.; Lv, W.; et al. CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502–5p/KRAS and IGF2BP2/Myc axes. Mol. Cancer 2021, 20, 138. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Su, P.; Liang, Y.; Li, Z.; Zhang, H.; Song, X.; Han, D.; Wang, X.; Liu, Y.; et al. circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol. Ther. 2021, 30, 415–430. [Google Scholar] [CrossRef]
- Hu, J.; Ji, C.; Hua, K.; Wang, X.; Deng, X.; Li, J.; Graham, D.; Fang, L. Hsa_circ_0091074 regulates TAZ expression via microRNA-1297 in triple negative breast cancer cells. Int. J. Oncol. 2020, 56, 1314–1326. [Google Scholar] [CrossRef]
- Shi, Y.; Han, T.; Liu, C. CircRNA hsa_circ_0006220 acts as a tumor suppressor gene by regulating miR-197-5p/CDH19 in triple-negative breast cancer. Ann. Transl. Med. 2021, 9, 1236. [Google Scholar] [CrossRef]
- Li, H.; Yin, H.; Yan, Y. Circ_0041732 regulates tumor properties of triple-negative breast cancer cells by the miR-149-5p/FGF5 pathway. Int. J. Biol. Markers 2022, 37, 178–190. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, G.; Peng, S.; Tuo, M.; Li, Y.; Qin, X.; Yu, Q.; Kuang, S.; Cheng, H.; Li, J. Circ_0000520 contributes to triple-negative breast cancer progression through mediating the miR-1296/ZFX axis. Thorac. Cancer 2021, 12, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, P.; Zheng, T.; Ying, Z.; Jiang, D. Circular RNA hsa_circ_0131242 promotes triple-negative breast cancer progression by sponging hsa-miR-2682. OncoTargets Ther. 2020, 13, 4791–4798. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, W.; Xia, Z.; Liu, W.; Pan, G.; Ding, J.; Li, J.; Wang, J.; Xie, X.; Jiang, D. Hsa_circ_0000199 facilitates chemo-tolerance of triple-negative breast cancer by interfering with miR-206/613-led PI3K/Akt/mTOR signaling. Aging 2021, 13, 4522–4551. [Google Scholar] [CrossRef] [PubMed]
- Zan, X.; Li, W.; Wang, G.; Yuan, J.; Ai, Y.; Huang, J.; Li, Z. Circ-CSNK1G1 promotes cell proliferation, migration, invasion and glycolysis metabolism during triple-negative breast cancer progression by modulating the miR-28-5p/LDHA pathway. Reprod. Biol. Endocrinol. 2022, 20, 138. [Google Scholar] [CrossRef] [PubMed]
- Darbeheshti, F.; Zokaei, E.; Mansoori, Y.; Allahyari, S.E.; Kamaliyan, Z.; Kadkhoda, S.; Bazzaz, J.T.; Rezaei, N.; Shakoori, A. Circular RNA hsa_circ_0044234 as distinct molecular signature of triple negative breast cancer: A potential regulator of GATA3. Cancer Cell Int. 2021, 21, 312. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Yang, J.; Liang, Y.; Wang, X.; Zhang, N.; Kong, X.; Chen, B.; Wang, L.; Zhao, W.; et al. Circ-TRIO promotes TNBC progression by regulating the miR-432-5p/CCDC58 axis. Cell Death Dis. 2022, 13, 776. [Google Scholar] [CrossRef]
- Gong, G.; She, J.; Fu, D.; Zhen, D.; Zhang, B. CircUBR5 acts as a ceRNA for miR-1179 to up-regulate UBR5 and to promote malignancy of triple-negative breast cancer. Am. J. Cancer Res. 2022, 12, 2539–2557. [Google Scholar]
- Du, C.; Zhang, J.; Zhang, L.; Zhang, Y.; Wang, Y.; Li, J. Hsa_circRNA_102229 facilitates the progression of triple-negative breast cancer via regulating the miR-152-3p/PFTK1 pathway. J. Gene Med. 2021, 23, e3365. [Google Scholar] [CrossRef]
- Li, J.; Xu, Q.; Huang, Z.-J.; Mao, N.; Lin, Z.-T.; Cheng, L.; Sun, B.; Wang, G. CircRNAs: A new target for the diagnosis and treatment of digestive system neoplasms. Cell Death Dis. 2021, 12, 205. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, H.; Yang, C.; Bao, Y.-L.; Yang, S.-M.; Liu, J.; Xiao, Y.-F. Translation of noncoding RNAs and cancer. Cancer Lett. 2020, 497, 89–99. [Google Scholar] [CrossRef]
- Ma, S.; Kong, S.; Wang, F.; Ju, S. CircRNAs: Biogenesis, functions, and role in drug-resistant Tumours. Mol. Cancer 2020, 19, 119. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, G.; Liu, C.-G.; Xiang, X.; Le, M.T.N.; Sethi, G.; Wang, L.; Goh, B.-C.; Ma, Z. The potential role of exosomal circRNAs in the tumor microenvironment: Insights into cancer diagnosis and therapy. Theranostics 2022, 12, 87–104. [Google Scholar] [CrossRef] [PubMed]
Name | Function/Target | Biological Effect | Expression Levels | References | |
---|---|---|---|---|---|
Tumor Tissue | Blood | ||||
ANRIL | Sponges:
| Promotes:
| Upregulated | Upregulated | [16,18,20,21,22] |
HIF1A-AS2 | NA | Promotes:
| Upregulated | Upregulated | [19,23,24,25,64] |
UCA1 | Interacts with:
| Promotes:
| Upregulated | Upregulated | [19,65,66] |
TINCR | Sponges:
| Promotes:
| Upregulated | Upregulated | [48,49] |
LINC00993 | NA | Promotes:
| Downregulated | NA | [67,68] |
LINC00665 | Encodes:
| Suppresses:
| Downregulated | NA | [26,27] |
HOTAIR | Interacts with:
| Promotes:
| Upregulated | Upregulated | [28,29,31,32,33,34,69,70,71,72] |
lincRNA-RoR | Sponges:
| Promotes:
| Upregulated | NA | [35,36,37] |
MALAT1 | Sponges:
| Promotes:
| Upregulated | Upregulated | [38,39,73,74,75] |
ERRLR01 | NA | NA | Upregulated | NA | [76] |
LINK-A | Interacts with:
| Promotes:
| Upregulated | NA | [20,77] |
LOC554202 | NA | NA | Downregulated | NA | [78,79] |
LINC01234 | Sponges:
| Promotes:
| NA | NA | [80] |
lnc-DNAJC16 | NA | NA | Upregulated | NA | [81] |
lnc-PURA | NA | NA | Upregulated | NA | [81] |
CCAT1 | Sponges:
| Promotes:
| Upregulated | NA | [82] |
TROJAN | Interacts with:
| Promotes:
| Upregulated | NA | [83] |
LINC00339 | Sponges:
| Promotes:
| Upregulated | NA | [84] |
MIR100HG | Sponges:
formation of RNA–DNA triplex structures through binds to p27 gene | Promotes:
| Upregulated | NA | [45,46,85,86] |
NRAD1 | NA | Promotes:
| Upregulated | NA | [87] |
DANCR | Sponges:
| Promotes:
| Upregulated | NA | [40,41,42,43,62,88,89] |
NAMPT-AS | Interacts with:
| Promotes:
| Upregulated | NA | [62] |
Linc-ZNF469-3 | Sponges:
| Promotes:
| Upregulated | NA | [90] |
HULC | NA | Promotes:
| Upregulated | Upregulated | [23,91] |
NEAT1 | NA | Promotes:
| Upregulated | Upregulated | [44] |
BORG | Interacts with:
| Promotes:
| NA | NA | [92,93] |
HCP5 | Sponges:
| Promotes:
| Upregulated | NA | [46,47,94,95] |
sONE | Sponges:
| Inhibits:
| Downregulated | NA | [96] |
PTCSC3 | Sponges:
| Inhibits:
| Downregulated | Downregulated | [97,98] |
NEF | NA | Inhibits:
| NA | Downregulated | [99] |
GAS5 | Sponges:
| Enhances:
| NA | NA | [58] |
SNHG12 | NA | Promotes:
| Upregulated | NA | [100] |
LINC01638 | Interacts with:
| Promotes:
| Upregulated | NA | [101] |
AFAP1-AS1 | Interacts with:
| Promotes:
| Upregulated | NA | [102,103] |
Linc00152 | Interacts with:
| Promotes:
| Upregulated | NA | [104,105] |
snaR | NA | Promotes:
| NA | NA | [106] |
LncRNA H19 | Interacts with:
| Promotes:
| Upregulated | NA | [107,108] |
LUCAT1 | Sponges:
| Promotes:
| Upregulated | NA | [109] |
TINCR | Sponges:
| Promotes:
| NA | Upregulated | [49,85] |
lncRNA titin-antisense RNA1 (TTN-AS1) | Sponges:
| Promotes:
| Upregulated | NA | [110] |
LINC00299 | NA | NA | Upregulated | Hypermethylated | [111,112] |
XIST | Sponges:
| Modulates:
| NA | Upregulated | [59,60,113] |
ZEB1-AS1 | Interacts with:
| Promotes:
| Upregulated | NA | [114] |
POU3F3 | NA | Promotes:
| Upregulated | Upregulated | [115] |
NRON | NA | Inhibits:
| Downregulated | NA | [116] |
DRHC | NA | Inhibits:
| Downregulated | NA | [61] |
Aim | Activates Wnt/β-catenin/mTOR/PI3K signaling | Inhibits:
| Downregulated | [117] | |
RMST | NA | Inhibits:
| Downregulated | [118] | |
PVT1 | Interacts with:
| Promotes:
| Upregulated | Upregulated | [50,51,52,119] |
MNX1-AS1 | Interacts with:
| Promotes:
| Upregulated | NA | [120] |
AC093850.2 | Sponges:
| Promotes:
| Upregulated | NA | [121] |
PRKCQ-AS1 | Sponges:
| Promotes:
| NA | NA | [122] |
LINC01224 | Sponges:
| Promotes:
| NA | NA | [123] |
LINC01559 | Sponges:
| Promotes:
| Upregulated | NA | [124] |
SNHG10 | NA | Mediates:
| Downregulated | NA | [125] |
LINC00921 | Sponges:
| Inhibits:
| Downregulated | NA | [126] |
Name | Function/Target | Biological Effect | Expression Levels | References | |
---|---|---|---|---|---|
Tumor Tissue | Blood | ||||
circIRAK3 | Sponges:
| Promotes:
| Upregulated | NA | [130] |
circKIFI4A | Sponges:
| Promotes:
| Upregulated | NA | [133,134] |
circPSMA1 | Sponges:
| Promotes:
| NA | Upregulated | [135] |
circHIF1A | Sponges:
| Promotes:
| NA | Upregulated | [138] |
circWAC | Sponges:
| Promotes:
| Upregulated | NA | [139] |
circPDCD11 | Sponges:
| Promotes:
| Upregulated | NA | [145] |
circGRAF1 | Sponges:
| Promotes:
| Upregulated | NA | [131] |
circEPSTI1 | Sponges:
| Promotes:
| Upregulated | NA | [69] |
circUBAP2 | Sponges:
| Promotes:
| Upregulated | NA | [132] |
circPLK1 | Sponges:
| Promotes:
| Upregulated | NA | [146] |
circRAD18 | Sponges:
| Promotes:
| Upregulated | NA | [143] |
circRNA_069718 | NA | Promotes:
| Upregulated | NA | [144] |
ciRS-7 | Sponges:
| Promotes:
| Upregulated | NA | [147] |
circITCH | Sponges:
| Inhibits:
| Downregulated | NA | [140] |
circTADA2A-E6 | Sponges:
| Inhibits:
| Downregulated | NA | [148] |
circFBXW7 | Sponges:
| Inhibits:
| NA | NA | [142] |
circANKS1B | Sponges:
| Promotes:
| Upregulated | NA | [149] |
circHER2 | Encodes:
| Promotes:
| Upregulated | NA | [150] |
circNR3C2 | Sponges:
| Inhibits:
| Downregulated | NA | [151] |
circSEPT9 | Sponges:
| Promotes:
| Upregulated | NA | [152] |
circUBE2D2 | Sponges:
| Promotes:
| Upregulated | NA | [153] |
circRPH1 | Sponges:
| Promotes:
| Upregulated | NA | [154] |
circUSP42 | NA | Inhibits:
| Downregulated | NA | [155] |
circCDYL | Sponges:
| Inhibits:
| Downregulated | NA | [156] |
circZEB1 | Sponges:
| Promotes:
| Upregulated | NA | [157] |
circGNB1 | Sponges:
| Promotes:
| Upregulated | NA | [158] |
circPGAP3 | Sponges:
| Promotes:
| Upregulated | NA | [159] |
circAHNAK1 | Sponges:
| Inhibits:
| Downregulated | NA | [160] |
circAMOTL1 | NA | Promotes:
| NA | NA | [161] |
circMTO1 | Interacts with:
| Promotes:
| Downregulated | NA | [162] |
circ_0062558 | Sponges:
| Promotes:
| Upregulated | NA | [163] |
circ_0001925 | Sponges:
| Promotes:
| Upregulated | NA | [164] |
circ_0076611 | Interacts with:
| Modulates:
| Upregulated | NA | [165] |
circCD44 | Sponges:
| Promotes:
| Upregulated | NA | [166] |
circ-EIF6 | Encodes:
| Promotes:
| Upregulated | NA | [167] |
circ_0091074 | Sponges:
| Promotes:
| NA | NA | [168] |
circ_0006220 | Sponges:
| Inhibits:
| Downregulated | NA | [169] |
circ_0041732 | Sponges:
| Promotes:
| Upregulated | NA | [170] |
circ_0000520 | Sponges:
| Promotes:
| Upregulated | NA | [171] |
circ_0131242 | Sponges:
| Promotes:
| Upregulated | NA | [172] |
circ_0000199 | Sponges:
| Promotes:
| Upregulated | NA | [173] |
circ-PDCD11 | Sponges:
| Promotes:
| Upregulated | NA | [145] |
circ-CSNK1G1 | Sponges:
| Promotes:
| Upregulated | NA | [174] |
circ_0044234 | NA | NA | Downregulated | NA | [175] |
circ-TRIO | Sponges:
| Promotes:
| Upregulated | NA | [176] |
dirc-PGAP3 | Sponges:
| Promotes:
| Upregulated | NA | [159] |
circ-UBR5 | Sponges:
| Promotes:
| Upregulated | NA | [177] |
circ_102229 | Sponges:
| Promotes:
| Upregulated | NA | [178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palcau, A.C.; Brandi, R.; Mehterov, N.H.; Botti, C.; Blandino, G.; Pulito, C. Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers 2023, 15, 4181. https://doi.org/10.3390/cancers15164181
Palcau AC, Brandi R, Mehterov NH, Botti C, Blandino G, Pulito C. Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers. 2023; 15(16):4181. https://doi.org/10.3390/cancers15164181
Chicago/Turabian StylePalcau, Alina Catalina, Renata Brandi, Nikolay Hristov Mehterov, Claudio Botti, Giovanni Blandino, and Claudio Pulito. 2023. "Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment" Cancers 15, no. 16: 4181. https://doi.org/10.3390/cancers15164181
APA StylePalcau, A. C., Brandi, R., Mehterov, N. H., Botti, C., Blandino, G., & Pulito, C. (2023). Exploiting Long Non-Coding RNAs and Circular RNAs as Pharmacological Targets in Triple-Negative Breast Cancer Treatment. Cancers, 15(16), 4181. https://doi.org/10.3390/cancers15164181