The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML)
Abstract
:Simple Summary
Abstract
1. Introduction
2. CXCR1 and CXCR2 Ligands
2.1. Basic Information about CXCR1 and CXCR2 Receptors and Their Ligands
- CXCL1, also known as growth-regulated oncogene (Gro)-α, melanoma growth stimulatory activity (MGSA),
- CXCL2, also known as Gro-β,
- CXCL3, also known as Gro-γ,
- CXCL5, also known as epithelial cell-derived neutrophil-activating factor 78 (ENA-78),
- CXCL6, also known as granulocyte chemoattractant protein 2 (GCP-2),
- CXCL8, also known as IL-8, NAP-1, GCP-1.
2.2. Levels of CXCR2 Ligands in Patients with AML
2.3. Expression of CXCR2 Ligands in AML Cells
2.4. The Level of Expression of CXCR1 and CXCR2 Receptors in AML Cells
2.5. The Association of the Expression Levels of CXCR1 and CXCR2 Receptors along with Their Ligands with Outcomes for Patients with AML
2.6. The Association of CXCR2 Ligands with the Remaining Clinical Characteristics of Patients with AML
2.7. Mechanisms Regulating the Production of CXCR2 Ligands in the Bone Marrow of Patients with AML
2.8. The Significance of CXCR2 Ligands in the Angiogenesis in the Bone Marrow of Patients with AML
2.9. The Significance of CXCR2 Ligands in the Proliferation of AML Cells
2.10. The Significance of CXCR2 Ligands in the Formation of Extramedullary AML
2.11. CXCR2 Ligands Induce Chemoresistance in AML Cells
2.12. Drugs Targeting CXCR2 as Anti-Leukemic Agents
3. CXCR3 Ligands
3.1. Basic Information about CXCR3 and Its Ligands
3.2. Expression of CXCR3 in AML Cells
3.3. Expression of CXCR3 Ligands in AML Cells
3.4. Levels of CXCR3 Ligands in Patients with AML
3.5. The Association of CXCR3 Receptor Expression along with Its Ligands with the Outcomes for Patients with AML
3.6. The Significance of CXCR3 Ligands in the Proliferation of AML Cells
3.7. The Significance of CXCR3 Ligands in the Development of Extramedullary AML
3.8. The Association of CXCR3 Ligands with the Condition of AML Patients
3.9. Conclusions
4. CXCR5 Ligand: CXCL13
5. CXCL14
6. Ligand CXCR6: CXCL16
7. CXCL17
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Datoguia, T.S.; Velloso, E.D.R.P.; Helman, R.; Musacchio, J.G.; Salvino, M.A.; Soares, R.A.; Higashi, M.; Fadel, A.V.; Silva, R.S.A.E.; Hamerschlak, N.; et al. Overall Survival of Brazilian Acute Myeloid Leukemia Patients According to the European LeukemiaNet Prognostic Scoring System: A Cross-Sectional Study. Med. Oncol. 2018, 35, 141. [Google Scholar] [CrossRef] [PubMed]
- Ihlow, J.; Gross, S.; Neuendorff, N.R.; Busack, L.; Herneth, A.; Singh, A.; Schwarz, M.; Flörcken, A.; Anagnostopoulos, I.; Türkmen, S.; et al. Clinical Outcome of Older Adults with Acute Myeloid Leukemia: An Analysis of a Large Tertiary Referral Center over Two Decades. J. Geriatr. Oncol. 2021, 12, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Kulkayeva, G.U.; Kemaykin, V.M.; Kuttymuratov, A.M.; Burlaka, Z.I.; Saparbay, J.Z.; Zhakhina, G.T.; Adusheva, A.A.; Dosayeva, S.D. First Report from a Single Center Retrospective Study in Kazakhstan on Acute Myeloid Leukemia Treatment Outcomes. Sci. Rep. 2021, 11, 24001. [Google Scholar] [CrossRef]
- Adamska, M.; Kowal-Wiśniewska, E.; Przybyłowicz-Chalecka, A.; Barańska, M.; Łojko-Dankowska, A.; Joks, M.; Kanduła, Z.; Jarmuż-Szymczak, M.; Gil, L. Clinical Outcomes of Therapy-Related Acute Myeloid Leukemia: An over 20-Year Single-Center Retrospective Analysis. Pol. Arch. Intern. Med. 2023, 133, 16344. [Google Scholar] [CrossRef]
- Yi, M.; Li, A.; Zhou, L.; Chu, Q.; Song, Y.; Wu, K. The Global Burden and Attributable Risk Factor Analysis of Acute Myeloid Leukemia in 195 Countries and Territories from 1990 to 2017: Estimates Based on the Global Burden of Disease Study 2017. J. Hematol. Oncol. 2020, 13, 72. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A Guide to Chemokines and Their Receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A Web Server for Cancer and Normal Gene Expression Profiling and Interactive Analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; et al. UALCAN: An Update to the Integrated Cancer Data Analysis Platform. Neoplasia 2022, 25, 18–27. [Google Scholar] [CrossRef]
- Uy, G.L.; Rettig, M.P.; Motabi, I.H.; McFarland, K.; Trinkaus, K.M.; Hladnik, L.M.; Kulkarni, S.; Abboud, C.N.; Cashen, A.F.; Stockerl-Goldstein, K.E.; et al. A Phase 1/2 Study of Chemosensitization with the CXCR4 Antagonist Plerixafor in Relapsed or Refractory Acute Myeloid Leukemia. Blood 2012, 119, 3917–3924. [Google Scholar] [CrossRef]
- Kuhne, M.R.; Mulvey, T.; Belanger, B.; Chen, S.; Pan, C.; Chong, C.; Cao, F.; Niekro, W.; Kempe, T.; Henning, K.A.; et al. BMS-936564/MDX-1338: A Fully Human Anti-CXCR4 Antibody Induces Apoptosis in Vitro and Shows Antitumor Activity in Vivo in Hematologic Malignancies. Clin. Cancer Res. 2013, 19, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Cooper, T.M.; Sison, E.A.R.; Baker, S.D.; Li, L.; Ahmed, A.; Trippett, T.; Gore, L.; Macy, M.E.; Narendran, A.; August, K.; et al. A Phase 1 Study of the CXCR4 Antagonist Plerixafor in Combination with High-Dose Cytarabine and Etoposide in Children with Relapsed or Refractory Acute Leukemias or Myelodysplastic Syndrome: A Pediatric Oncology Experimental Therapeutics Investigators’ Consortium Study (POE 10-03). Pediatr. Blood Cancer 2017, 64, e26414. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. Chemokines: A New Classification System and Their Role in Immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Car, B.D.; Baggiolini, M.; Walz, A. Formation of Neutrophil-Activating Peptide 2 from Platelet-Derived Connective-Tissue-Activating Peptide III by Different Tissue Proteinases. Biochem. J. 1991, 275 Pt 3, 581–584. [Google Scholar] [CrossRef]
- Cohen, A.B.; Stevens, M.D.; Miller, E.J.; Atkinson, M.A.; Mullenbach, G. Generation of the Neutrophil-Activating Peptide-2 by Cathepsin G and Cathepsin G-Treated Human Platelets. Am. J. Physiol. 1992, 263, L249–L256. [Google Scholar] [CrossRef] [PubMed]
- Bernhagen, J.; Krohn, R.; Lue, H.; Gregory, J.L.; Zernecke, A.; Koenen, R.R.; Dewor, M.; Georgiev, I.; Schober, A.; Leng, L.; et al. MIF Is a Noncognate Ligand of CXC Chemokine Receptors in Inflammatory and Atherogenic Cell Recruitment. Nat. Med. 2007, 13, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; Li, D.; Xu, P.; Tian, S.; Sun, H.; Liu, H.; Hou, T. Exploring the Binding Mechanisms of MIF to CXCR2 Using Theoretical Approaches. Phys. Chem. Chem. Phys. 2015, 17, 3370–3382. [Google Scholar] [CrossRef]
- Wuyts, A.; Proost, P.; Lenaerts, J.P.; Ben-Baruch, A.; Van Damme, J.; Wang, J.M. Differential Usage of the CXC Chemokine Receptors 1 and 2 by Interleukin-8, Granulocyte Chemotactic Protein-2 and Epithelial-Cell-Derived Neutrophil Attractant-78. Eur. J. Biochem. 1998, 255, 67–73. [Google Scholar] [CrossRef]
- Ahuja, S.K.; Murphy, P.M. The CXC Chemokines Growth-Regulated Oncogene (GRO) Alpha, GRObeta, GROgamma, Neutrophil-Activating Peptide-2, and Epithelial Cell-Derived Neutrophil-Activating Peptide-78 Are Potent Agonists for the Type B, but Not the Type A, Human Interleukin-8 Receptor. J. Biol. Chem. 1996, 271, 20545–20550. [Google Scholar] [CrossRef]
- Loetscher, P.; Seitz, M.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. Both Interleukin-8 Receptors Independently Mediate Chemotaxis. Jurkat Cells Transfected with IL-8R1 or IL-8R2 Migrate in Response to IL-8, GRO Alpha and NAP-2. FEBS Lett. 1994, 341, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Kupper, R.W.; Dewald, B.; Jakobs, K.H.; Baggiolini, M.; Gierschik, P. G-Protein Activation by Interleukin 8 and Related Cytokines in Human Neutrophil Plasma Membranes. Biochem. J. 1992, 282 Pt 2, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, C.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. High- and Low-Affinity Binding of GRO Alpha and Neutrophil-Activating Peptide 2 to Interleukin 8 Receptors on Human Neutrophils. Proc. Natl. Acad. Sci. USA 1992, 89, 10542–10546. [Google Scholar] [CrossRef]
- Moser, B.; Clark-Lewis, I.; Zwahlen, R.; Baggiolini, M. Neutrophil-Activating Properties of the Melanoma Growth-Stimulatory Activity. J. Exp. Med. 1990, 171, 1797–1802. [Google Scholar] [CrossRef] [PubMed]
- Doke, T.; Abedini, A.; Aldridge, D.L.; Yang, Y.-W.; Park, J.; Hernandez, C.M.; Balzer, M.S.; Shrestra, R.; Coppock, G.; Rico, J.M.I.; et al. Single-Cell Analysis Identifies the Interaction of Altered Renal Tubules with Basophils Orchestrating Kidney Fibrosis. Nat. Immunol. 2022, 23, 947–959. [Google Scholar] [CrossRef]
- Strieter, R.M.; Polverini, P.J.; Kunkel, S.L.; Arenberg, D.A.; Burdick, M.D.; Kasper, J.; Dzuiba, J.; Van Damme, J.; Walz, A.; Marriott, D. The Functional Role of the ELR Motif in CXC Chemokine-Mediated Angiogenesis. J. Biol. Chem. 1995, 270, 27348–27357. [Google Scholar] [CrossRef] [PubMed]
- Addison, C.L.; Daniel, T.O.; Burdick, M.D.; Liu, H.; Ehlert, J.E.; Xue, Y.Y.; Buechi, L.; Walz, A.; Richmond, A.; Strieter, R.M. The CXC Chemokine Receptor 2, CXCR2, Is the Putative Receptor for ELR+ CXC Chemokine-Induced Angiogenic Activity. J. Immunol. 2000, 165, 5269–5277. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Wang, N.; Zheng, Y.; Yang, B.; Wang, X.; Zhang, J.; Pan, B.; Wang, Z. Aiduqing Formula Inhibits Breast Cancer Metastasis by Suppressing TAM/CXCL1-Induced Treg Differentiation and Infiltration. Cell Commun. Signal. 2021, 19, 89. [Google Scholar] [CrossRef]
- Lopez-Bujanda, Z.A.; Haffner, M.C.; Chaimowitz, M.G.; Chowdhury, N.; Venturini, N.J.; Patel, R.A.; Obradovic, A.; Hansen, C.S.; Jacków, J.; Maynard, J.P.; et al. Castration-Mediated IL-8 Promotes Myeloid Infiltration and Prostate Cancer Progression. Nat. Cancer 2021, 2, 803–818. [Google Scholar] [CrossRef]
- Yazdani, B.; Hassanshahi, G.; Mousavi, Z.; Ahmadi, Z.; Khorramdelazad, H.; Moradabadi, A.; Shafiepoor, M.; Fatehi, A. CXCL1, CXCL10 and CXCL12 Chemokines Are Variously Expressed in Acute Myeloid Leukemia Patients Prior and Post Bone Marrow Transplantation. Asian Pac. J. Cancer Prev. 2021, 22, 3377–3384. [Google Scholar] [CrossRef]
- Denizot, Y.; Fixe, P.; Liozon, E.; Praloran, V. Serum Interleukin-8 (IL-8) and IL-6 Concentrations in Patients with Hematologic Malignancies. Blood 1996, 87, 4016–4017. [Google Scholar] [CrossRef] [PubMed]
- Kornblau, S.M.; McCue, D.; Singh, N.; Chen, W.; Estrov, Z.; Coombes, K.R. Recurrent Expression Signatures of Cytokines and Chemokines Are Present and Are Independently Prognostic in Acute Myelogenous Leukemia and Myelodysplasia. Blood 2010, 116, 4251–4261. [Google Scholar] [CrossRef] [PubMed]
- Horacek, J.M.; Kupsa, T.; Vasatova, M.; Jebavy, L.; Zak, P. Biochip Array Technology and Evaluation of Serum Levels of Multiple Cytokines and Adhesion Molecules in Patients with Newly Diagnosed Acute Myeloid Leukemia. Exp. Oncol. 2014, 36, 50–51. [Google Scholar]
- Li, Y.; Cheng, J.; Li, Y.; Jiang, Y.; Ma, J.; Li, Q.; Pang, T. CXCL8 Is Associated with the Recurrence of Patients with Acute Myeloid Leukemia and Cell Proliferation in Leukemia Cell Lines. Biochem. Biophys. Res. Commun. 2018, 499, 524–530. [Google Scholar] [CrossRef]
- Islam, M.; Mohamed, E.H.; Esa, E.; Kamaluddin, N.R.; Zain, S.M.; Yusoff, Y.M.; Assenov, Y.; Mohamed, Z.; Zakaria, Z. Circulating Cytokines and Small Molecules Follow Distinct Expression Patterns in Acute Myeloid Leukaemia. Br. J. Cancer 2017, 117, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Correa, B.; Bergua, J.M.; Campos, C.; Gayoso, I.; Arcos, M.J.; Bañas, H.; Morgado, S.; Casado, J.G.; Solana, R.; Tarazona, R. Cytokine Profiles in Acute Myeloid Leukemia Patients at Diagnosis: Survival Is Inversely Correlated with IL-6 and Directly Correlated with IL-10 Levels. Cytokine 2013, 61, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Vijay, V.; Miller, R.; Vue, G.S.; Pezeshkian, M.B.; Maywood, M.; Ast, A.M.; Drusbosky, L.M.; Pompeu, Y.; Salgado, A.D.; Lipten, S.D.; et al. Interleukin-8 Blockade Prevents Activated Endothelial Cell Mediated Proliferation and Chemoresistance of Acute Myeloid Leukemia. Leuk. Res. 2019, 84, 106180. [Google Scholar] [CrossRef]
- Falantes, J.F.; Trujillo, P.; Piruat, J.I.; Calderón, C.; Márquez-Malaver, F.J.; Martín-Antonio, B.; Millán, A.; Gómez, M.; González, J.; Martino, M.L.; et al. Overexpression of GYS1, MIF, and MYC Is Associated with Adverse Outcome and Poor Response to Azacitidine in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2015, 15, 236–244. [Google Scholar] [CrossRef]
- Çelik, H.; Lindblad, K.E.; Popescu, B.; Gui, G.; Goswami, M.; Valdez, J.; DeStefano, C.; Lai, C.; Thompson, J.; Ghannam, J.Y.; et al. Highly Multiplexed Proteomic Assessment of Human Bone Marrow in Acute Myeloid Leukemia. Blood Adv. 2020, 4, 367–379. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Ryningen, A.; Olsnes, A.M.; Stordrange, L.; Øyan, A.M.; Kalland, K.H.; Gjertsen, B.T. Subclassification of Patients with Acute Myelogenous Leukemia Based on Chemokine Responsiveness and Constitutive Chemokine Release by Their Leukemic Cells. Haematologica 2007, 92, 332–341. [Google Scholar] [CrossRef]
- Reikvam, H.; Brenner, A.K.; Hagen, K.M.; Liseth, K.; Skrede, S.; Hatfield, K.J.; Bruserud, Ø. The Cytokine-Mediated Crosstalk between Primary Human Acute Myeloid Cells and Mesenchymal Stem Cells Alters the Local Cytokine Network and the Global Gene Expression Profile of the Mesenchymal Cells. Stem. Cell Res. 2015, 15, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Schinke, C.; Giricz, O.; Li, W.; Shastri, A.; Gordon, S.; Barreyro, L.; Bhagat, T.; Bhattacharyya, S.; Ramachandra, N.; Bartenstein, M.; et al. IL8-CXCR2 Pathway Inhibition as a Therapeutic Strategy against MDS and AML Stem Cells. Blood 2015, 125, 3144–3152. [Google Scholar] [CrossRef] [PubMed]
- Metzeler, K.H.; Hummel, M.; Bloomfield, C.D.; Spiekermann, K.; Braess, J.; Sauerland, M.-C.; Heinecke, A.; Radmacher, M.; Marcucci, G.; Whitman, S.P.; et al. An 86-Probe-Set Gene-Expression Signature Predicts Survival in Cytogenetically Normal Acute Myeloid Leukemia. Blood 2008, 112, 4193–4201. [Google Scholar] [CrossRef] [PubMed]
- Katsumura, K.R.; Ong, I.M.; DeVilbiss, A.W.; Sanalkumar, R.; Bresnick, E.H. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells. Cell Rep. 2016, 16, 2428–2441. [Google Scholar] [CrossRef]
- de Bont, E.S.; Rosati, S.; Jacobs, S.; Kamps, W.A.; Vellenga, E. Increased Bone Marrow Vascularization in Patients with Acute Myeloid Leukaemia: A Possible Role for Vascular Endothelial Growth Factor. Br. J. Haematol. 2001, 113, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Tobler, A.; Moser, B.; Dewald, B.; Geiser, T.; Studer, H.; Baggiolini, M.; Fey, M.F. Constitutive Expression of Interleukin-8 and Its Receptor in Human Myeloid and Lymphoid Leukemia. Blood 1993, 82, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Kuett, A.; Rieger, C.; Perathoner, D.; Herold, T.; Wagner, M.; Sironi, S.; Sotlar, K.; Horny, H.-P.; Deniffel, C.; Drolle, H.; et al. IL-8 as Mediator in the Microenvironment-Leukaemia Network in Acute Myeloid Leukaemia. Sci. Rep. 2015, 5, 18411. [Google Scholar] [CrossRef]
- Vinante, F.; Rigo, A.; Vincenzi, C.; Ricetti, M.M.; Marrocchella, R.; Chilosi, M.; Cassatella, M.A.; Bonazzi, L.; Pizzolo, G. IL-8 MRNA Expression and IL-8 Production by Acute Myeloid Leukemia Cells. Leukemia 1993, 7, 1552–1556. [Google Scholar]
- Cignetti, A.; Vallario, A.; Roato, I.; Circosta, P.; Strola, G.; Scielzo, C.; Allione, B.; Garetto, L.; Caligaris-Cappio, F.; Ghia, P. The Characterization of Chemokine Production and Chemokine Receptor Expression Reveals Possible Functional Cross-Talks in AML Blasts with Monocytic Differentiation. Exp. Hematol. 2003, 31, 495–503. [Google Scholar] [CrossRef]
- Chan, E.M.; Chan, R.J.; Comer, E.M.; Goulet, R.J.; Crean, C.D.; Brown, Z.D.; Fruehwald, A.M.; Yang, Z.; Boswell, H.S.; Nakshatri, H.; et al. MOZ and MOZ-CBP Cooperate with NF-KappaB to Activate Transcription from NF-KappaB-Dependent Promoters. Exp. Hematol. 2007, 35, 1782–1792. [Google Scholar] [CrossRef]
- Lu, C.; Zhu, J.; Chen, X.; Hu, Y.; Xie, W.; Yao, J.; Huang, S. Risk Stratification in Acute Myeloid Leukemia Using CXCR Gene Signatures: A Bioinformatics Analysis. Front. Oncol. 2020, 10, 584766. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, Z.; Li, X.; Huo, Z. High CXCR2 Expression Predicts Poor Prognosis in Adult Patients with Acute Myeloid Leukemia. Ther. Adv. Hematol. 2020, 11, 2040620720958586. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-M.; Zhang, H.-M.; Yang, B.; Lu, X.-C.; He, P.-F. Analysis of Unfavorable Prognosis Gene Markers in Patients with Acute Myeloid Leukemia by Multiomics. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2019, 27, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Gu, M.; Sun, J.; Cong, L. A-Kinase Interacting Protein 1 Might Serve as a Novel Biomarker for Worse Prognosis through the Interaction of Chemokine (C-X-C Motif) Ligand 1/Chemokine (C-X-C Motif) Ligand 2 in Acute Myeloid Leukemia. J. Clin. Lab. Anal. 2020, 34, e23052. [Google Scholar] [CrossRef]
- Tyner, J.W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al. Functional Genomic Landscape of Acute Myeloid Leukaemia. Nature 2018, 562, 526–531. [Google Scholar] [CrossRef]
- Li, L.; Zhao, L.; Man, J.; Liu, B. CXCL2 Benefits Acute Myeloid Leukemia Cells in Hypoxia. Int. J. Lab. Hematol. 2021, 43, 1085–1092. [Google Scholar] [CrossRef]
- Wang, J.; Uddin, M.N.; Hao, J.-P.; Chen, R.; Xiang, Y.-X.; Xiong, D.-Q.; Wu, Y. Identification of Potential Novel Prognosis-Related Genes Through Transcriptome Sequencing, Bioinformatics Analysis, and Clinical Validation in Acute Myeloid Leukemia. Front. Genet. 2021, 12, 723001. [Google Scholar] [CrossRef]
- Merle, M.; Fischbacher, D.; Liepert, A.; Grabrucker, C.; Kroell, T.; Kremser, A.; Dreyssig, J.; Freudenreich, M.; Schuster, F.; Borkhardt, A.; et al. Serum Chemokine-Release Profiles in AML-Patients Might Contribute to Predict the Clinical Course of the Disease. Immunol. Investig. 2020, 49, 365–385. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.; Liu, S.; Jiang, Y.; Ma, J.; Wan, L.; Li, Q.; Pang, T. CXCL8 Derived from Mesenchymal Stromal Cells Supports Survival and Proliferation of Acute Myeloid Leukemia Cells through the PI3K/AKT Pathway. FASEB J. 2019, 33, 4755–4764. [Google Scholar] [CrossRef]
- Hatfield, K.J.; Bedringsaas, S.L.; Ryningen, A.; Gjertsen, B.T.; Bruserud, O. Hypoxia Increases HIF-1α Expression and Constitutive Cytokine Release by Primary Human Acute Myeloid Leukaemia Cells. Eur. Cytokine Netw. 2010, 21, 154–164. [Google Scholar] [CrossRef]
- Abdul-Aziz, A.M.; Shafat, M.S.; Sun, Y.; Marlein, C.R.; Piddock, R.E.; Robinson, S.D.; Edwards, D.R.; Zhou, Z.; Collins, A.; Bowles, K.M.; et al. HIF1α Drives Chemokine Factor Pro-Tumoral Signaling Pathways in Acute Myeloid Leukemia. Oncogene 2018, 37, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Lai, Y.-S.; Tsai, H.-J.; Kuo, C.-C.; Yen, B.L.; Yeh, S.-P.; Sun, H.S.; Hung, W.-C. The Oncometabolite R-2-Hydroxyglutarate Activates NF-ΚB-Dependent Tumor-Promoting Stromal Niche for Acute Myeloid Leukemia Cells. Sci. Rep. 2016, 6, 32428. [Google Scholar] [CrossRef] [PubMed]
- Brenner, A.K.; Nepstad, I.; Bruserud, Ø. Mesenchymal Stem Cells Support Survival and Proliferation of Primary Human Acute Myeloid Leukemia Cells through Heterogeneous Molecular Mechanisms. Front. Immunol. 2017, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi Najafabadi, M.; Shamsasenjan, K.; Akbarzadehlaleh, P. The Angiogenic Chemokines Expression Profile of Myeloid Cell Lines Co-Cultured with Bone Marrow-Derived Mesenchymal Stem Cells. Cell J. 2018, 20, 19–24. [Google Scholar] [CrossRef]
- Abdul-Aziz, A.M.; Shafat, M.S.; Mehta, T.K.; Di Palma, F.; Lawes, M.J.; Rushworth, S.A.; Bowles, K.M. MIF-Induced Stromal PKCβ/IL8 Is Essential in Human Acute Myeloid Leukemia. Cancer Res. 2017, 77, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Bruserud, Ø.; Ryningen, A.; Wergeland, L.; Glenjen, N.I.; Gjertsen, B.T. Osteoblasts Increase Proliferation and Release of Pro-Angiogenic Interleukin 8 by Native Human Acute Myelogenous Leukemia Blasts. Haematologica 2004, 89, 391–402. [Google Scholar]
- Chen, T.; Zhang, G.; Kong, L.; Xu, S.; Wang, Y.; Dong, M. Leukemia-Derived Exosomes Induced IL-8 Production in Bone Marrow Stromal Cells to Protect the Leukemia Cells against Chemotherapy. Life Sci. 2019, 221, 187–195. [Google Scholar] [CrossRef]
- Padró, T.; Ruiz, S.; Bieker, R.; Bürger, H.; Steins, M.; Kienast, J.; Büchner, T.; Berdel, W.E.; Mesters, R.M. Increased Angiogenesis in the Bone Marrow of Patients with Acute Myeloid Leukemia. Blood 2000, 95, 2637–2644. [Google Scholar] [CrossRef]
- de Bont, E.S.; Vellenga, E.; Molema, G.; van Wering, E.; de Leij, L.F.; Kamps, W.A. A Possible Role for Spontaneous Interleukin-8 Production by Acute Myeloid Leukemic Cells in Angiogenesis Related Processes: Work in Progress. Med. Pediatr. Oncol. 2001, 37, 511–517. [Google Scholar] [CrossRef]
- Hatfield, K.J.; Evensen, L.; Reikvam, H.; Lorens, J.B.; Bruserud, Ø. Soluble Mediators Released by Acute Myeloid Leukemia Cells Increase Capillary-like Networks. Eur. J. Haematol. 2012, 89, 478–490. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, J.; Ma, D.; Liu, N.; Wu, H.; Yu, S.; Sun, X.; Tse, W.; Ji, C. Cross-Talk between Leukemic and Endothelial Cells Promotes Angiogenesis by VEGF Activation of the Notch/Dll4 Pathway. Carcinogenesis 2013, 34, 667–677. [Google Scholar] [CrossRef]
- Hatfield, K.; Øyan, A.M.; Ersvaer, E.; Kalland, K.-H.; Lassalle, P.; Gjertsen, B.T.; Bruserud, Ø. Primary Human Acute Myeloid Leukaemia Cells Increase the Proliferation of Microvascular Endothelial Cells through the Release of Soluble Mediators. Br. J. Haematol. 2009, 144, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, J.-N.; Stölzel, F.; Kunadt, D.; Röllig, C.; Stasik, S.; Wagenführ, L.; Jöhrens, K.; Kuithan, F.; Krämer, A.; Scholl, S.; et al. Molecular Profiling and Clinical Implications of Patients with Acute Myeloid Leukemia and Extramedullary Manifestations. J. Hematol. Oncol. 2022, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the Human Tissue-Specific Expression by Genome-Wide Integration of Transcriptomics and Antibody-Based Proteomics. Mol. Cell Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, L.; Feng, Y.; Khadka, B.; Fang, Z.; Liu, J. HDAC8 Promotes Daunorubicin Resistance of Human Acute Myeloid Leukemia Cells via Regulation of IL-6 and IL-8. Biol. Chem. 2021, 402, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Tadros, V.; Hiramoto, B.; Leeper, K.; Hino, C.; Xiao, J.; Pham, B.; Kim, D.H.; Reeves, M.E.; Chen, C.-S.; et al. Targeting TKI-Activated NFKB2-MIF/CXCLs-CXCR2 Signaling Pathways in FLT3 Mutated Acute Myeloid Leukemia Reduced Blast Viability. Biomedicines 2022, 10, 1038. [Google Scholar] [CrossRef]
- Goda, A.E.; Koyama, M.; Sowa, Y.; Elokely, K.M.; Yoshida, T.; Kim, B.-Y.; Sakai, T. Molecular Mechanisms of the Antitumor Activity of SB225002: A Novel Microtubule Inhibitor. Biochem. Pharmacol. 2013, 85, 1741–1752. [Google Scholar] [CrossRef]
- Berchiche, Y.A.; Sakmar, T.P. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Mol. Pharmacol. 2016, 90, 483–495. [Google Scholar] [CrossRef]
- Lasagni, L.; Francalanci, M.; Annunziato, F.; Lazzeri, E.; Giannini, S.; Cosmi, L.; Sagrinati, C.; Mazzinghi, B.; Orlando, C.; Maggi, E.; et al. An Alternatively Spliced Variant of CXCR3 Mediates the Inhibition of Endothelial Cell Growth Induced by IP-10, Mig, and I-TAC, and Acts as Functional Receptor for Platelet Factor 4. J. Exp. Med. 2003, 197, 1537–1549. [Google Scholar] [CrossRef]
- Qin, S.; Rottman, J.B.; Myers, P.; Kassam, N.; Weinblatt, M.; Loetscher, M.; Koch, A.E.; Moser, B.; Mackay, C.R. The Chemokine Receptors CXCR3 and CCR5 Mark Subsets of T Cells Associated with Certain Inflammatory Reactions. J. Clin. Investig. 1998, 101, 746–754. [Google Scholar] [CrossRef]
- Olsnes, A.M.; Motorin, D.; Ryningen, A.; Zaritskey, A.Y.; Bruserud, Ø. T Lymphocyte Chemotactic Chemokines in Acute Myelogenous Leukemia (AML): Local Release by Native Human AML Blasts and Systemic Levels of CXCL10 (IP-10), CCL5 (RANTES) and CCL17 (TARC). Cancer Immunol. Immunother. 2006, 55, 830–840. [Google Scholar] [CrossRef]
- Schwartz, G.N.; Liao, F.; Gress, R.E.; Farber, J.M. Suppressive Effects of Recombinant Human Monokine Induced by IFN-Gamma (RHuMig) Chemokine on the Number of Committed and Primitive Hemopoietic Progenitors in Liquid Cultures of CD34+ Human Bone Marrow Cells. J. Immunol. 1997, 159, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Alsobhi, E.; Farahat, F.; Daghistani, M.; Awad, K.; Al-Zahran, O.; Al-Saiari, A.; Koshak, F. Overall Survival of Adult Acute Myeloid Leukemia Based on Cytogenetic and Molecular Abnormalities during 5 Years in a Single Center Study. Saudi Med. J. 2019, 40, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Mei, C.; Ren, Y.; Zhou, X.; Ye, L.; Ma, L.; Luo, Y.; Lin, P.; Xu, W.; Lu, C.; Yang, H.; et al. Clinical and Biological Characteristics of Acute Myeloid Leukemia with 20-29% Blasts: A Retrospective Single-Center Study. Leuk. Lymphoma 2019, 60, 1136–1145. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, A.; Zhao, H.; Lu, P.; Cheng, H.; Dong, F.; Gong, Y.; Ma, S.; Zheng, Y.; Zhang, H.; et al. Leukemia Cell Infiltration Causes Defective Erythropoiesis Partially through MIP-1α/CCL3. Leukemia 2016, 30, 1897–1908. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, B.; Fan, W.; Zhao, Q.; Yang, L.; Xin, W.; Fu, D. Identification of Prognostic Genes in the Acute Myeloid Leukemia Microenvironment. Aging 2019, 11, 10557–10580. [Google Scholar] [CrossRef] [PubMed]
- Foss, B.; Ulvestad, E.; Bruserud, Ø. Platelet-Derived Growth Factor (PDGF) in Human Acute Myelogenous Leukemia: PDGF Receptor Expression, Endogenous PDGF Release and Responsiveness to Exogenous PDGF Isoforms by in Vitro Cultured Acute Myelogenous Leukemia Blasts. Eur. J. Haematol. 2001, 67, 267–278. [Google Scholar] [CrossRef]
- Sarris, A.H.; Talpaz, M.; Deisseroth, A.B.; Estrov, Z. Human Recombinant Interferon-Inducible Protein-10 Inhibits the Proliferation of Normal and Acute Myelogenous Leukemia Progenitors. Leukemia 1996, 10, 757–765. [Google Scholar]
- Sachdev, R.; George, T.I.; Schwartz, E.J.; Sundram, U.N. Discordant Immunophenotypic Profiles of Adhesion Molecules and Cytokines in Acute Myeloid Leukemia Involving Bone Marrow and Skin. Am. J. Clin. Pathol. 2012, 138, 290–299. [Google Scholar] [CrossRef]
- Fung, F.Y.; Li, M.; Breunis, H.; Timilshina, N.; Minden, M.D.; Alibhai, S.M.H. Correlation between Cytokine Levels and Changes in Fatigue and Quality of Life in Patients with Acute Myeloid Leukemia. Leuk. Res. 2013, 37, 274–279. [Google Scholar] [CrossRef]
- Legler, D.F.; Loetscher, M.; Roos, R.S.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. B Cell-Attracting Chemokine 1, a Human CXC Chemokine Expressed in Lymphoid Tissues, Selectively Attracts B Lymphocytes via BLR1/CXCR5. J. Exp. Med. 1998, 187, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Jenh, C.H.; Cox, M.A.; Hipkin, W.; Lu, T.; Pugliese-Sivo, C.; Gonsiorek, W.; Chou, C.C.; Narula, S.K.; Zavodny, P.J. Human B Cell-Attracting Chemokine 1 (BCA-1; CXCL13) Is an Agonist for the Human CXCR3 Receptor. Cytokine 2001, 15, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Ansel, K.M.; Harris, R.B.S.; Cyster, J.G. CXCL13 Is Required for B1 Cell Homing, Natural Antibody Production, and Body Cavity Immunity. Immunity 2002, 16, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Breitfeld, D.; Ohl, L.; Kremmer, E.; Ellwart, J.; Sallusto, F.; Lipp, M.; Förster, R. Follicular B Helper T Cells Express CXC Chemokine Receptor 5, Localize to B Cell Follicles, and Support Immunoglobulin Production. J. Exp. Med. 2000, 192, 1545–1552. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Chen, C.-J.; Gong, C.-L.; Liu, S.-C.; Chen, P.-C.; Huang, C.-C.; Hu, S.-L.; Wang, S.-W.; Tang, C.-H. CXCL13/CXCR5 Axis Facilitates Endothelial Progenitor Cell Homing and Angiogenesis during Rheumatoid Arthritis Progression. Cell Death Dis. 2021, 12, 846. [Google Scholar] [CrossRef] [PubMed]
- Spinetti, G.; Camarda, G.; Bernardini, G.; Romano Di Peppe, S.; Capogrossi, M.C.; Napolitano, M. The Chemokine CXCL13 (BCA-1) Inhibits FGF-2 Effects on Endothelial Cells. Biochem. Biophys. Res. Commun. 2001, 289, 19–24. [Google Scholar] [CrossRef]
- Kurth, I.; Willimann, K.; Schaerli, P.; Hunziker, T.; Clark-Lewis, I.; Moser, B. Monocyte Selectivity and Tissue Localization Suggests a Role for Breast and Kidney-Expressed Chemokine (BRAK) in Macrophage Development. J. Exp. Med. 2001, 194, 855–861. [Google Scholar] [CrossRef]
- Sleeman, M.A.; Fraser, J.K.; Murison, J.G.; Kelly, S.L.; Prestidge, R.L.; Palmer, D.J.; Watson, J.D.; Kumble, K.D. B Cell- and Monocyte-Activating Chemokine (BMAC), a Novel Non-ELR Alpha-Chemokine. Int. Immunol. 2000, 12, 677–689. [Google Scholar] [CrossRef]
- Shurin, G.V.; Ferris, R.L.; Tourkova, I.L.; Perez, L.; Lokshin, A.; Balkir, L.; Collins, B.; Chatta, G.S.; Shurin, M.R. Loss of New Chemokine CXCL14 in Tumor Tissue Is Associated with Low Infiltration by Dendritic Cells (DC), While Restoration of Human CXCL14 Expression in Tumor Cells Causes Attraction of DC Both in Vitro and in Vivo. J. Immunol. 2005, 174, 5490–5498. [Google Scholar] [CrossRef]
- Tanegashima, K.; Takahashi, R.; Nuriya, H.; Iwase, R.; Naruse, N.; Tsuji, K.; Shigenaga, A.; Otaka, A.; Hara, T. CXCL14 Acts as a Specific Carrier of CpG DNA into Dendritic Cells and Activates Toll-like Receptor 9-Mediated Adaptive Immunity. EBioMedicine 2017, 24, 247–256. [Google Scholar] [CrossRef]
- Chang, T.-M.; Chiang, Y.-C.; Lee, C.-W.; Lin, C.-M.; Fang, M.-L.; Chi, M.-C.; Liu, J.-F.; Kou, Y.R. CXCL14 Promotes Metastasis of Non-Small Cell Lung Cancer through ACKR2-Depended Signaling Pathway. Int. J. Biol. Sci. 2023, 19, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.-T.; Chiang, J.-Y.; Wang, H.-L.; Lei, F.-J.; Huang, Y.-C.; Wang, C.-C.; Cho, D.-Y.; Hsieh, C.-H. Hypoxia-Induced CXC Chemokine Ligand 14 Expression Drives Protumorigenic Effects through Activation of Insulin-like Growth Factor-1 Receptor Signaling in Glioblastoma. Cancer Sci. 2023, 114, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Weng, X.; Wang, L.; Hao, M.; Li, Y.; Hou, L.; Liang, Y.; Wu, T.; Yao, M.; Lin, G.; et al. HIC1 Deletion Promotes Breast Cancer Progression by Activating Tumor Cell/Fibroblast Crosstalk. J. Clin. Investig. 2018, 128, 5235–5250. [Google Scholar] [CrossRef] [PubMed]
- Witte, A.; Rohlfing, A.-K.; Dannenmann, B.; Dicenta, V.; Nasri, M.; Kolb, K.; Sudmann, J.; Castor, T.; Rath, D.; Borst, O.; et al. The Chemokine CXCL14 Mediates Platelet Function and Migration via Direct Interaction with CXCR4. Cardiovasc. Res. 2021, 117, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.J.; McCully, M.L.; Martínez-Muñoz, L.; Santiago, C.; Wheeldon, J.; Caucheteux, S.; Thelen, S.; Cecchinato, V.; Laufer, J.M.; Purvanov, V.; et al. Epithelial Chemokine CXCL14 Synergizes with CXCL12 via Allosteric Modulation of CXCR4. FASEB J. 2017, 31, 3084–3097. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, Q.; Wu, X.; Yu, Y.; Zhang, H. Effect of Chemokine CXCL14 on in Vitro Angiogenesis of Human Hepatocellular Carcinoma Cells. Arch. Physiol. Biochem. 2022, 128, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Matloubian, M.; David, A.; Engel, S.; Ryan, J.E.; Cyster, J.G. A Transmembrane CXC Chemokine Is a Ligand for HIV-Coreceptor Bonzo. Nat. Immunol. 2000, 1, 298–304. [Google Scholar] [CrossRef]
- Koenen, A.; Babendreyer, A.; Schumacher, J.; Pasqualon, T.; Schwarz, N.; Seifert, A.; Deupi, X.; Ludwig, A.; Dreymueller, D. The DRF Motif of CXCR6 as Chemokine Receptor Adaptation to Adhesion. PLoS ONE 2017, 12, e0173486. [Google Scholar] [CrossRef]
- Abel, S.; Hundhausen, C.; Mentlein, R.; Schulte, A.; Berkhout, T.A.; Broadway, N.; Hartmann, D.; Sedlacek, R.; Dietrich, S.; Muetze, B.; et al. The Transmembrane CXC-Chemokine Ligand 16 Is Induced by IFN-Gamma and TNF-Alpha and Shed by the Activity of the Disintegrin-like Metalloproteinase ADAM10. J. Immunol. 2004, 172, 6362–6372. [Google Scholar] [CrossRef]
- Gutwein, P.; Abdel-Bakky, M.S.; Schramme, A.; Doberstein, K.; Kämpfer-Kolb, N.; Amann, K.; Hauser, I.A.; Obermüller, N.; Bartel, C.; Abdel-Aziz, A.-A.H.; et al. CXCL16 Is Expressed in Podocytes and Acts as a Scavenger Receptor for Oxidized Low-Density Lipoprotein. Am. J. Pathol. 2009, 174, 2061–2072. [Google Scholar] [CrossRef]
- Sharron, M.; Pöhlmann, S.; Price, K.; Lolis, E.; Tsang, M.; Kirchhoff, F.; Doms, R.W.; Lee, B. Expression and Coreceptor Activity of STRL33/Bonzo on Primary Peripheral Blood Lymphocytes. Blood 2000, 96, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Germanov, E.; Veinotte, L.; Cullen, R.; Chamberlain, E.; Butcher, E.C.; Johnston, B. Critical Role for the Chemokine Receptor CXCR6 in Homeostasis and Activation of CD1d-Restricted NKT Cells. J. Immunol. 2008, 181, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.; Murayama, T.; Arai, H.; Yamauchi, R.; Tanaka, M.; Shimaoka, T.; Yonehara, S.; Kume, N.; Yokode, M.; Kita, T. CXCL16 Is a Novel Angiogenic Factor for Human Umbilical Vein Endothelial Cells. Biochem. Biophys. Res. Commun. 2005, 331, 1295–1300. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, R.; Lin, S.; Bai, X.; Zhang, L.; Yuan, S.; Sun, L. CXCL16 Induces Angiogenesis in Autocrine Signaling Pathway Involving Hypoxia-Inducible Factor 1α in Human Umbilical Vein Endothelial Cells. Oncol. Rep. 2016, 35, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, R.J.; Azadniv, M.; Guo, N.; Acklin, J.; Lacagnina, K.; Coppage, M.; Liesveld, J.L. Phenotypic, Genotypic, and Functional Characterization of Normal and Acute Myeloid Leukemia-Derived Marrow Endothelial Cells. Exp. Hematol. 2016, 44, 378–389. [Google Scholar] [CrossRef]
- Maravillas-Montero, J.L.; Burkhardt, A.M.; Hevezi, P.A.; Carnevale, C.D.; Smit, M.J.; Zlotnik, A. Cutting Edge: GPR35/CXCR8 Is the Receptor of the Mucosal Chemokine CXCL17. J. Immunol. 2015, 194, 29–33. [Google Scholar] [CrossRef]
- Pisabarro, M.T.; Leung, B.; Kwong, M.; Corpuz, R.; Frantz, G.D.; Chiang, N.; Vandlen, R.; Diehl, L.J.; Skelton, N.; Kim, H.S.; et al. Cutting Edge: Novel Human Dendritic Cell- and Monocyte-Attracting Chemokine-like Protein Identified by Fold Recognition Methods. J. Immunol. 2006, 176, 2069–2073. [Google Scholar] [CrossRef]
- Lee, W.-Y.; Wang, C.-J.; Lin, T.-Y.; Hsiao, C.-L.; Luo, C.-W. CXCL17, an Orphan Chemokine, Acts as a Novel Angiogenic and Anti-Inflammatory Factor. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E32–E40. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y.; Wang, S.; Huang, X.; Pan, H.; Li, M. Overexpression of VCC-1 Gene in Human Hepatocellular Carcinoma Cells Promotes Cell Proliferation and Invasion. Acta Biochim. Biophys. Sin. 2009, 41, 631–637. [Google Scholar] [CrossRef]
- Guo, Y.J.; Zhou, Y.J.; Yang, X.L.; Shao, Z.M.; Ou, Z.L. The Role and Clinical Significance of the CXCL17-CXCR8 (GPR35) Axis in Breast Cancer. Biochem. Biophys. Res. Commun. 2017, 493, 1159–1167. [Google Scholar] [CrossRef]
- Wang, J.; Simonavicius, N.; Wu, X.; Swaminath, G.; Reagan, J.; Tian, H.; Ling, L. Kynurenic Acid as a Ligand for Orphan G Protein-Coupled Receptor GPR35. J. Biol. Chem. 2006, 281, 22021–22028. [Google Scholar] [CrossRef] [PubMed]
Receptor | Ligands | Notes, Properties |
---|---|---|
CXCR1 (CD181) | CXCL6, CXCL8, at high concentrations also CXCL1, CXCL2, CXCL3, CXCL5, CXCL7 | The axis is significant in infiltration by neutrophils |
CXCR2 (CD182) | CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8, MIF | Pro-angiogenic properties; axis significant in infiltration by neutrophils |
CXCR3 (CD183) | PF-4, CXCL9, CXCL10, CXCL11 | Anti-angiogenic properties; the crucial axis in CD4+ and CD8+ T cell infiltration; CXCR3 exists in three isoforms generated by alternative splicing—CXCR3A, CXCR3B, and CXCR3alt. All CXCR3 ligands activate all three isoforms of this receptor except for platelet factor-4 (PF-4), which activates only CXCR3B |
CXCR4 (CD184) | CXCL12 | Pro-angiogenic properties; the crucial axis in the functioning of bone marrow |
CXCR3 (CD183), CXCR5 (CD185) | CXCL13 | The crucial axis in the functioning of B cells |
CXCR4 (CD184), atypical chemokine receptor 2 (ACKR2), G protein-coupled receptor (GPR)85, insulin-like growth factor-1 receptor (IGF-1R) | CXCL14 | Anti-angiogenic properties. The chemokine may be crucial for B cells, macrophages, and dendritic cells. Positive allosteric modulator for CXCR4 |
CXCR6 (CD186) | CXCL16 | Pro-angiogenic properties. CXCL16 exists in two forms: membrane-bound CXCL16 and soluble CXCL16 released by proteases. The membrane-bound form of CXCL16 can bind to CXCR6, activating CXCR6 and promoting cell adhesion. The crucial axis in the functioning of monocytes, macrophages, B cells, CD4+ and CD8+ T cells, dendritic cells, natural killer T (NKT) cells, and natural killer (NK) cells |
GPR35 | CXCL17 | Pro-angiogenic properties. The crucial chemokine in the functioning of monocytes and dendritic cells |
CXCR7 | CXCL11, CXCL12 | CXCR7 forms a heterodimer with CXCR4, thus functioning together with the CXCR4–CXCL12 axis |
Trait/Ligand CXCR2 Analyzed | CXCL1 | CXCL2 | CXCL3 | CXCL5 |
---|---|---|---|---|
Expression levels in patients with AML | Higher blood levels in AML patients. Higher levels in the bone marrow | Higher expression in bone marrow | Higher expression in bone marrow | No available studies |
Expression in AML cells | In 1/3 of AML patients, AML cells secrete large amounts of CXCL1. However, another study indicates that the expression of this chemokine in AML cells is low | The expression of CXCL2 in AML cells may be low compared to the expression of other CXCR2 ligands | The expression of CXCL3 in AML cells may be low compared to the expression of other CXCR2 ligands | In 1/3 of AML patients, AML cells secrete large amounts of CXCL5. However, another study indicates that the expression of this chemokine in AML cells is low |
Expression level due to FAB classification | Independent of FAB classification | Independent of FAB classification | Expression in AML cells with FAB M0–M2 phenotype is higher than in AML cells with FAB M4–M5 phenotype | Independent of FAB classification |
Dependence of expression level on a given mutation | ||||
Impact on prognosis | Higher expression in AML cells is associated with a worse prognosis | Higher expression in AML cells is associated with a poorer prognosis. Notably, higher CXCL2 expression in AML cells in adult patients with cytogenetically normal AML-M5 is associated with poorer prognoses | Higher expression in AML cells is associated with a worse prognosis | Higher expression in AML cells is associated with a worse prognosis |
Induction of chemoresistance | The chemokine causes resistance of AML cells to gilteritinib | No data | No data | The chemokine causes resistance of AML cells to gilteritinib |
Association with extramedullary AML | No data | No data | No data | No data |
Effects on bone marrow microvessel density | No data | No data | No data | No data |
Trait/ligand CXCR2 analyzed | CXCL6 | PPBP | CXCL8 | MIF |
Expression levels in patients with AML | No available studies | No available studies | Higher blood levels in AML patients, especially those younger than 65. Higher levels in the bone marrow | Higher levels in the blood, and higher expression in bone marrow relative to healthy individuals |
Expression in AML cells | In half of AML patients, AML cells produce low amounts of CXCL6 | High expression | In most patients, AML cells produce large amounts of CXCL8 | High expression |
Expression level due to FAB classification | Independent of FAB classification | The highest expression in AML cells with FAB M7 phenotype | Depending on the study, the highest expression in AML with FAB M0 phenotype, lowest in FAB M5, or expression level does not differ by the FAB classification | Lowest in AML with FAB M0 phenotype, highest in AML with FAB M7 phenotype |
Dependence of expression level on a given mutation | Higher expression with FLT3-ITD mutation. Higher expression at translocation t(8;16)(p11;p13) with presence of MOZ-CBP fusion gene | |||
Impact on prognosis | No studies available on the association of the expression of this chemokine with prognosis | Higher expression in AML cells is associated with a worse prognosis | Higher expression of this chemokine in AML cells is associated with poorer prognoses, but only in cases of AML without FAB M3 | Higher expression in AML cells is associated with a worse prognosis |
Induction of chemoresistance | No data | No data | The chemokine induces resistance in AML cells to cytarabine, etoposide, gilteritinib, and daunorubicin. Higher level of CXCL8 in the blood of AML patients is indicative of etoposide resistance | The chemokine causes resistance of AML cells to gilteritinib |
Association with extramedullary AML | No data | No data | No data | No data |
Effects on bone marrow microvessel density | No data | No data | Association of CXCL8 with angiogenesis in the bone marrow of patients with AML | No data |
Trait/Receptor Analyzed | CXCR1 | CXCR2 |
---|---|---|
Expression in AML cells | Very low compared to other chemokine receptors. | High compared to other chemokine receptors. CXCR2 expression does not differ between CD34+ AML cells and CD34− AML cells. |
Expression level due to FAB classification | The highest expression is in AML cells with the FAB M5 phenotype. | The highest expression is in AML cells with the FAB M4–M5 phenotype, while the lowest is in the FAB M3 phenotype. |
Dependence of expression level on a given mutation | Higher in medium/high-risk group patients than in the low-risk group. | Higher in medium/high-risk group patients compared to the low-risk group. Higher in AML cells with FLT3 gene mutations. |
Impact on prognosis | Higher expression in AML cells is associated with poorer prognoses. | Higher expression in AML cells is associated with poorer prognoses. |
Induction of chemoresistance | CXCL8, when acting on AML, induces resistance to etoposide and daunorubicin, but it is not known which receptor is responsible for this property. | Activation of AML cells induces resistance to cytarabine and gilteritinib. CXCL8, when acting on AML, induces resistance to etoposide and daunorubicin, but it is not known which receptor is responsible for this property. |
Association with extramedullary AML | No data. | Higher expression on AML cells is associated with a higher likelihood of extramedullary AML. |
Effects on bone marrow microvessel density | A significant association between CXCL8 and bone marrow microvessel density in patients with AML has been demonstrated. However, it is not known which CXCL8 receptor is responsible for this property. |
Trait | PF-4 | CXCL9 | CXCL10 | CXCL11 | CXCR3 |
---|---|---|---|---|---|
Expression levels in patients with AML | No available studies | Higher blood levels than in healthy individuals, especially those younger than 50. In the bone marrow of AML patients, levels elevated | Higher blood levels than in healthy people, especially those younger than 50. Other studies indicate that levels are lower than in healthy people. In the bone marrow of AML patients, levels are elevated | No available studies | |
Expression in AML cells | AML cells in the majority of patients produce PF-4 | AML cells in approximately 40% of patients produce detectable levels of CXCL9 | AML cells in the majority of patients produce CXCL10 | AML cells in approximately 40% of patients produce detectable levels of CXCL11 | No differences between AML cells and bone marrow CD34+ cells |
Expression level due to FAB classification | The expression does not depend on FAB classification | Highest in AML cells with the FAB M7 phenotype | Lowest in AML cells with the FAB M3 phenotype | Lowest in AML cells with the FAB M3 phenotype | The expression of CXCR3 is highest in AML cells with the FAB M3 and M7 phenotypes |
Dependence of expression level on a given mutation | Lower expression with a mutation in FLT3 and NPM1 genes | ||||
Impact on prognosis | Worse prognosis with higher expression in AML | No link between expression and prognosis | Worse prognosis with higher expression in AML | Worse prognosis with higher expression in AML | Worse prognosis with higher expression in AML |
Induction of chemoresistance | No data | No data | No data | No data | No data |
Association with extramedullary AML | The expression of the CXCR3 receptor is associated with extramedullary AML in the skin. However, there is low expression of CXCR3 ligands in the skin. The molecular mechanism of AML cell homing with high CXCR3 expression in the skin remains unknown | Higher expression of CXCR3 on AML cells is associated with a greater likelihood of extramedullary AML in the skin | |||
Effects on bone marrow microvessel density | No data available. The axis exhibits anti-angiogenic properties; however, it is not known whether it plays a role in bone marrow angiogenesis in patients with AML |
Trait | CXCL13 | CXCR5 | CXCL14 |
---|---|---|---|
Expression in AML cells | CXCL13 is produced in small amounts by AML cells in half of the patients | Higher expression in AML cells compared to the control | |
Expression level due to FAB classification | The highest expression is observed in AML cells with the FAB M5 phenotype | The expression level is independent of FAB classification | The expression level is not dependent on FAB classification |
Dependence of expression level on a given mutation | AML with FLT3 gene mutation shows lower CXCR5 expression | ||
Impact on prognosis | Without an impact on prognoses | Without an impact on prognoses | Without an impact on prognoses |
Induction of chemoresistance | No available data on the association | No available data on the association | No available data on the association |
Association with extramedullary AML | No available data on the association | No available data on the association | No available data on the association |
Effects on bone marrow microvessel density | No available data on the association | No available data on the association | No available data on the association |
Trait | CXCL16 | CXCR6 | CXCL17 | GPR35 |
---|---|---|---|---|
Expression in AML cells I poziom chemokin u pacjentów z AML | In the bone marrow, there is a higher level of CXCL17 compared to healthy individuals | Higher expression in AML cells compared to the control | No available data | Higher expression in AML cells compared to the control |
Expression level due to FAB classification | The lowest expression is observed in AML cells with the FAB M3 phenotype | AML cells with FAB M0 and M7 phenotypes show the highest expression | The highest in AML cells with FAB M0–M1 phenotype | Highest in AML cells with FAB M4–M5 phenotype |
Dependence of expression level on a given mutation | AML cells with FLT3 or NPM1 gene mutations exhibit lower CXCR6 expression. Moreover, higher CXCR6 expression is associated with the medium/high-risk group of AML patients | |||
Impact on prognosis | Higher expression in AML cells is associated with poorer prognoses | Higher expression in the blood is associated with better prognoses. However, other studies have not confirmed this | Without an impact on prognoses | Higher expression in AML cells is associated with poorer prognoses |
Induction of chemoresistance | No available data on the association | No available data on the association | No available data on the association | No available data on the association |
Association with extramedullary AML | No available data on the association | No available data on the association | No available data on the association | No available data on the association |
Effects on bone marrow microvessel density | No available data on the association | No available data on the association | No available data on the association | No available data on the association |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korbecki, J.; Kupnicka, P.; Barczak, K.; Bosiacki, M.; Ziętek, P.; Chlubek, D.; Baranowska-Bosiacka, I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers 2023, 15, 4555. https://doi.org/10.3390/cancers15184555
Korbecki J, Kupnicka P, Barczak K, Bosiacki M, Ziętek P, Chlubek D, Baranowska-Bosiacka I. The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers. 2023; 15(18):4555. https://doi.org/10.3390/cancers15184555
Chicago/Turabian StyleKorbecki, Jan, Patrycja Kupnicka, Katarzyna Barczak, Mateusz Bosiacki, Paweł Ziętek, Dariusz Chlubek, and Irena Baranowska-Bosiacka. 2023. "The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML)" Cancers 15, no. 18: 4555. https://doi.org/10.3390/cancers15184555
APA StyleKorbecki, J., Kupnicka, P., Barczak, K., Bosiacki, M., Ziętek, P., Chlubek, D., & Baranowska-Bosiacka, I. (2023). The Role of CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 Ligands in Molecular Cancer Processes and Clinical Aspects of Acute Myeloid Leukemia (AML). Cancers, 15(18), 4555. https://doi.org/10.3390/cancers15184555