Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Aminopeptidase N (APN/CD13) and Asparagine–Glycine–Arginine (NGR) Motif
3. Overview of Preclinical Achievements with NGR-Based Bispecific Imaging Probes
3.1. NGR-RDG-Based Heterodimers for Angiogenesis Imaging
3.2. Radiolabeled NGR-Hyaluronic Acid (HA) Containing Multimodal Imaging Probes
3.3. Radiolabeled NGR-Based Fusion Proteins
Investigated Object | Aims | Radiopharmaceutical | In Vitro and/or In Vivo Methods | Reference |
---|---|---|---|---|
U87- or HT1080-xenotransplant-bearing athymic female nude mice (CD-1 nu/nu) | tTF-NGR treatment monitoring, performance evaluation of multi-modal vascular and molecular diagnostics | iodine-123-labeled tTF-NGR ([123I]I-tTF-NGR) | SPECT/CT imaging (NanoSPECT/CT-Plus), CEUS, USPIO-enhanced MRI, FRI with AngioSense680, tumor treatment studies with tTF-NGR, NGR-blocking experiments with blocking peptide GNGRAHA and tTF-NGR histology (H&E staining) | [108] |
HT1080 cell line | radioimaging, radiotherapy | Rhenium-188-labeled NGR-VEGI ([188Re]Re-NGR-VEGI) | in vitro: stability, flow-cytometry-based apoptosis assay with vector control, NGR peptide, VEGI protein, purified NGR-VEGI protein and [188Re]Re-NGR-VEGI | [72] |
HT1080-tumor-bearing female BALB/c nude mice | radioimaging, radiotherapy | Rhenium-188-labeled NGR-VEGI ([188Re]Re-NGR-VEGI) | in vivo: static SPECT acquisition, blocking studies with cold NGR-VEGI, ex vivo biodistribution studies, radiotherapy experiments (H&E staining, tumor size, body weight measurement) | [72] |
in vitro | in vitro assessment, quality control, synthesis | Rhenium-188-labeled NGR-VEGI ([188Re]Re-NGR-VEGI) | in vitro stability | [18] |
in vivo female BALB/c mice bearing 4T1 cancer | radioimaging, radiotherapy | Rhenium-188-labeled NGR-VEGI ([188Re]Re-NGR-VEGI) | radiotherapy experiments with [188Re]Re-NGR-VEGI, NGR-VEGI, NGR and saline control (tumor growth registration, H&E and (TUNEL) staining. | [18] |
in vitro human B16F10 cell line | in vitro evaluation | [99mTc]Tc-HYNIC-labeled CLB-c(NGR) ([99mTc]Tc -HYNIC-CLB-c(NGR)) | in vitro stability, cell-binding experiments, determination of specific uptake with peptide [c(KCNGRC)], MTT-assay-based in vitro cytotoxicity studies with the PDC, cNGR peptide and CLB | [76] |
in vivo C57BL/6 mice xenografted with murine B16F10 cells | evaluation of APN/CD13 targeting ability | [99mTc]Tc-HYNIC-labeled CLB-c(NGR) ([99mTc]Tc -HYNIC-CLB-c(NGR)) | in vivo biodistribution studies, blocking studies applying non-radiolabeled c(NGR) | [76] |
in vitro 22Rv1 cells | in vitro characterization | [68Ga]Ga-DOTA-NKL | uptake rate | [117] |
in vivo 22Rv1-tumor-bearing mice | assessment of tumor-targeting properties and APN/CD13 diagnostic potential | [68Ga]Ga-DOTA-NKL | in vivo microPET/CT imaging | [117] |
C57BL/6 mice | investigation of tumor-targeting properties of NGR–drug complexes | iodine-125-labeled murine NGR-TNF and iodine-125-labeled murine TNF ([125I]I-NGR-TNF and [125I]I-TNF) | in vivo uptake pattern determination | [49] |
3.4. NGR Heterodimers beyond Nuclear Medical Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Vaz, S.C.; Oliveira, F.; Herrmann, K.; Veit-Haibach, P. Nuclear medicine and molecular imaging advances in the 21st century. Br. J. Radiol. 2020, 93, 20200095. [Google Scholar] [CrossRef]
- Hellström, K.E.; Brown, J.P.; Hellström, I. Monoclonal antibodies to tumor antigens. Contemp. Top. Immunobiol. 1980, 11, 117–137. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, X. Peptide heterodimers for molecular imaging. Amino Acids 2011, 41, 1081–1092. [Google Scholar] [CrossRef]
- Le Gall, F.; Kipriyanov, S.M.; Moldenhauer, G.; Little, M. Di-, tri- and tetrameric single chain Fv antibody fragments against human CD19: Effect of valency on cell binding. FEBS. Lett. 1999, 453, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Dillman, R.O. Radiolabeled anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoma. J. Clin. Oncol. 2002, 20, 3545–3557. [Google Scholar] [CrossRef]
- Press, O.W.; Eary, J.F.; Appelbaum, F.R.; Martin, P.J.; Nelp, W.B.; Glenn, S.; Fisher, D.R.; Porter, B.; Matthews, D.C.; Gooley, T.; et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 1995, 346, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Juweid, M.; Neumann, R.; Paik, C.; Perez-Bacete, M.J.; Sato, J.; van Osdol, W.; Weinstein, J.N. Micropharmacology of monoclonal antibodies in solid tumors: Direct experimental evidence for a binding site barrier. Cancer. Res. 1992, 52, 5144–5153. [Google Scholar] [PubMed]
- Ryman, J.T.; Meibohm, B. Pharmacokinetics of Monoclonal Antibodies. CPT. Pharmacomet. Syst. Pharmacol. 2017, 6, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, I.; Bott, S.W.; Patel, A.S.; Wolf, C.G.; Hospodar, A.R.; Sampathkumar, S.; Shrank, W.H. Pricing of monoclonal antibody therapies: Higher if used for cancer? Am. J. Manag. Care 2018, 24, 109–112. [Google Scholar]
- Vaisman-Mentesh, A.; Rosenstein, S.; Yavzori, M.; Dror, Y.; Fudim, E.; Ungar, B.; Kopylov, U.; Picard, O.; Kigel, A.; Ben-Horin, S.; et al. Molecular Landscape of Anti-Drug Antibodies Reveals the Mechanism of the Immune Response Following Treatment With TNFα Antagonists. Front. Immunol. 2019, 10, 2921. [Google Scholar] [CrossRef]
- Aloj, L.; Morelli, G. Design, synthesis and preclinical evaluation of radiolabeled peptides for diagnosis and therapy. Curr. Pharm. Des. 2004, 10, 3009–3031. [Google Scholar] [CrossRef] [PubMed]
- Kwekkeboom, D.; Krenning, E.P.; de Jong, M. Peptide receptor imaging and therapy. J. Nucl. Med. 2000, 41, 1704–1713. [Google Scholar]
- Zaccaro, L.; Del Gatto, A.; Pedone, C.; Saviano, M. Peptides for tumour therapy and diagnosis: Current status and future directions. Curr. Med. Chem. 2009, 16, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Susini, C.; Buscail, L. Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. 2006, 17, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.B.; Wu, Z.; Chen, K.; Ryu, E.K.; Chen, X. 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J. Nucl. Med. 2008, 49, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, E.; Morelli, G.; Accardo, A.; Mansi, R.; Tesauro, D.; Aloj, L. Criteria for the design and biological characterization of radiolabeled peptide-based pharmaceuticals. BioDrugs 2004, 18, 279–295. [Google Scholar] [CrossRef]
- Mammen, M.; Choi, S.K.; Whitesides, G.M. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. Engl. 1998, 37, 2754–2794. [Google Scholar] [CrossRef]
- Ma, W.; Kang, F.; Wang, Z.; Yang, W.; Li, G.; Ma, X.; Li, G.; Chen, K.; Zhang, Y.; Wang, J. (99m)Tc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids 2013, 44, 1337–1345. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef]
- Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer 2013, 108, 479–485. [Google Scholar] [CrossRef]
- Saga, T.; Neumann, R.D.; Heya, T.; Sato, J.; Kinuya, S.; Le, N.; Paik, C.H.; Weinstein, J.N. Targeting cancer micrometastases with monoclonal antibodies: A binding-site barrier. Proc. Natl. Acad. Sci. USA 1995, 92, 8999–9003. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Bloch, S.; Xu, B.; Achilefu, S. Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J. Med. Chem. 2006, 49, 2268–2275. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.D.; Jiang, J.; Hadley, M.E.; Bentley, D.L.; Hruby, V.J. Melanotropic peptide-conjugated beads for microscopic visualization and characterization of melanoma melanotropin receptors. Proc. Natl. Acad. Sci. USA 1996, 93, 13715–13720. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Edwards, D.S.; Ziegler, M.C.; Harris, A.R.; Hemingway, S.J.; Barrett, J.A. 99mTc-labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors. Bioconjug. Chem. 2001, 12, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiong, Z.; Wu, Y.; Cai, W.; Tseng, J.R.; Gambhir, S.S.; Chen, X. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J. Nucl. Med. 2006, 47, 113–121. [Google Scholar] [PubMed]
- Chen, X.; Tohme, M.; Park, R.; Hou, Y.; Bading, J.R.; Conti, P.S. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol. Imaging 2004, 3, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, X.; Xiong, Z.; Cheng, Z.; Fisher, D.R.; Liu, S.; Gambhir, S.S.; Chen, X. microPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. J. Nucl. Med. 2005, 46, 1707–1718. [Google Scholar] [PubMed]
- Dijkgraaf, I.; Yim, C.B.; Franssen, G.M.; Schuit, R.C.; Luurtsema, G.; Liu, S.; Oyen, W.J.; Boerman, O.C. PET imaging of αvβ₃ integrin expression in tumours with ⁶⁸Ga-labelled mono-, di- and tetrameric RGD peptides. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 128–137. [Google Scholar] [CrossRef]
- Adar, L.; Shamay, Y.; Journo, G.; David, A. Pro-apoptotic peptide-polymer conjugates to induce mitochondrial-dependent cell death. Polym. Adv. Technol. 2011, 22, 199–208. [Google Scholar] [CrossRef]
- Handl, H.L.; Vagner, J.; Han, H.; Mash, E.; Hruby, V.J.; Gillies, R.J. Hitting multiple targets with multimeric ligands. Expert Opin. Ther. Targets 2004, 8, 565–586. [Google Scholar] [CrossRef]
- Reubi, J.C.; Waser, B. Concomitant expression of several peptide receptors in neuroendocrine tumours: Molecular basis for in vivo multireceptor tumour targeting. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Chittasupho, C. Multivalent ligand: Design principle for targeted therapeutic delivery approach. Ther. Deliv. 2012, 3, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Fang, J.M.; Chou, P.T.; Liao, K.W.; Chu, R.M.; Lee, S.J. Probing lectin and sperm with carbohydrate-modified quantum dots. ChemBioChem 2005, 6, 1899–1905. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, A.K.; Haider, T.; Tiwari, R.; Soni, V. Critical parameters for design and development of multivalent nanoconstructs: Recent trends. Drug Deliv. Transl. Res. 2022, 12, 2335–2358. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Hong, H.; Yang, S.P.; Cai, W. Design and applications of bispecific heterodimers: Molecular imaging and beyond. Mol. Pharm. 2014, 11, 1750–1761. [Google Scholar] [CrossRef] [PubMed]
- Banta, S.; Dooley, K.; Shur, O. Replacing antibodies: Engineering new binding proteins. Annu. Rev. Biomed. Eng. 2013, 15, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Gai, Y.; Jiang, Y.; Long, Y.; Sun, L.; Liu, Q.; Qin, C.; Zhang, Y.; Zeng, D.; Lan, X. Evaluation of an Integrin αvβ3 and Aminopeptidase N Dual-Receptor Targeting Tracer for Breast Cancer Imaging. Mol. Pharm. 2020, 17, 349–358. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, G.; Wang, F.; Chen, X. (68)Ga-Labeled NOTA-RGD-BBN Peptide for Dual Integrin and GRPR-Targeted Tumor Imaging. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1483–1494. [Google Scholar] [CrossRef]
- Judmann, B.; Braun, D.; Wängler, B.; Schirrmacher, R.; Fricker, G.; Wängler, C. Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceutics 2020, 3, 173. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, J.; Dong, C.; Cui, L.; Jin, X.; Jia, B.; Zhu, Z.; Li, F.; Wang, F. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol. Pharm. 2012, 9, 1409–1417. [Google Scholar] [CrossRef]
- Hogg, N.; Horton, M.A. Myeloid antigens: New and previously defined clusters. In Leukocyte Typing III, Proceedings of the Third International Workshop on Human Leukocyte Differentiation Antigens, Oxford, UK, 21–26 September 1986; McMichael, A.J., Ed.; Oxford University Press: Oxford, UK, 1987; pp. 576–621. [Google Scholar]
- Riemann, D.; Kehlen, A.; Langner, J. CD13--not just a marker in leukemia typing. Immunol. Today 1999, 20, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A. Aminopeptidases: Structure and function. FASEB J. 1993, 7, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Shipp, M.A.; Look, A.T. Hematopoietic differentiation antigens that are membrane-associated enzymes: Cutting is the key! Blood 1993, 82, 1052–1070. [Google Scholar] [CrossRef] [PubMed]
- Razak, K.; Newland, A.C. The significance of aminopeptidases and haematopoietic cell differentiation. Blood Rev. 1992, 6, 243–250. [Google Scholar] [CrossRef]
- Dixon, J.; Kaklamanis, L.; Turley, H.; Hickson, I.D.; Leek, R.D.; Harris, A.L.; Gatter, K.C. Expression of aminopeptidase-n (CD 13) in normal tissues and malignant neoplasms of epithelial and lymphoid origin. J. Clin. Pathol. 1994, 47, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kinzer, C.A.; Paul, W.E. p161, a murine membrane protein expressed on mast cells and some macrophages, is mouse CD13/aminopeptidase N. J. Immunol. 1996, 157, 2593–2600. [Google Scholar] [CrossRef]
- Drexler, H.G. Classification of acute myeloid leukemias: A comparison of FAB and immunophenotyping. Leukemia 1987, 1, 697–705. [Google Scholar] [PubMed]
- Curnis, F.; Arrigoni, G.; Sacchi, A.; Fischetti, L.; Arap, W.; Pasqualini, R.; Corti, A. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 2002, 62, 867–874. [Google Scholar]
- Bhagwat, S.V.; Lahdenranta, J.; Giordano, R.; Arap, W.; Pasqualini, R.; Shapiro, L.H. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 2001, 97, 652–659. [Google Scholar] [CrossRef]
- Ranogajec, I.; Jakić-Razumović, J.; Puzović, V.; Gabrilovac, J. Prognostic value of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients. Med. Oncol. 2012, 29, 561–569. [Google Scholar] [CrossRef]
- Surowiak, P.; Drag, M.; Materna, V.; Suchocki, S.; Grzywa, R.; Spaczyński, M.; Dietel, M.; Oleksyszyn, J.; Zabel, M.; Lage, H. Expression of aminopeptidase N/CD13 in human ovarian cancers. Int. J. Gynecol. Cancer 2006, 16, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Kehlen, A.; Lendeckel, U.; Dralle, H.; Langner, J.; Hoang-Vu, C. Biological significance of aminopeptidase N/CD13 in thyroid carcinomas. Cancer Res. 2003, 63, 8500–8506. [Google Scholar] [PubMed]
- Ikeda, N.; Nakajima, Y.; Tokuhara, T.; Hattori, N.; Sho, M.; Kanehiro, H.; Miyake, M. Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin. Cancer Res. 2003, 9, 1503–1508. [Google Scholar]
- Hashida, H.; Takabayashi, A.; Kanai, M.; Adachi, M.; Kondo, K.; Kohno, N.; Yamaoka, Y.; Miyake, M. Aminopeptidase N is involved in cell motility and angiogenesis: Its clinical significance in human colon cancer. Gastroenterology 2002, 122, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, J.; Zhang, H.; Zhao, D.; Zhang, Z.; Zhang, S. Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J. Cancer Res. Ther. 2015, 11, 223–228. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Z.; Jia, Y.; Cui, M.; Han, L.; Zhang, Y.; Liu, Z.; Bi, D.; Liu, S. Ubenimex inhibits cell proliferation, migration and invasion by inhibiting the expression of APN and inducing autophagic cell death in prostate cancer cells. Oncol. Rep. 2016, 35, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, T.; Nakashima, T.; Hamada, H.; Takayama, Y.; Akita, S.; Masuda, T.; Horimasu, Y.; Miyamoto, S.; Iwamoto, H.; Fujitaka, K.; et al. Aminopeptidase N/CD13 as a potential therapeutic target in malignant pleural mesothelioma. Eur. Respir. J. 2018, 51, 1701610. [Google Scholar] [CrossRef]
- Barnieh, F.M.; Loadman, P.M.; Falconer, R.A. Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188641. [Google Scholar] [CrossRef]
- Pasqualini, R.; Koivunen, E.; Kain, R.; Lahdenranta, J.; Sakamoto, M.; Stryhn, A.; Ashmun, R.A.; Shapiro, L.H.; Arap, W.; Ruoslahti, E. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000, 60, 722–727. [Google Scholar]
- Luan, Y.; Xu, W. The structure and main functions of aminopeptidase N. Curr. Med. Chem. 2007, 14, 639–647. [Google Scholar] [CrossRef]
- Shapiro, L.H.; Ashmun, R.A.; Roberts, W.M.; Look, A.T. Separate promoters control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells. J. Biol. Chem. 1991, 266, 11999–12007. [Google Scholar] [CrossRef] [PubMed]
- Mina-Osorio, P. The moonlighting enzyme CD13: Old and new functions to target. Trends Mol. Med. 2008, 14, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Corti, A.; Curnis, F.; Arap, W.; Pasqualini, R. The neovasculature homing motif NGR: More than meets the eye. Blood 2008, 112, 2628–2635. [Google Scholar] [CrossRef] [PubMed]
- Enyedi, K.N.; Tóth, S.; Szakács, G.; Mező, G. NGR-peptide-drug conjugates with dual targeting properties. PLoS ONE 2017, 12, e0178632. [Google Scholar] [CrossRef] [PubMed]
- Luciani, N.; Marie-Claire, C.; Ruffet, E.; Beaumont, A.; Roques, B.P.; Fournié-Zaluski, M.C. Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptidase N (EC 3.4.11.2): Insights into its mechanism of action. Biochemistry 1998, 37, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lin, Y.L.; Peng, G.; Li, F. Structural basis for multifunctional roles of mammalian aminopeptidase N. Proc. Natl. Acad. Sci. USA 2012, 109, 17966–17971. [Google Scholar] [CrossRef] [PubMed]
- Soudy, R.; Ahmed, S.; Kaur, K. NGR peptide ligands for targeting CD13/APN identified through peptide array screening resemble fibronectin sequences. ACS Comb. Sci. 2012, 14, 590–599. [Google Scholar] [CrossRef]
- Colombo, G.; Curnis, F.; De Mori, G.M.S.; Gasparri, A.; Longoni, C.; Sacchi, A.; Longhi, R.; Corti, A. Structure−activity relationships of linear and cyclic peptides containing the NGR tumorhoming motif. J. Biol. Chem. 2002, 277, 47891–47897. [Google Scholar] [CrossRef]
- Curnis, F.; Cattaneo, A.; Longhi, R.; Sacchi, A.; Gasparri, A.M.; Pastorino, F.; Di Matteo, P.; Traversari, C.; Bachi, A.; Ponzoni, M.; et al. Critical Role of Flanking Residues in NGRto-isoDGR transition and CD13/integrin receptor switching. J. Biol. Chem. 2010, 285, 9114–9123. [Google Scholar] [CrossRef]
- Máté, G.; Kertész, I.; Enyedi, K.N.; Mező, G.; Angyal, J.; Vasas, N.; Kis, A.; Szabó, É.; Emri, M.; Bíró, T.; et al. In vivo imaging of Aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer (68)Ga-NOTA-c(NGR). Eur. J. Pharm. Sci. 2015, 69, 61–71. [Google Scholar] [CrossRef]
- Ma, W.; Shao, Y.; Yang, W.; Li, G.; Zhang, Y.; Zhang, M.; Zuo, C.; Chen, K.; Wang, J. Evaluation of (188)Re-labeled NGR-VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Tumour Biol. 2016, 37, 9121–9129. [Google Scholar] [CrossRef] [PubMed]
- Vats, K.; Satpati, A.K.; Sharma, R.; Sarma, H.D.; Satpati, D.; Dash, A. 177Lu-labeled cyclic Asn-Gly-Arg peptide tagged carbon nanospheres as tumor targeting radio-nanoprobes. J. Pharm. Biomed. Anal. 2018, 152, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, X.; Zong, S.; Wang, J.; Conti, P.S.; Chen, K. MicroPET imaging of CD13 expression using a (64)Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol. Pharm. 2014, 11, 3938–3946. [Google Scholar] [CrossRef]
- Satpati, D.; Sharma, R.; Kumar, C.; Sarma, H.D.; Dash, A. 68Ga-Chelation and comparative evaluation of N,N'-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC) conjugated NGR and RGD peptides as tumor targeted molecular imaging probes. MedChemComm 2017, 8, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Vats, K.; Satpati, D.; Sharma, R.; Kumar, C.; Sarma, H.D.; Dash, A. 99m Tc-labeled NGR-chlorambucil conjugate, 99m Tc-HYNIC-CLB-c(NGR) for targeted chemotherapy and molecular imaging. J. Labelled Comp. Radiopharm. 2017, 60, 431–438. [Google Scholar] [CrossRef]
- Müller, C.; Bunka, M.; Reber, J.; Fischer, C.; Zhernosekov, K.; Türler, A.; Schibli, R. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β--emitters: In vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J. Nucl. Med. 2013, 54, 2168–2174. [Google Scholar] [CrossRef]
- Fani, M.; André, J.P.; Maecke, H.R. 68Ga-PET: A powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast. Media. Mol. Imaging 2008, 3, 67–77. [Google Scholar] [CrossRef]
- Asti, M.; De Pietri, G.; Fraternali, A.; Grassi, E.; Sghedoni, R.; Fioroni, F.; Roesch, F.; Versari, A.; Salvo, D. Validation of (68)Ge/(68)Ga generator processing by chemical purification for routine clinical application of (68)Ga-DOTATOC. Nucl. Med. Biol. 2008, 35, 721–724. [Google Scholar] [CrossRef]
- Eppard, E.; de la Fuente, A.; Benešová, M.; Khawar, A.; Bundschuh, R.A.; Gärtner, F.C.; Kreppel, B.; Kopka, K.; Essler, M.; Rösch, F. Clinical Translation and First In-Human Use of [44Sc]Sc-PSMA-617 for PET Imaging of Metastasized Castrate-Resistant Prostate Cancer. Theranostics 2017, 7, 4359–4369. [Google Scholar] [CrossRef]
- Hernandez, R.; Valdovinos, H.F.; Yang, Y.; Chakravarty, R.; Hong, H.; Barnhart, T.E.; Cai, W. 44Sc: An Attractive Isotope for Peptide-Based PET Imaging. Mol. Pharm. 2014, 11, 2954–2961. [Google Scholar] [CrossRef]
- O’Connell, P.J.; Gerkis, V.; d’Apice, A.J. Variable O-glycosylation of CD13 (aminopeptidase N). J. Biol. Chem. 1991, 266, 4593–4597. [Google Scholar] [CrossRef]
- Long, Y.; Shao, F.; Ji, H.; Song, X.; Lv, X.; Xia, X.; Liu, Q.; Zhang, Y.; Zeng, D.; Lan, X.; et al. Evaluation of a CD13 and Integrin αvβ3 Dual-Receptor Targeted Tracer 68Ga-NGR-RGD for Ovarian Tumor Imaging: Comparison With 18F-FDG. Front. Oncol. 2022, 12, 884554. [Google Scholar] [CrossRef] [PubMed]
- Ruoslahti, E.; Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins. Science 1987, 238, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Gai, Y.; Li, Z.; Li, H.; Li, J.; Muschler, J.; Kang, R.; Tang, D.; Zeng, D. Heterodimeric RGD-NGR PET Tracer for the Early Detection of Pancreatic Cancer. Mol. Imaging Biol. 2022, 24, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, S.R.; Petricoin, E.F.; Maitra, A.; Rajapakse, V.; King, C.; Jacobetz, M.A.; Ross, S.; Conrads, T.P.; Veenstra, T.D.; Hitt, B.A.; et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003, 4, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, S.R.; Wang, L.; Multani, A.S.; Combs, C.; Deramaudt, T.B.; Hruban, R.H.; Rustgi, A.K.; Chang, S.; Tuveson, D.A. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005, 7, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Kopinke, D.; Brailsford, M.; Pan, F.C.; Magnuson, M.A.; Wright, C.V.; Murtaugh, L.C. Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas. Dev. Biol. 2012, 362, 57–64. [Google Scholar] [CrossRef]
- Li, X.; Fu, H.; Wang, J.; Liu, W.; Deng, H.; Zhao, P.; Liao, W.; Yang, Y.; Wei, H.; Yang, X.; et al. Multimodality labeling of NGR-functionalized hyaluronan for tumor targeting and radiotherapy. Eur. J. Pharm. Sci. 2021, 161, 105775. [Google Scholar] [CrossRef]
- Ouasti, S.; Kingham, P.J.; Terenghi, G.; Tirelli, N. The CD44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials 2012, 33, 1120–1134. [Google Scholar] [CrossRef]
- Shi, S.; Zhou, M.; Li, X.; Hu, M.; Li, C.; Li, M.; Sheng, F.; Li, Z.; Wu, G.; Luo, M.; et al. Synergistic active targeting of dually integrin alphavbeta3/CD44-targeted nanoparticles to B16F10 tumors located at different sites of mouse bodies. J. Control Release 2016, 235, 1–13. [Google Scholar] [CrossRef]
- Laakkonen, P.; Waltari, M.; Holopainen, T.; Takahashi, T.; Pytowski, B.; Steiner, P.; Hicklin, D.; Persaud, K.; Tonra, J.R.; Witte, L.; et al. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res. 2007, 67, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.L.; Mann, E.; Greenberg, B.; Spiro, J.; Friedman, C.D.; Clawson, M.L.; PielaSmith, T.H. Removal of fibroblasts from primary cultures of squamous cell carcinoma of the head and neck. J. Tissue Cult. Methods 1993, 15, 1–9. [Google Scholar] [CrossRef]
- Fukasawa, K.; Fujii, H.; Saitoh, Y.; Koizumi, K.; Aozuka, Y.; Sekine, K.; Yamada, M.; Saiki, I.; Nishikawa, K. Aminopeptidase N (APN/CD13) is selectively expressed in vascular endothelial cells and plays multiple roles in angiogenesis. Cancer Lett. 2006, 243, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ferro-Flores, G.; Ocampo-Garcia, B.E.; Santos-Cuevas, C.L.; de Maria Ramirez, F.; AzorinVega, E.P.; Melendez-Alafort, L. Theranostic radiopharmaceuticals based on gold nanoparticles labeled with (177)Lu and conjugated to peptides. Curr. Radiopharm. 2015, 8, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Vilchis-Juárez, A.; Ferro-Flores, G.; Santos-Cuevas, C.; Morales-Avila, E.; Ocampo-García, B.; Díaz-Nieto, L.; Luna-Gutiérrez, M.; Jiménez-Mancilla, N.; Pedraza-López, M.; Gómez-Oliván, L. Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J. Biomed. Nanotechnol. 2014, 10, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, Q.; Fu, Y.; Sun, X.; Gong, T.; Zhang, Z. Coadministration of Oligomeric Hyaluronic Acid-Modified Liposomes with Tumor-Penetrating Peptide-iRGD Enhances the Antitumor Efficacy of Doxorubicin against Melanoma. ACS Appl. Mater. Interfaces 2017, 9, 1280–1292. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, T.; Chen, Z.Y.; Chang, C.Y.; Chen, K.H.; Wang, Y.K.; Liu, G.S.; Tseng, C.L. Topical Application of Hyaluronic Acid-RGD Peptide-Coated Gelatin/Epigallocatechin-3 Gallate (EGCG) Nanoparticles Inhibits Corneal Neovascularization Via Inhibition of VEGF Production. Pharmaceutics 2020, 12, 404. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Ding, Z.; Lin, Q.; Zhuo, L.; Liao, W.; Zhao, Y.; Feng, Y.; Chen, Y.; Wei, H.; et al. Dual-radiolabelling of an injectable hyaluronan-tyramine-bisphosphonate hybrid gel for in vitro and in vivo tracking. Carbohydr. Polym. 2020, 231, 115652. [Google Scholar] [CrossRef]
- Zhao, Q.; Geng, H.; Wang, Y.; Gao, Y.; Huang, J.; Wang, Y.; Zhang, J.; Wang, S. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery. ACS Appl. Mater. Interfaces 2014, 6, 20290–20299. [Google Scholar] [CrossRef]
- Trujillo-Nolasco, R.M.; Morales-Avila, E.; Ocampo-García, B.E.; Ferro-Flores, G.; Gibbens-Bandala, B.V.; Escudero-Castellanos, A.; Isaac-Olive, K. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109766. [Google Scholar] [CrossRef]
- Platt, V.M.; Szoka, F.C., Jr. Anticancer therapeutics: Targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol. Pharm. 2008, 5, 474–486. [Google Scholar] [CrossRef]
- Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998, 279, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Ellerby, H.M.; Arap, W.; Ellerby, L.M.; Kain, R.; Andrusiak, R.; Rio, G.D.; Krajewski, S.; Lombardo, C.R.; Rao, R.; Ruoslahti, E.; et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 1999, 5, 1032–1038. [Google Scholar] [CrossRef]
- Hood, J.D.; Bednarski, M.; Frausto, R.; Guccione, S.; Reisfeld, R.A.; Xiang, R.; Cheresh, D.A. Tumor regression by targeted gene delivery to the neovasculature. Science 2002, 296, 2404–2407. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, A.; Gasparri, A.; Gallo-Stampino, C.; Toma, S.; Curnis, F.; Corti, A. Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clin. Cancer Res. 2006, 12, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, P.; Curnis, F.; Longhi, R.; Colombo, G.; Sacchi, A.; Crippa, L.; Protti, M.P.; Ponzoni, M.; Toma, S.; Corti, A. Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Mol. Immunol. 2006, 43, 1509–1518. [Google Scholar] [CrossRef]
- Persigehl, T.; Ring, J.; Bremer, C.; Heindel, W.; Holtmeier, R.; Stypmann, J.; Claesener, M.; Hermann, S.; Schäfers, M.; Zerbst, C.; et al. Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF-NGR using multi-modal imaging. Angiogenesis 2014, 17, 235–246. [Google Scholar] [CrossRef]
- Kessler, T.; Bieker, R.; Padró, T.; Schwöppe, C.; Persigehl, T.; Bremer, C.; Kreuter, M.; Berdel, W.E.; Mesters, R.M. Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin. Cancer Res. 2005, 11, 6317–6324. [Google Scholar] [CrossRef]
- Kessler, T.; Schwöppe, C.; Liersch, R.; Schliemann, C.; Hintelmann, H.; Bieker, R.; Berdel, W.E.; Mesters, R.M. Generation of fusion proteins for selective occlusion of tumor vessels. Curr. Drug Discov. Technol. 2008, 5, 1–8. [Google Scholar] [CrossRef]
- Bieker, R.; Kessler, T.; Schwöppe, C.; Padró, T.; Persigehl, T.; Bremer, C.; Dreischalück, J.; Kolkmeyer, A.; Heindel, W.; Mesters, R.M.; et al. Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: Experimental results and first-in-man experience. Blood 2009, 113, 5019–5027. [Google Scholar] [CrossRef]
- Schwöppe, C.; Kessler, T.; Persigehl, T.; Liersch, R.; Hintelmann, H.; Dreischalück, J.; Ring, J.; Bremer, C.; Heindel, W.; Mesters, R.M.; et al. Tissue-factor fusion proteins induce occlusion of tumor vessels. Thromb. Res. 2010, 125, S143–S150. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, J.; Yang, W. Evaluation of direct rhenium-188-labeled NGR-VEGI for radiotherapy of murine breast tumor 4T1. J. Nucl. Med. 2013, 54, 1399. [Google Scholar]
- Satpati, D.; Korde, A.; Venkatesh, M.; Banerjee, S. Preparation and bioevaluation of a 99mTclabeled chlorambucil analog as a tumor targeting agent. Appl. Radiat. Isot. 2009, 67, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Qiu, L.; Lv, G.; Li, K.; Wang, W.; Liu, G.; Zhao, X.; Wang, S. Synthesis and preliminary biological evaluation of a 99m Tc-chlorambucil derivative as a potential tumor imaging agent. J. Label. Comp. Radiopharm. 2017, 60, 116–123. [Google Scholar] [CrossRef]
- Gilad, Y.; Noy, E.; Senderowitz, H.; Albeck, A.; Firer, M.A.; Gellerman, G. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers 2016, 106, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Z.; Li, X.; Kang, F.; Ma, X.; Yang, W.; Ma, W.; Wang, J. A Uniquely Modified DKL-based Peptide Probe for Positron Emission Tomography Imaging. Curr. Pharm. Des. 2019, 25, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Cichón, T.; Smolarczyk, R.; Matuszczak, S.; Barczyk, M.; Jarosz, M.; Szala, S. D-K6L 9 peptide combination with IL-12 inhibits the recurrence of tumors in mice. Arch. Immunol. Ther. Exp. 2014, 62, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Asoh, S.; Ohta, S. Potent anti-tumor activity of tumor vessel-targeted Bax modified for enhanced apoptosis-inducing activity in a cancer xenograft model. Ann. Oncol. 2008, 19, 29. [Google Scholar]
- Cai, W.; Shin, D.W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S.X.; Gambhir, S.S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano. Lett. 2006, 6, 669–676. [Google Scholar] [CrossRef]
- Cai, W.; Chen, X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 2008, 3, 89–96. [Google Scholar] [CrossRef]
- Oostendorp, M.; Douma, K.; Hackeng, T.M.; Dirksen, A.; Post, M.J.; van Zandvoort, M.A.; Backes, W.H. Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer Res. 2008, 68, 7676–7683. [Google Scholar] [CrossRef]
Investigated Object | Investigated Phenomenon/Initiatives | Radiopharmaceutical | In Vitro and In Vivo Methods | Reference |
---|---|---|---|---|
in vitro: MCF7, MDA-MB-231, MDA-MB-468 and MX-1 cell lines | synthesis and radiolabeling of NGR-based heterodimeric tracer ([68Ga]Ga-NGR-RGD), in vitro biological properties | [68Ga]Ga-NGR-RGD dimer, [68Ga]Ga -RGD monomer, [68Ga]Ga -NGR monomer | in vitro: cellular uptake studies, blocking studies (pretreatment with cold RGD, NGR, RGD+NGR or NGR-RGD peptides) other: Western blot analyses | [37] |
in vivo: female BALB/c nude mice bearing MCF-7, MDA-MB-231, MDA-MB-468 and MX-1 tumors, pulmonary metastases mouse models | synthesis and radiolabeling of NGR-based heterodimeric tracer ([68Ga]Ga-NGR-RGD), in vivo diagnostic potential, APN/CD13 and integrin ανβ3 targeting capability, comparison with monospecific NGR and RGD tracers | [68Ga]Ga-NGR-RGD dimer, [68Ga]Ga -RGD monomer, [68Ga]Ga -NGR monomer | in vivo: microPET/CT acquisition, in vivo blocking studies with non-radiolabeled RGD, NGR, RGD+NGR and NGR-RGD peptides, post imaging biodistribution studies other: immunohistochemical analyses | [37] |
in vitro: SKOV3, ES-2 and OVCAR4 cell lines | in vitro characterization | [68Ga]Ga-NGR-RGD dimer | in vitro cell uptake and blocking studies (pretreatment with non-radioactive NGR-RGD or NGR+RGD) other: Western blot analyses | [83] |
in vivo: SKOV3 and ES-2 tumor bearing female BALB/C nude mice, in vivo abdominal metastatic models of ovarian cancer, muscular inflammation models | in vivo diagnostic performance, APN/CD13 and integrin ανβ3 targeting ability, efficacy in differential diagnostic settings, comparison with [18F]F-FDG | [68Ga]Ga-NGR-RGD dimer, [18F]F-FDG | in vivo PET/CT imaging, ex vivo organ distribution studies other: immunohistochemical analyses | [83] |
BxPC3 tumor-carrying female Ncr nude mice, autochthonous mouse models bearing late stage PanIN lesions (KCER mice) or PDAC (KPC mice), KCH genetically engineered mouse model of PDAC | in vivo imaging behavior of the dimeric RGD-NGR compound, comparison with the monospecific peers and [18F]F-FDG | [68Ga]Ga-RGD-NGR dimer, [64Cu]Cu-RGD-NGR dimer, [68Ga]Ga-RGD monomer, [68Ga]Ga-NGR monomer, [18F]F-FDG | 68Ga-based in vivo microPET/CT imaging (BxPC3 tumorous mice), 64Cu-based microPET/CT imaging (C57BL/6, KC, KPC, KCH mice), [18F]F-FDG PET/CT acquisition (KCH mice) ex vivo biodistribution studies with [64Cu]Cu-RGD-NGR (C57BL/6, KC, KPC, KCH mice), ex vivo blocking experiments with cold RGD and NGR peptides (KC mice) other: H&E staining, Immunofluorescence staining | [85] |
Investigated Object | Initiatives | Molecular Probes | In Vitro and In Vivo Methods | Reference |
---|---|---|---|---|
A549, HT-1080, MDA-MB-231, MCF-10A, HCT-116, NCI-H292 cell lines | development of multi-functionalized probe, in vitro characterization, in vitro cytotoxicity | DOTA/Alexa647-HA7, DOTA/Alexa647-HA100, DOTA/Alexa647-HA100-N, DOTA/Alexa647-HA7-N, HA100, HA7, [177Lu]Lu-DOTA/Alexa647-HA100-N | determination of cell viability by MTS assay, cellular uptake studies applying microscopic observation, in vitro stability, radiochemical purity measured by iTLC | [89] |
NCI-H292- and A549-lung-tumor-carrying BALB/c mice | development of multi-functionalized probe, in vivo and ex vivo characterization, evaluation of CD44 and APN/CD13 targeting capability, therapeutic efficacy | 177-Lutetium-labeled and Alexa Fluor 647-tagged NGR-HA complex ([177Lu]Lu-DOTA/Alexa647-HA100-N) DOTA/Alexa647-HA7-N, DOTA/Alexa647-HA100-N, DOTA/Alexa647-HA100 | ex vivo/in vivo fluorescence imaging (with DOTA/Alexa647-HA7-N, DOTA/Alexa647-HA100-N and DOTA/Alexa647-HA100 for control) in vivo biodistribution ([177Lu]Lu-DOTA/Alexa647-HA100-N) | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trencsényi, G.; Halmos, G.; Képes, Z. Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies. Cancers 2023, 15, 4459. https://doi.org/10.3390/cancers15184459
Trencsényi G, Halmos G, Képes Z. Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies. Cancers. 2023; 15(18):4459. https://doi.org/10.3390/cancers15184459
Chicago/Turabian StyleTrencsényi, György, Gábor Halmos, and Zita Képes. 2023. "Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies" Cancers 15, no. 18: 4459. https://doi.org/10.3390/cancers15184459
APA StyleTrencsényi, G., Halmos, G., & Képes, Z. (2023). Radiolabeled NGR-Based Heterodimers for Angiogenesis Imaging: A Review of Preclinical Studies. Cancers, 15(18), 4459. https://doi.org/10.3390/cancers15184459