Effective Use of microRNA, BRAF and Sonographic Risk Assessment in Bethesda III Thyroid Nodules Requires a Different Approach to Nodules with Features of Nuclear Atypia and Other Types of Atypia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Examined Patients
2.2. Extraction of Total RNA and Genomic DNA
2.3. Detection of BRAF Mutation
2.4. miRNA Expression
2.5. Assessment of EU-TIRADS Category
2.6. Data Analysis and Statistical Evaluation
3. Results
3.1. Effectiveness of EU-TIRADS Categorization, BRAF Mutation and miRNA Assessment in AUS-Nuclear and AUS-Other Nodules
3.2. Efficiency of Examined Methods in rFNA-Negative Cancer Identification
3.3. Effectiveness of Combined Criteria Based on EU-TIRADS, BRAF Mutation and miRNA Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Cibas, E.S.; Ali, S.Z. NCI Thyroid FNA State of the Science Conference. The Bethesda System for Reporting Thyroid Cytopathology. Am. J. Clin. Pathol. 2009, 132, 658–665. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef]
- Ali, S.Z.; Baloch, Z.W.; Cochand-Priollet, B.; Schmitt, F.C.; Vielh, P.; VanderLaan, P.A. The 2023 Bethesda System for reporting thyroid cytopathology. J. Am. Soc. Cytopathol. 2023, in press. [Google Scholar] [CrossRef]
- Eisa, N.; Khan, A.; Akhter, M.; Fensterwald, M.; Saleem, S.; Fananapazir, G.; Campbell, M.J. Both Ultrasound Features and Nuclear Atypia are Associated with Malignancy in Thyroid Nodules with Atypia of Undetermined Significance. Ann. Surg. Oncol. 2018, 25, 3913–3918. [Google Scholar] [CrossRef] [PubMed]
- Vuong, H.G.; Ngo, H.T.T.; Bychkov, A.; Jung, C.K.; Vu, T.H.; Lu, K.B.; Kakudo, K.; Kondo, T. Differences in surgical resection rate and risk of malignancy in thyroid cytopathology practice between Western and Asian countries: A systematic review and meta-analysis. Cancer Cytopathol. 2020, 128, 238–249. [Google Scholar] [CrossRef]
- Wong, L.Q.; LiVolsi, V.A.; Baloch, Z.W. Diagnosis of atypia/follicular lesion of undetermined significance: An institutional experience. Cytojournal 2014, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Wang, H.H. Should the thyroid AUS/FLUS category be further stratified by malignancy risk? Cancer Cytopathol. 2014, 122, 481–483. [Google Scholar] [CrossRef]
- Kim, S.J.; Roh, J.; Baek, J.H.; Hong, S.J.; Shong, Y.K.; Kim, W.B.; Song, D.E. Risk of malignancy according to sub-classification of the atypia of undetermined significance or follicular lesion of undetermined significance (AUS/FLUS) category in the Bethesda system for reporting thyroid cytopathology. Cytopathology 2017, 28, 65–73. [Google Scholar] [CrossRef]
- Słowińska-Klencka, D.; Klencki, M.; Duda-Szymańska, J.; Popowicz, B. Optimization of the Management of Category III Thyroid Nodules Using Repeat FNA and TIRADS. Cancers 2022, 14, 4489. [Google Scholar] [CrossRef]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, W. Sonographic features of follicular variant of papillary thyroid carcinoma (FV-PTC) and diagnostic performance of the 2017 ACR TI-RADS in FV-PTC. Endocrine 2020, 67, 379–386. [Google Scholar] [CrossRef]
- Song, Y.S.; Lim, J.A.; Park, Y.J. Mutation Profile of Well-Differentiated Thyroid Cancer in Asians. Endocrinol. Metab. 2015, 30, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Gupta, R.; Gupta, S. Molecular testing in diagnosis of indeterminate thyroid cytology: Trends and drivers. Diagn. Cytopathol. 2020, 48, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.T.T.; Nguyen, T.P.X.; Vu, T.H.; Jung, C.K.; Hassell, L.; Kakudo, K.; Vuong, H.G. Impact of Molecular Testing on the Management of Indeterminate Thyroid Nodules Among Western and Asian Countries: A Systematic Review and Meta-analysis. Endocr. Pathol. 2021, 32, 269–279. [Google Scholar] [CrossRef]
- Labourier, E.; Shifrin, A.; Busseniers, A.E.; Lupo, M.A.; Manganelli, M.L.; Andruss, B.; Wylie, D.; Beaudenon-Huibregtse, S. Molecular Testing for miRNA, mRNA, and DNA on Fine-Needle Aspiration Improves the Preoperative Diagnosis of Thyroid Nodules with Indeterminate Cytology. J. Clin. Endocrinol. Metab. 2015, 100, 2743–2750. [Google Scholar] [CrossRef]
- Titov, S.; Demenkov, P.S.; Lukyanov, S.A.; Sergiyko, S.V.; Katanyan, G.A.; Veryaskina, Y.A.; Ivanov, M.K. Preoperative detection of malignancy in fine-needle aspiration cytology (FNAC) smears with indeterminate cytology (Bethesda III, IV) by a combined molecular classifier. J. Clin. Pathol. 2020, 73, 722–727. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Carty, S.E.; Chiosea, S.I.; Coyne, C.; Duvvuri, U.; Ferris, R.L.; Gooding, W.E.; LeBeau, S.O.; Ohori, N.P.; Seethala, R.R.; et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid 2015, 25, 1217–1223. [Google Scholar] [CrossRef]
- Alexander, E.K.; Kennedy, G.C.; Baloch, Z.W.; Cibas, E.S.; Chudova, D.; Diggans, J.; Friedman, L.; Kloos, R.T.; LiVolsi, V.A.; Mandel, S.J.; et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N. Engl. J. Med. 2012, 367, 705–715. [Google Scholar] [CrossRef]
- Wylie, D.; Beaudenon-Huibregtse, S.; Haynes, B.C.; Giordano, T.J.; Labourier, E. Molecular classification of thyroid lesions by combined testing for miRNA gene expression and somatic gene alterations. J. Pathol. Clin. Res. 2016, 2, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Salas, S.; Martínez, J.R.; Urra, S.; Domínguez, J.M.; Mena, N.; Uslar, T.; Lagos, M.; Henríquez, M.; González, H.E. Genetic testing for indeterminate thyroid cytology: Review and meta-analysis. Endocr. Relat. Cancer 2018, 25, R163–R177. [Google Scholar] [CrossRef]
- Banizs, A.B.; Silverman, J.F. The utility of combined mutation analysis and microRNA classification in reclassifying cancer risk of cytologically indeterminate thyroid nodules. Diagn. Cytopathol. 2019, 47, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Lupo, M.A.; Walts, A.E.; Sistrunk, J.W.; Giordano, T.J.; Sadow, P.M.; Massoll, N.; Campbell, R.; Jackson, S.A.; Toney, N.; Narick, C.M.; et al. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn. Cytopathol. 2020, 48, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Rogucki, M.; Buczyńska, A.; Krętowski, A.J.; Popławska-Kita, A. The Importance of miRNA in the Diagnosis and Prognosis of Papillary Thyroid Cancer. J. Clin. Med. 2021, 10, 4738. [Google Scholar] [CrossRef]
- Rossi, E.D.; Martini, M.; Capodimonti, S.; Cenci, T.; Larocca, L.M. The role of miRNAs in the evaluation of follicular thyroid neoplasms: An overview of literature. J. Am. Soc. Cytopathol. 2017, 6, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Santiago, K.; Chen Wongworawat, Y.; Khan, S. Differential MicroRNA-Signatures in Thyroid Cancer Subtypes. J. Oncol. 2020, 2020, 2052396. [Google Scholar] [CrossRef] [PubMed]
- Celano, M.; Rosignolo, F.; Maggisano, V.; Pecce, V.; Iannone, M.; Russo, D.; Bulotta, S. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int. J. Genom. 2017, 2017, 6496570. [Google Scholar] [CrossRef] [PubMed]
- Słowińska-Klencka, D.; Wysocka-Konieczna, K.; Klencki, M.; Popowicz, B. Diagnostic Value of Six Thyroid Imaging Reporting and Data Systems (TIRADS) in Cytologically Equivocal Thyroid Nodules. J. Clin. Med. 2020, 9, 2281. [Google Scholar] [CrossRef]
- Castellana, M.; Piccardo, A.; Virili, C.; Scappaticcio, L.; Grani, G.; Durante, C.; Giovanella, L.; Trimboli, P. Can ultrasound systems for risk stratification of thyroid nodules identify follicular carcinoma? Cancer Cytopathol. 2020, 128, 250–259. [Google Scholar] [CrossRef]
- Cai, S.; Ma, J.; Wang, Y.; Cai, Y.; Xie, L.; Chen, X.; Yang, Y.; Peng, Q. Biomarker Value of miR-221 and miR-222 as Potential Substrates in the Differential Diagnosis of Papillary Thyroid Cancer Based on Data Synthesis and Bioinformatics Approach. Front. Endocrinol. 2022, 12, 794490. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.K.; Liu, R.T.; Kang, H.Y. MicroRNA-146b: A Novel Biomarker and Therapeutic Target for Human Papillary Thyroid Cancer. Int. J. Mol. Sci. 2017, 18, 636. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.; Osamura, R.; Kloppel, G.; Rosai, J. WHO Classification of Tumours of Endocrine Organs, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2017.
- WHO. WHO Classification of Tumours Editorial Board: Endocrine and Neuroendocrine Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2022; Volume 8. Available online: https://tumourclassification.iarc.who.int. (accessed on 7 April 2023).
- Nishino, M.; Mateo, R.; Kilim, H.; Feldman, A.; Elliott, A.; Shen, C.; Hasselgren, P.O.; Wang, H.; Hartzband, P.; Hennessey, J.V. Repeat Fine Needle Aspiration Cytology Refines the Selection of Thyroid Nodules for Afirma Gene Expression Classifier Testing. Thyroid 2021, 31, 1253–1263. [Google Scholar] [CrossRef]
- Jinih, M.; Foley, N.; Osho, O.; Houlihan, L.; Toor, A.A.; Khan, J.Z.; Achakzai, A.A.; Redmond, H.P. BRAFV600E mutation as a predictor of thyroid malignancy in indeterminate nodules: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2017, 43, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, N.; Denaro, M.; Ugolini, C.; Poma, A.M.; Miccoli, M.; Vitti, P.; Miccoli, P.; Basolo, F. miRNA expression profiling of ‘noninvasive follicular thyroid neoplasms with papillary-like nuclear features’ compared with adenomas and infiltrative follicular variants of papillary thyroid carcinomas. Mod. Pathol. 2017, 30, 39–51. [Google Scholar] [CrossRef]
- Galan-Garcia, M.E.; Martínez-Martin, M.S.; Araujo-Ruano, E.J.; Loro-Ferrer, J.F.; Saavedra-Santana, P.; Salido-Ruiz, E.; Cabrera-Galván, J.J. Thyroid fine needle aspiration, the Bethesda System and the BRAFV600E mutation in Papillary Thyroid Carcinoma. Association and prediction for biopsy. Acta Cytol. 2023, 67, 346–356. [Google Scholar] [CrossRef]
- Lewiński, A.; Adamczewski, Z.; Zygmunt, A.; Markuszewski, L.; Karbownik-Lewińska, M.; Stasiak, M. Correlations between Molecular Landscape and Sonographic Image of Different Variants of Papillary Thyroid Carcinoma. J. Clin. Med. 2019, 8, 1916. [Google Scholar] [CrossRef]
- Rashid, F.A.; Munkhdelger, J.; Fukuoka, J.; Bychkov, A. Prevalence of BRAFV600E mutation in Asian series of papillary thyroid carcinoma-a contemporary systematic review. Gland. Surg. 2020, 9, 1878–1900. [Google Scholar] [CrossRef]
- Słowińska-Klencka, D.; Woźniak, E.; Wojtaszek, M.; Popowicz, B.; Sporny, S.; Klencki, M. Low malignancy risk of thyroid follicular lesion of undetermined significance in patients from post-endemic areas. Eur. J. Endocrinol. 2013, 168, 621–630. [Google Scholar] [CrossRef]
- Trimboli, P.; Treglia, G.; Condorelli, E.; Romanelli, F.; Crescenzi, A.; Bongiovanni, M.; Giovanella, L. BRAF-mutated carcinomas among thyroid nodules with prior indeterminate FNA report: A systematic review and meta-analysis. Clin. Endocrinol. 2016, 84, 315–320. [Google Scholar] [CrossRef]
- Brigante, G.; Craparo, A.; Pignatti, E.; Marino, M.; Monzani, M.L.; De Vincentis, S.; Casarini, L.; Sperduti, S.; Boselli, G.; Margiotta, G.; et al. Real-life use of BRAF-V600E mutation analysis in thyroid nodule fine needle aspiration: Consequences on clinical decision-making. Endocrine 2021, 73, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Agretti, P.; Ferrarini, E.; Rago, T.; Candelieri, A.; De Marco, G.; Dimida, A.; Niccolai, F.; Molinaro, A.; Di Coscio, G.; Pinchera, A.; et al. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration. Eur. J. Endocrinol. 2012, 167, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Kowalik, A.; Pałyga, I.; Walczyk, A.; Gąsior-Perczak, D.; Kopczyński, J.; Lizis-Kolus, K.; Szyska-Skrobot, D.; Hurej, S.; Radowicz-Chil, A.; et al. The usefulness of determining the presence of BRAF V600E mutation in fine-needle aspiration cytology in indeterminate cytological results. Endokrynol. Pol. 2016, 67, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Fnais, N.; Soobiah, C.; Al-Qahtani, K.; Hamid, J.S.; Perrier, L.; Straus, S.E.; Tricco, A.C. Diagnostic value of fine needle aspiration BRAF(V600E) mutation analysis in papillary thyroid cancer: A systematic review and meta-analysis. Hum. Pathol. 2015, 46, 1443–1454. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, H.; Huang, B.; Shen, X.; Cai, G.; Gu, X. BRAFV600E mutation combined with American College of Radiology thyroid imaging report and data system significantly changes surgical resection rate and risk of malignancy in thyroid cytopathology practice. Gland. Surg. 2020, 9, 1674–1684. [Google Scholar] [CrossRef]
- Wu, L.; Shu, H.; Chen, W.; Gao, Y.; Yuan, Y.; Li, X.; Lu, W.; Ye, X.; Deng, H. Diagnostic value of thyroid imaging reporting and data system combined with BRAFV600E mutation analysis in Bethesda categories III-V thyroid nodules. Sci. Rep. 2022, 12, 5934. [Google Scholar] [CrossRef]
- Sheu, S.Y.; Grabellus, F.; Schwertheim, S.; Worm, K.; Broecker-Preuss, M.; Schmid, K.W. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br. J. Cancer 2010, 102, 376–382. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, S.; Liu, Y.; Wang, F.; Liu, Y.; Xiao, H. Expression of miRNAs in Papillary Thyroid Carcinomas Is Associated with BRAF Mutation and Clinicopathological Features in Chinese Patients. Int. J. Endocrinol. 2013, 2013, 128735. [Google Scholar] [CrossRef]
- Chou, C.K.; Chen, R.F.; Chou, F.F.; Chang, H.W.; Chen, Y.J.; Lee, Y.F.; Yang, K.D.; Cheng, J.T.; Huang, C.C.; Liu, R.T. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 2010, 20, 489–494. [Google Scholar] [CrossRef]
- Stokowy, T.; Gawel, D.; Wojtas, B. Differences in miRNA and mRNA Profile of Papillary Thyroid Cancer Variants. Int. J. Endocrinol. 2016, 2016, 1427042. [Google Scholar] [CrossRef]
- DiGennaro, C.; Vahdatzad, V.; Jalali, M.S.; Toumi, A.; Watson, T.; Gazelle, G.S.; Mercaldo, N.; Lubitz, C.C. Assessing Bias and Limitations of Clinical Validation Studies of Molecular Diagnostic Tests for Indeterminate Thyroid Nodules: Systematic Review and Meta-Analysis. Thyroid 2022, 32, 1144–1157. [Google Scholar] [CrossRef]
- Słowińska-Klencka, D.; Klencki, M.; Duda-Szymańska, J.; Szwalski, J.; Popowicz, B. Low reproducibility of equivocal categories of the Bethesda System for Reporting Thyroid Cytology makes the associated risk of malignancy specific to the diagnostic center. Endocrine 2021, 74, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Broome, J.T.; Cate, F.; Solorzano, C.C. Utilization and impact of repeat biopsy for follicular lesion/atypia of undetermined significance. World J. Surg. 2014, 38, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.S.; Hirschowitz, S.L.; Fung, P.C.; Apple, S.K. The impact of atypia/follicular lesion of undetermined significance and repeat fine-needle aspiration: 5 years before and after implementation of the Bethesda System. Cancer Cytopathol. 2014, 122, 866–872. [Google Scholar] [CrossRef] [PubMed]
- VanderLaan, P.A.; Marqusee, E.; Krane, J.F. Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: Should repeated FNA be the preferred initial approach? Am. J. Clin. Pathol. 2011, 135, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, M.N.; Tseng, G.C.; Steward, D.; Diorio, D.; Nikiforov, Y.E. MicroRNA expression profiling of thyroid tumors: Biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 2008, 93, 1600–1608. [Google Scholar] [CrossRef]
- Chen, Y.T.; Kitabayashi, N.; Zhou, X.K.; Fahey, T.J., 3rd; Scognamiglio, T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol. 2008, 21, 1139–1146. [Google Scholar] [CrossRef]
- Laukienė, R.; Ambrozaityte, L.; Cimbalistienė, L.; Utkus, A.; Tamosiunas, A.E. Diagnostic Significance of FNAB miRNA Expression in Papillary Thyroid Carcinoma. Diagnostics 2022, 12, 1384. [Google Scholar] [CrossRef]
- Keutgen, X.M.; Filicori, F.; Crowley, M.J.; Wang, Y.; Scognamiglio, T.; Hoda, R.; Buitrago, D.; Cooper, D.; Zeiger, M.A.; Zarnegar, R.; et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin. Cancer Res. 2012, 18, 2032–2038. [Google Scholar] [CrossRef]
- Castagna, M.G.; Marzocchi, C.; Pilli, T.; Forleo, R.; Pacini, F.; Cantara, S. MicroRNA expression profile of thyroid nodules in fine-needle aspiration cytology: A confirmatory series. J. Endocrinol. Investig. 2019, 42, 97–100. [Google Scholar] [CrossRef]
- Kitano, M.; Rahbari, R.; Patterson, E.E.; Steinberg, S.M.; Prasad, N.B.; Wang, Y.; Zeiger, M.A.; Kebebew, E. Evaluation of candidate diagnostic microRNAs in thyroid fine-needle aspiration biopsy samples. Thyroid 2012, 22, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.T.D.; Buzolin, A.L.; Gama, R.R.; Silva, E.C.A.D.; Dufloth, R.M.; Figueiredo, D.L.A.; Carvalho, A.L. Molecular Classification of Thyroid Nodules with Indeterminate Cytology: Development and Validation of a Highly Sensitive and Specific New miRNA-Based Classifier Test Using Fine-Needle Aspiration Smear Slides. Thyroid 2018, 28, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.T.; Rodrigues, B.M.; Shizukuda, S.; Oliveira, A.F.; Oliveira, M.; Figueiredo, D.L.A.; Melo, G.M.; Silva, R.A.; Fainstein, C.; Dos Reis, G.F.; et al. Clinical decision support analysis of a microRNA-based thyroid molecular classifier: A real-world, prospective and multicentre validation study. EBioMedicine 2022, 82, 104137. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Liyanarachchi, S.; Li, W.; Wakely, P.E., Jr.; Saji, M.; Huang, J.; Nagy, R.; Farrell, T.; Ringel, M.D.; de la Chapelle, A.; et al. MicroRNA signature in thyroid fine needle aspiration cytology applied to “atypia of undetermined significance” cases. Thyroid 2012, 22, 9–16. [Google Scholar] [CrossRef]
- Mazeh, H.; Deutch, T.; Karas, A.; Bogardus, K.A.; Mizrahi, I.; Gur-Wahnon, D.; Ben-Dov, I.Z. Next-Generation Sequencing Identifies a Highly Accurate miRNA Panel That Distinguishes Well-Differentiated Thyroid Cancer from Benign Thyroid Nodules. Cancer Epidemiol. Biomark. Prev. 2018, 27, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Paskaš, S.; Janković, J.; Živaljević, V.; Tatić, S.; Božić, V.; Nikolić, A.; Radojković, D.; Savin, S.; Cvejić, D. Malignant risk stratification of thyroid FNA specimens with indeterminate cytology based on molecular testing. Cancer Cytopathol. 2015, 123, 471–479. [Google Scholar] [CrossRef]
- Stokowy, T.; Wojtas, B.; Jarzab, B.; Krohn, K.; Fredman, D.; Dralle, H.; Musholt, T.; Hauptmann, S.; Lange, D.; Hegedüs, L.; et al. Two-miRNA classifiers differentiate mutation-negative follicular thyroid carcinomas and follicular thyroid adenomas in fine needle aspirations with high specificity. Endocrine 2016, 54, 440–447. [Google Scholar] [CrossRef]
- Panebianco, F.; Mazzanti, C.; Tomei, S.; Aretini, P.; Franceschi, S.; Lessi, F.; Di Coscio, G.; Bevilacqua, G.; Marchetti, I. The combination of four molecular markers improves thyroid cancer cytologic diagnosis and patient management. BMC Cancer 2015, 15, 918. [Google Scholar] [CrossRef]
AUS-Nuclear | AUS-Other | p | |
---|---|---|---|
No. of nodules | 66 | 95 | |
No. of patients | 62 | 88 | |
No./% of males among patients | 12/19.4 | 10/11.4 | 0.1731 |
Mean age of patients ± SD [year] | 58.4 ± 14.5 | 55.6 ± 14.4 | 0.2354 |
Mean volume of nodules ± SD [cm3] | 5.8 ± 20.5 | 4.4 ± 8.9 | 0.5786 |
No./% of benign nodules | 35/53.0 | 82/86.3 | <0.0001 |
No./% of cancers | 31/47.0 | 13/13.7 | |
No./% of papillary carcinomas among cancers | 27/87.1 | 4/30.8 | 0.0007 |
No. of follicular carcinomas | 1 | 3 | |
No. of non-follicular cell-derived cancers | 1 | 3 | |
No. of follicular cell-derived low-risk neoplasms | 2 | 3 |
EU-TIRADS | BRAF | miR-146b | miR-221 | miR-222 | |
---|---|---|---|---|---|
AUC (95%CI) p | 0.761 (0.642-0.880) p = 0.0011 | 0.823 (0.713–0.932) p < 0.0001 | 0.790 (0.674–0.905) p < 0.0001 | 0.720 (0.595–0.845) p = 0.0006 | 0.716 (0.586–0.846) p = 0.0011 |
Threshold | 5 | - | 1.6 | 0.2 | 0.7 |
TP [No./%] | 18/27.3 | 20/30.3 | 21/31.8 | 26/39.4 | 21/31.8 |
FP [No./%] | 4/6.1 | 0/0.0 | 4/6.1 | 14/21.2 | 7/10.6 |
FN [No./%] | 13/19.7 | 11/16.7 | 10/15.2 | 5/7.6 | 10/15.2 |
TN [No./%] | 31/47.0 | 35/53.0 | 31/47.0 | 21/31.8 | 28/42.4 |
SEN [%] | 58.1 | 64.5 | 67.7 | 83.9 | 67.7 |
SPC [%] | 88.6 | 100.0 | 88.6 | 60.0 | 80.0 |
ACC [%] | 74.2 | 83.3 | 78.8 | 71.2 | 74.2 |
PPV [%] | 81.8 | 100.0 | 84.0 | 65.0 | 75.0 |
NPV [%] | 70.5 | 76.1 | 75.6 | 80.8 | 73.7 |
LR+ | 5.1 | - | 5.9 | 2.1 | 3.4 |
No./% of nodules | 22/33.3 | 20/30.3 | 25/37.9 | 40/60.6 | 28/42.4 |
OR (95%CI) p | 10.7 (3.0–37.9) 0.0002 | >100 (0.0–) 0.9969 | 16.3 (4.5–58.8) <0.0001 | 7.8 (2.4–25.2) 0.0006 | 8.4 (2.7–25.7) 0.0002 |
EU-TIRADS | BRAF | miR-146b | miR-221 | miR-222 | |
---|---|---|---|---|---|
AUC (95%CI) p | 0.729 (0.569–0.889) p = 0.0049 | 0.538 (0.361–0.716) p = 0.6715 | 0.657 (0.532–0.783) p = 0.0140 | 0.674 (0.535–0.814) p = 0.0139 | 0.678 (0.533–0.823) p = 0.0162 |
Threshold | 5 | - | 0.7 | 0.2 | 0.8 |
TP [No./%] | 6/6.3 | 1/1.1 | 12/12.6 | 13/13.7 | 9/9.5 |
FP [No./%] | 7/7.4 | 0/0.0 | 39/41.1 | 55/57.9 | 23/24.2 |
FN [No./%] | 7/7.4 | 12/12.6 | 1/1.1 | 0/0.0 | 4/4.2 |
TN [No./%] | 75/78.9 | 82/86.3 | 43/45.3 | 27/28.4 | 59/62.1 |
SEN [%] | 46.2 | 7.7 | 92.3 | 100.0 | 69.2 |
SPC [%] | 91.5 | 100.0 | 52.4 | 32.9 | 72.0 |
ACC [%] | 85.3 | 87.4 | 57.9 | 42.1 | 71.6 |
PPV [%] | 46.2 | 100.0 | 23.5 | 19.1 | 28.1 |
NPV [%] | 91.5 | 87.2 | 97.7 | 100.0 | 93.7 |
LR+ | 5.4 | - | 1.9 | 1.5 | 2.5 |
No./% of nodules | 13/13.7 | 1/1.1 | 51/53.7 | 68/71.6 | 32/33.7 |
OR (95%CI) p | 9.2 (2.4–34.9) 0.0012 | >100 (0.0–) 0.9972 | 13.2 (1.6–106.5) 0.0152 | - | 5.8 (1.6–20.6) 0.0069 |
Fold Change Value | miR-146b | miR-221 | miR-222 | |||
---|---|---|---|---|---|---|
Benign Nodules | Malignant Nodules | Benign Nodules | Malignant Nodules | Benign Nodules | Malignant Nodules | |
AUS-nuclear | ||||||
Mean ± SD | 2.83 ± 8.6 | 27.4 ± 43.5 | 0.57 ± 1.0 | 2.7 ± 7.7 | 0.69 ± 1.1 | 2.69 ± 4.8 |
Median (Q25–Q75) | 0.46 (0.23–1.42) | 10.6 (0.74–29.4) | 0.13 (0.07–0.84) | 0.77 (0.28–1.90) | 0.23 (0.12–0.65) | 0.94 (0.46–2.02) |
p | <0.0001 | 0.0022 | 0.0026 | |||
AUS-other | ||||||
Mean ± SD | 1.17 ± 1.5 | 1.34 ± 0.8 | 0.89 ± 1.4 | 1.80 ± 2.2 | 0.84 ± 1.5 | 1.09 ± 0.9 |
Median (Q25–Q75) | 0.63 (0.24–1.59) | 1.13 (0.92–1.57) | 0.43 (0.16–0.97) | 0.86 (0.47–2.86) | 0.38 (0.18–0.87) | 0.83 (0.49–1.15) |
p | 0.0497 | 0.0434 | 0.0412 |
Definite Diagnosis | Category in the Bethesda System [No./%] | ||||||
---|---|---|---|---|---|---|---|
I | II | III AUS-Other | III AUS-Nuclear | IV | V | VI | |
AUS-nuclear | |||||||
Malignant | 0 | 1/3.2 | 1/3.2 | 12/38.7 | 0 | 5/16.1 | 12/38.7 |
Benign | 1/2.9 | 7/20.0 | 4/11.4 | 23/65.7 | 0 | 0 | 0 |
AUS-other | |||||||
Malignant | 0 | 1/7.7 | 10/76.9 | 0 | 2/15.4 | 0 | 0 |
Benign | 7/8.5 | 33/40.2 | 41/50.0 | 0 | 1/1.2 | 0 | 0 |
rFNA Result in Cancer | No. of Positive Cases | ||||||
---|---|---|---|---|---|---|---|
EU-TIRADS | BRAF | miR-146b | miR-221 | miR-222 | EU-TIRADS or BRAF | EU-TIRADS or BRAF or miRNAs | |
AUS-nuclear | |||||||
Positive—17 | 12 | 15 | 14 | 16 | 13 | 17 | 17 |
Negative—14 | 6 | 5 | 7 | 10 | 8 | 7 | 13 |
AUS-other | |||||||
Positive—0 | - | - | - | - | - | - | - |
Negative—13 | 6 | 1 | 12 | 13 | 9 | 6 | 13 |
Criteria | SEN [%] | SPC [%] | ACC [%] | PPV [%] | NPV [%] | LR+ | % of Nodules |
---|---|---|---|---|---|---|---|
AUS-nuclear | |||||||
BRAF/miR-146b | 80.6 | 88.6 | 84.8 | 86.2 | 83.8 | 7.1 | 43.9 |
BRAF/miR-146b/miR-222 | 90.3 | 80.0 | 84.8 | 80.0 | 90.3 | 4.5 | 53.0 |
BRAF/miR-146b/miR-221 | 96.8 | 60.0 | 77.3 | 68.2 | 95.5 | 2.4 | 66.7 |
BRAF/miR-146b/rFNA | 83.9 | 88.6 | 86.4 | 86.7 | 86.1 | 7.3 | 45.5 |
BRAF/miR-146b/miR-222/rFNA | 93.5 | 80.0 | 86.4 | 80.6 | 93.3 | 4.7 | 54.5 |
BRAF/miR-146b/miR-221 /rFNA | 96.8 | 60.0 | 77.3 | 68.2 | 95.5 | 2.4 | 66.7 |
AUS-other | |||||||
BRAF/miR-222 | 76.9 | 72.0 | 72.6 | 30.3 | 95.2 | 2.7 | 34.7 |
EU-TIRADS/miR-222 | 100.0 | 64.6 | 69.5 | 31.0 | 100.0 | 2.8 | 44.2 |
AUS-other, nodules of category II in rFNA regarded as benign and excluded | |||||||
BRAF/miR-222 | 76.9 | 84.1 | 83.2 | 43.5 | 95.8 | 4.9 | 24.2 |
EU-TIRADS/miR-222 | 92.3 | 76.8 | 78.9 | 38.7 | 98.4 | 4.0 | 32.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słowińska-Klencka, D.; Popowicz, B.; Kulczycka-Wojdala, D.; Szymańska, B.; Duda-Szymańska, J.; Wojtaszek-Nowicka, M.; Kaczka, K.; Klencki, M. Effective Use of microRNA, BRAF and Sonographic Risk Assessment in Bethesda III Thyroid Nodules Requires a Different Approach to Nodules with Features of Nuclear Atypia and Other Types of Atypia. Cancers 2023, 15, 4287. https://doi.org/10.3390/cancers15174287
Słowińska-Klencka D, Popowicz B, Kulczycka-Wojdala D, Szymańska B, Duda-Szymańska J, Wojtaszek-Nowicka M, Kaczka K, Klencki M. Effective Use of microRNA, BRAF and Sonographic Risk Assessment in Bethesda III Thyroid Nodules Requires a Different Approach to Nodules with Features of Nuclear Atypia and Other Types of Atypia. Cancers. 2023; 15(17):4287. https://doi.org/10.3390/cancers15174287
Chicago/Turabian StyleSłowińska-Klencka, Dorota, Bożena Popowicz, Dominika Kulczycka-Wojdala, Bożena Szymańska, Joanna Duda-Szymańska, Martyna Wojtaszek-Nowicka, Krzysztof Kaczka, and Mariusz Klencki. 2023. "Effective Use of microRNA, BRAF and Sonographic Risk Assessment in Bethesda III Thyroid Nodules Requires a Different Approach to Nodules with Features of Nuclear Atypia and Other Types of Atypia" Cancers 15, no. 17: 4287. https://doi.org/10.3390/cancers15174287
APA StyleSłowińska-Klencka, D., Popowicz, B., Kulczycka-Wojdala, D., Szymańska, B., Duda-Szymańska, J., Wojtaszek-Nowicka, M., Kaczka, K., & Klencki, M. (2023). Effective Use of microRNA, BRAF and Sonographic Risk Assessment in Bethesda III Thyroid Nodules Requires a Different Approach to Nodules with Features of Nuclear Atypia and Other Types of Atypia. Cancers, 15(17), 4287. https://doi.org/10.3390/cancers15174287