Robotic Parenchymal-Sparing Pancreatectomy: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Study Design and Quality Assessment
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction
2.5. Outcomes of Interest
3. Results
3.1. Search Results and Study Evaluation
3.2. Demographic and Clinical Characteristics
3.3. Surgical Indications and Operative Characteristics
3.4. Early Postoperative Outcomes
3.5. Long-Term Postoperative Outcomes (Endo/Exo)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations List
ASA | American Society of Anesthesiologists |
BMI | body mass index |
CD | Clavien–Dindo |
DPPPHR | duodenum-preserving partial pancreatic head resection |
EBL | estimated blood loss |
IPMN | intraductal papillary mucinous neoplasm |
JBI | Joanna Briggs Institute |
LOS | length of stay |
MINORS | Methodological Index for Non-Randomized Studies |
oCP | open central pancreatectomy |
oEN | open enucleation |
PJ | pancreatojejunostomy |
POPF | postoperative pancreatic fistula |
PRISMA | Preferred Reporting Items for Systematic Review and Meta-Analysis |
PSP | parenchymal-sparing pancreatectomy |
rCP | robotic central pancreatectomy |
rEN | robotic enucleation |
rPSP | robotic parenchymal-sparing pancreatectomy |
PanNET | pancreatic neuroendocrine tumors |
SPN | solid pseudopapillary neoplasms |
References
- Stewart, C.L.; Meguid, C.; Chapman, B.; Schulick, R.; Edil, B.H. Evolving Trends Towards Minimally Invasive Surgery for Solid-Pseudopapillary Neoplasms. Ann. Surg. Oncol. 2016, 23, 4165–4168. [Google Scholar] [CrossRef] [PubMed]
- Giulianotti, P.C.; Mangano, A.; Bustos, R.E.; Fernandes, E.; Masrur, M.; Valle, V.; Gangemi, A.; Bianco, F.M. Educational step-by-step surgical video about operative technique in robotic pancreaticoduodenectomy (RPD) at University of Illinois at Chicago (UIC): 17 steps standardized technique—Lessons learned since the first worldwide RPD performed in the year 2001. Surg Endosc. 2020, 34, 2758–2762. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffman, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument: Methodological index for non-randomized studies. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetc, R.; Currie, M.; Lisy, K.; Qureshi, R.; Mattis, P.; et al. Chapter 7: Systematic reviews of etiology and risk. In JBI Manual for Evidence Synthesis; The Joanna Briggs Institute: Adelaide, Australia, 2017; p. 5. [Google Scholar]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Addeo, P.; Marzano, E.; Nobili, C.; Bachellier, P.; Jaeck, D.; Pessaux, P. Robotic central pancreatectomy with stented pancreaticogastrostomy: Operative details. Int. J. Med. Robot. Comput. Assist. Surg. 2011, 7, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.U.; Kang, C.M. Robotic Single-Site Plus One Port: Pancreas Enucleation. J. Gastrointest. Surg. 2019, 23, 1527–1528. [Google Scholar] [CrossRef] [PubMed]
- Ku, G.; Kang, I.; Lee, W.J.; Kang, C.M. Revo-i assisted robotic central pancreatectomy. Ann. Hepatobiliary Pancreat Surg. 2020, 24, 547–550. [Google Scholar] [CrossRef]
- Liang, M.; Jiang, J.; Dai, H.; Hong, X.; Han, X.; Cong, L.; Tong, A.; Li, F.; Luo, Y.; Liu, W.; et al. Robotic enucleation for pediatric insulinoma with MEN1 syndrome: A case report and literature review. BMC Surg. 2018, 18, 44. [Google Scholar] [CrossRef]
- Machado, M.A.C.; Surjan, R.; Basseres, T.; Makdissi, F. Robotic resection of the uncinate process of the pancreas. J. Robot. Surg. 2019, 13, 699–702. [Google Scholar] [CrossRef]
- van Ramshorst, T.M.E.; Zwart, M.J.W.; Voermans, R.P.; Festen, S.; Daams, F.; Busch, O.; Oomen, M.W.; Besselink, M. Robotic Central Pancreatectomy with Roux-en-Y Pancreaticojejunostomy. JoVE 2021, 177, 62862. [Google Scholar] [CrossRef]
- Abood, G.J.; Can, M.F.; Daouadi, M.; Huss, H.; Steve, J.; Ramalingam, L.; Stang, M.; Bartlett, D.; Zeh, H.J.; Moser, A.J. Robotic-Assisted Minimally Invasive Central Pancreatectomy: Technique and Outcomes. J. Gastrointest. Surg. 2013, 17, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Boggi, U.; Amorese, G.; De Lio, N.; Perrone, V.; D’Imporzano, S.; Croce, C.; Vistoli, F.; Signori, S.; Capelli, C.; Mosca, F. Central pancreatectomy with inframesocolic pancreatojejunostomy. Langenbecks Arch. Surg. 2012, 397, 1013–1021. [Google Scholar] [CrossRef]
- Di Benedetto, F.; Magistri, P.; Ballarin, R.; Tarantino, G.; Bartolini, I.; Bencini, L.; Moraldi, L.; Annechiarico, M.; Guerra, F.; Coratti, A. Ultrasound-Guided Robotic Enucleation of Pancreatic Neuroendocrine Tumors. Surg. Innov. 2019, 26, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Giulianotti, P.C.; Sbrana, F.; Bianco, F.M.; Addeo, P.; Caravaglios, G. Robot-Assisted Laparoscopic Middle Pancreatectomy. J. Laparoendosc. Adv. Surg. Tech. 2010, 20, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.H.; Shen, B.Y.; Deng, X.X.; Zhan, Q.; Han, B.; Li, H.W. Early Experience for the Robotic Duodenum-preserving Pancreatic Head Resection. World J. Surg. 2012, 36, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Zhao, G.D.; Zhao, Z.M.; Gao, Y.X.; Xu, Y.; Yin, Z.Z.; Liu, Q.; Lau, W.Y.; Liu, R. An end-to-end pancreatic anastomosis in robotic central pancreatectomy. World J. Surg. Oncol. 2019, 17, 67. [Google Scholar] [CrossRef]
- Cheng, K.; Shen, B.; Peng, C.; Deng, X.; Hu, S. Initial experiences in robot-assisted middle pancreatectomy. HPB 2013, 15, 315–321. [Google Scholar] [CrossRef]
- Bartolini, I.; Bencini, L.; Bernini, M.; Farsi, M.; Calistri, M.; Annecchiarico, M.; Moraldi, L.; Coratti, A. Robotic enucleations of pancreatic benign or low-grade malignant tumors: Preliminary results and comparison with robotic demolitive resections. Surg. Endosc. 2019, 33, 2834–2842. [Google Scholar] [CrossRef]
- Caruso, R.; Vicente, E.; Quijano, Y.; Duran, H.; Diaz, E.; Fabra, I.; Alfonsel, J.N.; Malave, L.; Agresott, R.; Ferri, V. Case-matched analysis of robotic versus open surgical enucleation for pancreatic tumours: A comparative cost-effectiveness study. Robot. Comput. Surg. 2022, 18, e2425. [Google Scholar] [CrossRef]
- Chen, S.; Zhan, Q.; Jin, J.; Wu, Z.C.; Shi, Y.; Cheng, D.F.; Chen, H.; Deng, X.X.; Shen, B.Y.; Peng, C.H.; et al. Robot-assisted laparoscopic versus open middle pancreatectomy: Short-term results of a randomized controlled trial. Surg. Endosc. 2017, 31, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.B.; Qin, K.; Li, H.; Wu, Z.C.; Zhan, Q.; Deng, X.X.; Chen, H.; Shen, B.Y.; Peng, C.H.; Li, H.W. Robotic Enucleation for Benign or Borderline Tumours of the Pancreas: A Retrospective Analysis and Comparison from a High-Volume Centre in Asia. World J. Surg. 2016, 40, 3009–3020. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.M.; Kim, D.H.; Lee, W.J.; Chi, H.S. Initial experiences using robot-assisted central pancreatectomy with pancreaticogastrostomy: A potential way to advanced laparoscopic pancreatectomy. Surg. Endosc. 2011, 25, 1101–1106. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, C.; Shen, B.; Deng, X.X.; Jin, J.B.; Wu, Z.C.; Zhan, Q.; Li, H.W. Pancreatic enucleation using the da Vinci robotic surgical system: A report of 26 cases: A report of 26 cases. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Jin, J.; Huo, Z.; Wang, J.; Weng, Y.; Zhao, S.; Deng, X.X.; Shen, B.Y.; Peng, C.H. An 8-year single-center study: 170 cases of middle pancreatectomy, including 110 cases of robot-assisted middle pancreatectomy. Surgery 2020, 167, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Hong, X.F.; Wu, W.M.; Han, X.L.; Wang, M.Y.; Cong, L.; Dai, M.H.; Liao, Q.; Zhang, T.P.; Zhao, Y.P. Propensity score-matched analysis of robotic versus open surgical enucleation for small pancreatic neuroendocrine tumours. Br. J. Surg. 2016, 103, 1358–1364. [Google Scholar] [CrossRef]
- Wang, F.; Xu, X.; Ye, Z.; Qin, Y.; Yu, X.; Ji, S. Prognostic Significance of Altered ATRX/DAXX Gene in Pancreatic Neuroendocrine Tumors: A Meta-Analysis. Front. Endocrinol. 2021, 12, 691557. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; Huo, Z.; Wen, C.L.; Wu, Z.C.; Jin, J.B.; Cheng, D.F.; Chen, H.; Deng, X.X.; Shen, B.Y.; et al. Robot-Assisted Middle Pancreatectomy for Elderly Patients: Our Initial Experience. Med. Sci. Monit. 2015, 21, 2851–2860. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Zhao, G.D.; Zhao, Z.M.; Hu, M.G.; Tan, X.L.; Zhang, X.; Gao, Y.X.; Liu, R. A comparative study of end-to-end pancreatic anastomosis versus pancreaticojejunostomy after robotic central pancreatectomy. Updates Surg. 2021, 73, 967–975. [Google Scholar] [CrossRef]
- Klimstra, D.S.; Wenig, B.M.; Heffess, C.S. Solid-pseudopapillary tumor of the pancreas: A typically cystic carcinoma of low malignant potential. Semin. Diagn. Pathol. 2000, 17, 66–80. [Google Scholar]
- Papavramidis, T.; Papavramidis, S. Solid pseudopapillary tumors of the pancreas: Review of 718 patients reported in English literature. J. Am. Coll. Surg. 2005, 200, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Finney, J.M.V.I.I. Resection of the Pancreas: Report of a Case. Ann. Surg. 1910, 51, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Strobel, O.; Cherrez, A.; Hinz, U.; Mayer, P.; Kaiser, J.; Fritz, S.; Schneider, L.; Klauss, M.; Büchler, M.W.; Hackert, T. Risk of pancreatic fistula after enucleation of pancreatic tumours. Br. J. Surg. 2015, 102, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Simon, R. Complications After Pancreaticoduodenectomy. Surg. Clin. N. Am. 2021, 101, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Hüttner, F.J.; Koessler-Ebs, J.; Hackert, T.; Ulrich, A.; Büchler, M.W.; Diener, M.K. Meta-analysis of surgical outcome after enucleation versus standard resection for pancreatic neoplasms. Br. J. Surg. 2015, 102, 1026–1036. [Google Scholar] [CrossRef]
- Büchler, M.W.; Friess, H.; Müller, M.W.; Wheatley, A.M.; Beger, H.G. Randomized trial of duodenum-preserving pancreatic head resection versus pylorus-preserving Whipple in chronic pancreatitis. Am. J. Surg. 1995, 169, 65–69; discussion 69–70. [Google Scholar] [CrossRef]
- Farrarons, S.S.; van Bodegraven, E.A.; Sauvanet, A.; Hilal, M.A.; Besselink, M.G.; Dokmak, S. Minimally invasive versus open central pancreatectomy: Systematic review and meta-analysis. Surgery 2022, 172, 1490–1501. [Google Scholar] [CrossRef]
- Jung, D.; Bari, H.; Hwang, H.K.; Lee, W.J.; Kang, C.M. Short and long-term outcomes of minimally invasive central pancreatectomy: Comparison with minimally invasive spleen-preserving subtotal distal pancreatectomy. Asian J. Surg. 2023, 46, 824–828. [Google Scholar] [CrossRef]
- Dalla Valle, R.; Cremaschi, E.; Lamecchi, L.; Guerini, F.; Rosso, E.; Iaria, M. Open and minimally invasive pancreatic neoplasms enucleation: A systematic review. Surg. Endosc. 2019, 33, 3192–3199. [Google Scholar] [CrossRef]
- Rompianesi, G.; Montalti, R.; Giglio, M.C.; Caruso, E.; Ceresa, C.D.L.; Troisi, R.I. Robotic central pancreatectomy: A systematic review and meta-analysis. HPB 2022, 24, 143–151. [Google Scholar] [CrossRef]
- Fung, G.; Sha, M.; Kunduzi, B.; Froghi, F.; Rehman, S.; Froghi, S. Learning curves in minimally invasive pancreatic surgery: A systematic review. Langenbecks Arch. Surg. 2022, 407, 2217–2232. [Google Scholar] [CrossRef] [PubMed]
Author | Country | Year | Study Type | Surgery Type | Total Patients |
---|---|---|---|---|---|
Boggi et al. [14] | Italy | 2010 | Case Series | CP | 3 |
Guilianotti et al. [16] | Italy | 2010 | Case Series | CP | 3 |
Addeo et al. [7] | France | 2011 | Case Report | CP | 1 |
Peng et al. [17] | China | 2012 | Case Series | DPPPHR | 4 |
Abood et al. [13] | USA | 2013 | Case Series | CP | 9 |
Liang et al. [10] | China | 2018 | Case Report | Enucleation | 1 |
Di Benedetto et al. [15] | Italy | 2019 | Case Series | Enucleation | 12 |
Wang et al. [18] | China | 2019 | Case Series | CP | 11 |
Chong et al. [8] | Republic of Korea | 2019 | Case Report | Enucleation | 1 |
Machado et al. [11] | Brazil | 2019 | Case Report | Uncinectomy | 1 |
Ku et al. [9] | Republic of Korea | 2020 | Case Report | CP | 1 |
Van Ramshorst et al. [12] | The Netherlands | 2021 | Case Report | CP | 1 |
Author | Country | Year | Study Type | Comparison | Patients | MINORS Score | |
---|---|---|---|---|---|---|---|
Group 1 | Group 2 | ||||||
Kang et al. [24] | Korea | 2011 | Retrospective | Robotic vs. Open CP | 5 | 10 | 16 |
Cheng et al. [19] | China | 2012 | Retrospective | Robotic vs. Open CP | 7 | 36 | 16 |
Zhang et al. [29] | China | 2015 | Retrospective | RCP in Elderly vs. Young Patients | 10 | 55 | 15 |
Jin et al. [23] | China | 2016 | Retrospective | Robotic vs. Open EN | 31 | 25 | 16 |
Shi et al. [25] | China | 2016 | Retrospective | Robotic vs. Open EN | 26 | 17 | 16 |
Tian et al. [27] | China | 2016 | Retrospective | Robotic vs. Open EN | 60 | 60 | 14 |
Chen et al. [22] | China | 2017 | RCT | Robotic vs. Open CP | 50 | 50 | 20 |
Bartolini et al. [20] | Italy | 2019 | Retrospective | Robotic ENs vs. Robotic Whipple/DP | 9 | 16 | 16 |
Shi et al. [26] | China | 2020 | Retrospective | Robotic vs. Open CP | 110 | 60 | 16 |
Wang et al. [28] | China | 2021 | Retrospective | Robotic End-to-End Pancreatic Reconstruction vs. PJ | 52 | 22 | 16 |
Caruso et al. [21] | Spain | 2022 | Retrospective | Robotic vs. Open EN | 20 | 20 | 15 |
Author | Case Length (min) | EBL (mL) | Convert Open (%) | Morbidity | POPF | Length of Stay (Days) | Follow Up (Mos) | Exocrine Insufficiency | Endocrine Insufficiency | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Total (%) | CD ≥ 3 (%) | A (%) | B/C (%) | ||||||||
Abood [13] | 415.3 ± 67 | 195 ± 100 | 1 (11.1) | 7 (77.8) | 1 (11.1) | 5 (55.6) | 2 (22.2) | 11.5 ± 4 | 1 | 0 | 0 |
Boggi [14] | 426.7 * | Φ | 0 | 2 (66.7) | 1 (33.3) | 1 (33.3) | 1 (33.3) | 14.3 ± 10 | 27 | 0 | 0 |
Di Benedetto [15] | 203.17 * | 38.3 * | 0 | 4 (33.3) | 1 (8.3) | 2 (16.7) | 1 (8.3) | 3.9 * | 17 | 0 | 0 |
Guilianotti [16] | 320 * | 233 * | 0 | 1 (33.3) | 0 | 0 | 1 (33.3) | 15 ± 10 | 47 | 0 | 0 |
Peng [17] | 298.8 ± 34 | 425 ± 236 | 0 | 3 (75) | 0 | 0 | 3 (75) | 26.8 ± 5 | Ω | 0 | 0 |
Wang [18] | 121 * | 55 ± 25 | 0 | 7 (63.6) | 1 (9.1) | 1 (9.1) | 1 (9.1) | 6.5 ± 1 | 11.7 | 0 | 0 |
Addeo [17] | 450 | 300 | 0 | 1 (100) | 0 | 1 (100) | 0 | 15 | Ω | Φ | Φ |
Chong [8] | 124 | 50 | 0 | 0 | 0 | 0 | 0 | 4 | Ω | Φ | Φ |
Ku [9] | 295 | 50 | 0 | 1 (100) | 0 | 1 (100) | 0 | 9 | Ω | Φ | Φ |
Liang [10] | 65 | 5 | 0 | 0 | 0 | 0 | 0 | 6 | 18 | 0 | 0 |
Machado [11] | 215 | 50 | 0 | 1 (100) | 0 | 0 | 1 (100) | 3 | 0.5 | Φ | Φ |
Van Ramshorst [12] | 248 | 20 | 0 | 1 (100) | 0 | 0 | 1 (100) | 8 | Ω | 0 | 0 |
Author | Case Length (min) | EBL (mL) | Transf. | Convert Open | Reop. | Morbidity | POPF | Length of Stay (Days) | Follow Up (Mos) | Exocrine Insuff. | Endocrine Insuff. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
None | CD ≥ 3 | A | B/C | ||||||||||
Enucleation (Robotic v. Open) | |||||||||||||
Caruso (2022) [21] | 210 ± 78 vs. 180 ± 76 | Φ | 0 vs. 0 | 1 vs. 0 | 0 vs. 1 | 17 vs. 12 | Φ | 2 vs. 3 | 0 vs. 0 | 8.3 ± 1 vs. 13.8 ± 2 | 12 vs. 12 | Φ | Φ |
Jin (2016) [23] | 103.3 ± 23.3 vs. 148.7 ± 62.9 | 30 ± 31.1 vs. 127.7 ± 143.9 | 0 vs. 0 | 0 vs. 0 | 0 vs. 1 | 25 vs. 16 | 2 vs. 4 | 11 vs. 8 | 12 vs. 13 | 15.7 ± 11 vs. 20.7 ± 13 | 19.1 vs. 14.8 | 0 vs. 0 | 0 vs. 0 |
Shi (2016) [25] | 124.6 ± 50.9 vs. 198.5 ± 70.7 | 76 ± 85.4 vs. 157.1 ± 114.2 | 0 vs. 0 | 0 vs. 0 | 0 vs. 0 | 14 vs. 9 | 0 vs. 0 | 5 vs. 4 | 7 vs. 3 | 22.6 ± 16 vs. 23.9 ± 17 | 25 vs. 25 | 0 vs. 0 | 0 vs. 0 |
Tian (2016) [27] | 148 ± 57.5 vs. 170 ± 43.2 | 268.8 ± 214 vs. 345 ± 255.1 | 1 vs. 1 | 3 vs. 0 | 0 vs. 0 | 52 vs. 44 | 2 vs. 6 | Φ | 6 vs. 10 | 16.5 ± 7 vs. 30.5 ± 18 | 3 vs. 3 | Φ | Φ |
Central Pancreatectomy (Robotic vs. Open) | |||||||||||||
Cheng (2013) [19] | 181.8 ± 107.4 vs. 221 ± 54.9 | 212.5 ± 128.3 vs. 487.5 ± 342.9 | 0 vs. 5 | 0 vs. 0 | 0 vs. 0 | 1 vs. 18 | Φ | 0 vs. 9 | 5 vs. 6 | 22 ± 7 vs. 38.5 ± 23 | 23 vs. 62 | 0 vs. 0 | 0 vs. 3 |
Chen (2017) [22] | 162.5 ± 20.1 vs. 194 ± 15.6 | 62.5 ± 11.1 vs. 198.8 ± 45.7 | 0 vs. 5 | 0 vs. 0 | 2 vs. 2 | 27 vs. 30 | 7 vs. 9 | 13 vs. 9 | 9 vs. 18 | 15.6 ± 5 vs. 21.7 ± 13 | Φ | Φ | Φ |
Kang (2011) [24] | 432 ± 65.7 vs. 286.5 ± 90.2 | 275 ± 221.7 vs. 858.3 ± 490 | 0 vs. 3 | 0 vs. 0 | 0 vs. 2 | 4 vs. 5 | 1 vs. 0 | 4 vs. 0 | 0 vs. 1 | 14.6 ± 8 vs. 22.1 ± 13 | 19 vs. 19 | Φ | 0 vs. 0 |
Shi (2020) [26] | 162 ± 63 vs. 208 ± 52 | 88 ± 93 vs. 195 ± 165 | Φ | 0 vs. 0 | 5 vs. 2 | 53 vs. 36 | 0 vs. 0 | Φ | 38 vs. 13 | 24.5 ± 13 vs. 23.3 ± 18 | 54 vs. 54 | 0 vs. 0 | 3 vs. 3 |
rPSP | rEN | rCP | oPSP | oEN | oCP | |
---|---|---|---|---|---|---|
Mean age (years) | 48.9 | 50.1 | 48.6 | 50.6 | 50.3 | 50.8 |
Mean BMI (kg/m2) | 23.7 | 25.2 | 23 | 23.7 | 25.1 | 22.2 |
Mean lesion size (cm) | 2.3 | 1.7 | 2.6 | 2.6 | 2 | 3 |
Mean OR time (min) | 169.3 | 146.7 | 177.7 | 193.9 | 171.3 | 211.5 |
Mean EBL (mL) | 108.3 | 149.2 | 88.9 | 288.1 | 260.4 | 306.2 |
Mean LOS (days) | 16.9 | 14.5 | 17.6 | 25.6 | 14.1 | 26.2 |
Male (%) | 188 (37.2%) | 66 (41.3%) | 120 (35.3%) | 104 (37.4%) | 50 (41%) | 54 (34.6%) |
ASA > 3 (%) | 19 (8.8%) | 8 (11.8%) | 11 (7.5%) | 6 (6.9%) | 4 (10.8%) | 2 (4%) |
Location | ||||||
Head | 54 (10.9%) | 40 (29.8%) | 0 | 36 (13.8%) | 36 (34.3%) | 0 |
Uncinate | 23 (4.6%) | 11 (8.2%) | 0 | 13 (5%) | 13 (12.4%) | 0 |
Neck/body | 374 (75.4%) | 27 (36.5%) | 331 (100%) | 164 (81.6%) | 8 (17.8%) | |
Tail | 39 (7.9%) | 23 (31.1%) | 0 | 18 (8.9%) | 18 (40%) | 156 (100%) |
Pathology | ||||||
IPMN | 74 (15.4%) | 13 (9.7%) | 61 (17.9%) | 44 (16.8%) | 11 (10.5%) | 0 |
SCN | 121 (25.3%) | 4 (3%) | 116 (34.1%) | 36 (13.8%) | 2 (1.9%) | 36 (23.1%) |
MCN | 47 (9.8%) | 0 (0%) | 46 (13.5%) | 29 (11.1%) | 4 (3.8%) | 25 (16%) |
SPN | 69 (14.4%) | 5 (3.7%) | 64 (18.8%) | 19 (7.3%) | 2 (1.9%) | 17 (10.9%) |
PanNET | 155 (32.36%) | 111 (82.8%) | 42 (12.3%) | 111 (42.5%) | 86 (81.9%) | 25 (16%) |
Complications | ||||||
Conversion to open | 6 (1.2%) | 4 (2.5%) | 2 (0.6%) | 0 | 0 | 0 |
Reoperation | 12 (2.4%) | 1 (0.6%) | 11 (3.2%) | 8 (2.9%) | 2 (1.6%) | 6 (3.8%) |
CD > 3 | 26 (5.4%) | 6 (4.3%) | 20 (6%) | 119 (8.5%) | 10 (9.8%) | 9 (7.5%) |
CS POPF | 149 (29.8%) | 26 (16.3%) | 119 (35.5%) | 64 (23%) | 26 (21.3%) | 38 (24.3%) |
Endocrine insufficiency | 9 (2.9%) | 0 | 9 (5%) | 3 (3.4%) | 0 | 3 (6.5%) |
Exocrine insufficiency | 2 (0.54%) | 0 | 2 (0.7%) | 0 | 0 | 0 |
Anastomosis | ||||||
Pancreatogastrostomy | 29 (6.8%) | 0 | 29 (8.5%) | 91 (41.7%) | 0 | 91 (58.3%) |
Pancreatojejunostomy | 251 (59.6%) | 0 | 248 (72.9%) | 65 (29.8%) | 0 | 65 (41.6%) |
Pancreatopancreatic | 63 (17.2%) | 0 | 63 (18.5%) | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Ghabi, E.; He, J. Robotic Parenchymal-Sparing Pancreatectomy: A Systematic Review. Cancers 2023, 15, 4369. https://doi.org/10.3390/cancers15174369
Zheng R, Ghabi E, He J. Robotic Parenchymal-Sparing Pancreatectomy: A Systematic Review. Cancers. 2023; 15(17):4369. https://doi.org/10.3390/cancers15174369
Chicago/Turabian StyleZheng, Richard, Elie Ghabi, and Jin He. 2023. "Robotic Parenchymal-Sparing Pancreatectomy: A Systematic Review" Cancers 15, no. 17: 4369. https://doi.org/10.3390/cancers15174369
APA StyleZheng, R., Ghabi, E., & He, J. (2023). Robotic Parenchymal-Sparing Pancreatectomy: A Systematic Review. Cancers, 15(17), 4369. https://doi.org/10.3390/cancers15174369