Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population
2.2. Immunohistochemistry
2.3. Quantitative Analysis of Immunohistochemical Staining
2.4. Statistical Analysis
3. Results
3.1. Study Population and Patients’ Characteristics
3.2. Comparison of Total Cell Count between Normal-Appearing Mucosa and Tumor-Infiltrating Cells
3.3. Comparison of an Immune Infiltrate of Tumor Tissue and Normal Mucosa between CAC and sCRC
The Distribution of Tumor-Infiltrating Cells concerning UICC Stage and Tumor Localization
3.4. Prognostic Analysis and Risk Factor Identification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Annese, V.; Beaugerie, L.; Egan, L.; Biancone, L.; Bolling, C.; Brandts, C.; Dierickx, D.; Dummer, R.; Fiorino, G.; Gornet, J.M.; et al. European Evidence-Based Consensus: Inflammatory Bowel Disease and Malignancies. J. Crohn’s Colitis 2015, 9, 945–965. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Schardey, J.; Zhang, T.; Crispin, A.; Wirth, U.; Karcz, K.W.; Bazhin, A.V.; Andrassy, J.; Werner, J.; Kühn, F. Survival Outcomes and Clinicopathological Features in Inflammatory Bowel Disease-Associated Colorectal Cancer: A Systematic Review and Meta-Analysis. Ann. Surg. 2021, 276, e319–e330. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.B.; Harpaz, N.; Itzkowitz, S.; Hossain, S.; Matula, S.; Kornbluth, A.; Bodian, C.; Ullman, T. Histologic Inflammation Is a Risk Factor for Progression to Colorectal Neoplasia in Ulcerative Colitis: A Cohort Study. Gastroenterology 2007, 133, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.S.; Windsor, A.; Cohen, R.; Chand, M. Colorectal Cancer in Inflammatory Bowel Disease: Review of the Evidence. Tech. Coloproctol. 2019, 23, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Ma, Y.; Yu, L.; Jiang, J.; Shen, S.; Hou, Y.; Wang, T. Cancer Immunotherapy: A Focus on the Regulation of Immune Checkpoints. Int. J. Mol. Sci. 2018, 19, 1389. [Google Scholar] [CrossRef]
- Bethmann, D.; Feng, Z.; Fox, B.A. Immunoprofiling as a Predictor of Patient’s Response to Cancer Therapy—Promises and Challenges. Curr. Opin. Immunol. 2017, 45, 60–72. [Google Scholar] [CrossRef]
- Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and Colon Cancer. Gastroenterology 2010, 138, 19. [Google Scholar] [CrossRef]
- McKinney, E.F.; Lee, J.C.; Jayne, D.R.W.; Lyons, P.A.; Smith, K.G.C. T-Cell Exhaustion, Co-Stimulation and Clinical Outcome in Autoimmunity and Infection. Nature 2015, 523, 612–616. [Google Scholar] [CrossRef]
- Globig, A.-M.; Hipp, A.V.; Otto-Mora, P.; Heeg, M.; Mayer, L.S.; Ehl, S.; Schwacha, H.; Bewtra, M.; Tomov, V.; Thimme, R.; et al. High-Dimensional Profiling Reveals Tc17 Cell Enrichment in Active Crohn’s Disease and Identifies a Potentially Targetable Signature. Nat. Commun. 2022, 13, 3688. [Google Scholar] [CrossRef]
- Corridoni, D.; Antanaviciute, A.; Gupta, T.; Fawkner-Corbett, D.; Aulicino, A.; Jagielowicz, M.; Parikh, K.; Repapi, E.; Taylor, S.; Ishikawa, D.; et al. Single-Cell Atlas of Colonic CD8+ T Cells in Ulcerative Colitis. Nat. Med. 2020, 26, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Kurachi, M. Molecular and Cellular Insights into T Cell Exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Globig, A.M.; Mayer, L.S.; Heeg, M.; Geoffroy, A.; Manching, K.; Patricia, O.-M.; Hipp, A.V.; Zoldan, K.; Pattekar, A.; Rana, N.; et al. Exhaustion of CD39-Expressing CD8+ T Cells in Crohn’s Disease Is Linked to Clinical Outcome. Gastroenterology 2022, 163, 965–981.e31. [Google Scholar] [CrossRef] [PubMed]
- Soh, J.S.; Jo, S.I.; Lee, H.; Do, E.; Hwang, S.W.; Park, S.H.; Ye, B.D.; Byeon, J.-S.; Yang, S.-K.; Kim, J.H.; et al. Immunoprofiling of Colitis-Associated and Sporadic Colorectal Cancer and Its Clinical Significance. Sci. Rep. 2019, 9, 6833. [Google Scholar] [CrossRef]
- Schoenberg, M.; Hao, J.; Bucher, J.; Miksch, R.; Anger, H.; Mayer, B.; Mayerle, J.; Neumann, J.; Guba, M.; Werner, J.; et al. Perivascular Tumor-Infiltrating Leukocyte Scoring for Prognosis of Resected Hepatocellular Carcinoma Patients. Cancers 2018, 10, 389. [Google Scholar] [CrossRef]
- Miksch, R.C.; Schoenberg, M.B.; Weniger, M.; Bösch, F.; Ormanns, S.; Mayer, B.; Werner, J.; Bazhin, A.V.; D’Haese, J.G. Prognostic Impact of Tumor-Infiltrating Lymphocytes and Neutrophils on Survival of Patients with Upfront Resection of Pancreatic Cancer. Cancers 2019, 11, 39. [Google Scholar] [CrossRef]
- Miksch, R.C.; Hao, J.; Schoenberg, M.B.; Dötzer, K.; Schlüter, F.; Weniger, M.; Yin, S.; Ormanns, S.; D’Haese, J.G.; Guba, M.O.; et al. Development of a Reliable and Accurate Algorithm to Quantify the Tumor Immune Stroma (QTiS) across Tumor Types. Oncotarget 2017, 8, 114935–114944. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Lee, G.H.; Malietzis, G.; Askari, A.; Bernardo, D.; Al-Hassi, H.O.; Clark, S.K. Is Right-Sided Colon Cancer Different to Left-Sided Colorectal Cancer?—A Systematic Review. Eur. J. Surg. Oncol. (EJSO) 2015, 41, 300–308. [Google Scholar] [CrossRef]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 Version of the Charlson Comorbidity Index Predicted in-Hospital Mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef]
- Blank, C.U.; Haining, W.N.; Held, W.; Hogan, P.G.; Kallies, A.; Lugli, E.; Lynn, R.C.; Philip, M.; Rao, A.; Restifo, N.P.; et al. Defining ‘T Cell Exhaustion’. Nat. Rev. Immunol. 2019, 19, 665–674. [Google Scholar] [CrossRef]
- Khan, O.; Giles, J.R.; McDonald, S.; Manne, S.; Ngiow, S.F.; Patel, K.P.; Werner, M.T.; Huang, A.C.; Alexander, K.A.; Wu, J.E.; et al. TOX Transcriptionally and Epigenetically Programs CD8+ T Cell Exhaustion. Nature 2019, 571, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Thommen, D.S.; Schumacher, T.N. T Cell Dysfunction in Cancer. Cancer Cell 2018, 33, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Schardey, J.; Globig, A.-M.; Janssen, C.; Hofmann, M.; Manegold, P.; Thimme, R.; Hasselblatt, P. Vitamin D Inhibits Pro-Inflammatory T Cell Function in Patients with Inflammatory Bowel Disease. J. Crohn’s Colitis 2019, 13, 1546–1557. [Google Scholar] [CrossRef]
- van der Leun, A.M.; Thommen, D.S.; Schumacher, T.N. CD8+ T Cell States in Human Cancer: Insights from Single-Cell Analysis. Nat. Rev. Cancer 2020, 20, 218–232. [Google Scholar] [CrossRef]
- Michael-Robinson, J.; Pandeya, N.; Walsh, M.; Biemer-Huttmann, A.-E.; Eri, R.; Buttenshaw, R.; Lincoln, D.; Clouston, A.; Jass, J.; Radford-Smith, G. Characterization of Tumour-Infiltrating Lymphocytes and Apoptosis in Colitis-Associated Neoplasia: Comparison with Sporadic Colorectal Cancer. J. Pathol. 2006, 208, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Sundrud, M.S. Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2016, 22, 1157–1167. [Google Scholar] [CrossRef]
- Joller, N.; Lozano, E.; Burkett, P.R.; Patel, B.; Xiao, S.; Zhu, C.; Xia, J.; Tan, T.G.; Sefik, E.; Yajnik, V.; et al. Treg Cells Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit Proinflammatory Th1 and Th17 Cell Responses. Immunity 2014, 40, 569–581. [Google Scholar] [CrossRef]
- Syed Khaja, A.S.; Toor, S.M.; El Salhat, H.; Ali, B.R.; Elkord, E. Intratumoral FoxP3+Helios+ Regulatory T Cells Upregulating Immunosuppressive Molecules Are Expanded in Human Colorectal Cancer. Front. Immunol. 2017, 8, 619. [Google Scholar] [CrossRef]
- Francescone, R.; Hou, V.; Grivennikov, S.I. Cytokines, IBD, and Colitis-Associated Cancer. Inflamm. Bowel Dis. 2015, 21, 409–418. [Google Scholar] [CrossRef]
- Shitara, K.; Nishikawa, H. Regulatory T Cells: A Potential Target in Cancer Immunotherapy: Regulatory T Cells in Cancer Immunity. Ann. N. Y. Acad. Sci. 2018, 1417, 104–115. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The Immune Contexture and Immunoscore in Cancer Prognosis and Therapeutic Efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Kurtulus, S.; Sakuishi, K.; Ngiow, S.-F.; Joller, N.; Tan, D.J.; Teng, M.W.L.; Smyth, M.J.; Kuchroo, V.K.; Anderson, A.C. TIGIT Predominantly Regulates the Immune Response via Regulatory T Cells. J. Clin. Investig. 2015, 125, 4053–4062. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Xiao, K.; Li, K.; Xue, P.; Zhu, S. Prognostic Role of TIGIT Expression in Patients with Solid Tumors: A Meta-Analysis. J. Immunol. Res. 2021, 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Saleh, R. Expression of Immune Checkpoints and T Cell Exhaustion Markers in Early and Advanced Stages of Colorectal Cancer. Cancer Immunol. 2020, 69, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Edin, S.; Kaprio, T.; Hagström, J.; Larsson, P.; Mustonen, H.; Böckelman, C.; Strigård, K.; Gunnarsson, U.; Haglund, C.; Palmqvist, R. The Prognostic Importance of CD20+ B Lymphocytes in Colorectal Cancer and the Relation to Other Immune Cell Subsets. Sci. Rep. 2019, 9, 19997. [Google Scholar] [CrossRef]
- Rosenberg, R.; Friederichs, J.; Schuster, T.; Gertler, R.; Maak, M.; Becker, K.; Grebner, A.; Ulm, K.; Höfler, H.; Nekarda, H.; et al. Prognosis of Patients with Colorectal Cancer Is Associated with Lymph Node Ratio: A Single-Center Analysis of 3026 Patients Over a 25-Year Time Period. Ann. Surg. 2008, 248, 968–978. [Google Scholar] [CrossRef]
- Giese, M.A.; Hind, L.E.; Huttenlocher, A. Neutrophil Plasticity in the Tumor Microenvironment. Blood 2019, 133, 2159–2167. [Google Scholar] [CrossRef]
- Veglia, F.; Hashimoto, A.; Dweep, H.; Sanseviero, E.; De Leo, A.; Tcyganov, E.; Kossenkov, A.; Mulligan, C.; Nam, B.; Masters, G.; et al. Analysis of Classical Neutrophils and Polymorphonuclear Myeloid-Derived Suppressor Cells in Cancer Patients and Tumor-Bearing Mice. J. Exp. Med. 2021, 218, e20201803. [Google Scholar] [CrossRef]
- Lominadze, G.; Powell, D.W.; Luerman, G.C.; Link, A.J.; Ward, R.A.; McLeish, K.R. Proteomic Analysis of Human Neutrophil Granules. Mol. Cell. Proteom. 2005, 4, 1503–1521. [Google Scholar] [CrossRef]
- Shen, M.; Hu, P.; Donskov, F.; Wang, G.; Liu, Q.; Du, J. Tumor-Associated Neutrophils as a New Prognostic Factor in Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e98259. [Google Scholar] [CrossRef]
- Galdiero, M.R.; Bianchi, P.; Grizzi, F.; Di Caro, G.; Basso, G.; Ponzetta, A.; Bonavita, E.; Barbagallo, M.; Tartari, S.; Polentarutti, N.; et al. Occurrence and Significance of Tumor-Associated Neutrophils in Patients with Colorectal Cancer: Significance of Tumor-Associated Neutrophils in Colorectal Cancer. Int. J. Cancer 2016, 139, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, X.; Zhang, Q.; Yang, J.; Liu, G. Roles of Macrophages on Ulcerative Colitis and Colitis-Associated Colorectal Cancer. Front. Immunol. 2023, 14, 1103617. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tian, T.; Zhang, J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int. J. Mol. Sci. 2021, 22, 8470. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Gu, J.; Zhang, J.; Liu, S.; Wang, Q.; Tian, T.; Chen, Z.; Zhang, J. MyD88 in Myofibroblasts Enhances Colitis-Associated Tumorigenesis via Promoting Macrophage M2 Polarization. Cell Rep. 2021, 34, 108724. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Ma, J.; Wang, K.; Zhang, H. Chemopreventive Effects of 5-Aminosalicylic Acid on Inflammatory Bowel Disease-Associated Colorectal Cancer and Dysplasia: A Systematic Review with Meta-Analysis. Oncotarget 2017, 8, 1031–1045. [Google Scholar] [CrossRef]
- Shah, S.C.; Itzkowitz, S.H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology 2022, 162, 715–730.e3. [Google Scholar] [CrossRef]
CAC (n = 20) | SCRC (n = 20) | p-Value | |
---|---|---|---|
Age, years * | 50.85 ± 14.48 | 68.2 ± 11.52 | <0.001 |
Sex | 0.45 | ||
Female | 6 (30%) | 3 (15%) | |
Male | 14 (70%) | 17 (85%) | |
Sidedness of Tumor | 1.00 | ||
Left side | 8 (40%) | 9 (45%) | |
Right side | 12 (60%) | 11 (55%) | |
T (AJCC 7th) | 0.99 | ||
T1 | 3 (15%) | 3 (15%) | |
T2 | 3 (15%) | 3 (15%) | |
T3 | 8 (40%) | 7 (35%) | |
T4 | 6 (30%) | 7 (35%) | |
N (AJCC 7th) | 0.8 | ||
N1 | 6 (30%) | 7 (35%) | |
N2 | 6 (30%) | 7 (35%) | |
N3 | 8 (40%) | 6 (30%) | |
M (AJCC 7th) | 0.72 | ||
M0 | 16 (80%) | 14 (70%) | |
M1 | 4 (20%) | 6 (30%) | |
Tumor stage UICC (AJCC 7th) | 0.78 | ||
I | 3 (15%) | 4 (20%) | |
II | 3 (15%) | 3 (15% | |
III | 10 (50%) | 7 (35%) | |
IV | 4 (20%) | 6 (30%) | |
Grade | 0.59 | ||
1 | 1 (5%) | 0 | |
2 | 8 (40%) | 9 (45%) | |
3 | 11 (55%) | 11 (55%) | |
Neoadjuvant RCT | 1 (5%) | 2 (10%) | 0.54 |
IBD Type | <0.001 | ||
UC | 13 (65%) | 0 | |
CD | 7 (35%) | 0 | |
None | 0 | 20 (100%) | |
CCI * | 3.45 ± 2.09 | 4.50 ± 2.19 | 0.11 |
Lymph node ratio * | 0.16 ± 0.21 | 0.15 ± 0.27 | 0.66 |
Follow-up months # | 30.7 [7–118] | 40.1 [4–91] | 0.16 |
OS |
Characteristics | Overall Survival | |||
---|---|---|---|---|
Univariate Cox Analysis | Multivariate Cox Analysis | |||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
CAC (n = 20) | ||||
CD3 | 1.00 (1.00–1.00) | 0.030 | 1.00 (0.99–1.00) | 0.120 |
CD4 | 1.00 (1.00–1.00) | 0.050 | 1.00 (1.00–1.00) | 0.490 |
CD8 | 1.00 (0.99–1.01) | 0.630 | —— | —— |
Foxp3 | 0.99 (0.98–1.01) | 0.330 | —— | —— |
TIGIT | 1.00 (0.99–1.00) | 0.580 | —— | —— |
TOX | 1.00 (0.99–1.01) | 0.730 | —— | —— |
CD20 | 1.00 (1.00–1.00) | 0.150 | —— | —— |
CD66b | 1.00 (1.00–1.00) | 0.490 | —— | —— |
Age | 1.02 (0.97–1.07) | 0.520 | —— | —— |
Gender | 2.29 (0.47–11.21) | 0.310 | —— | —— |
Tumor stage | 3.3 (0.95–11.43) | 0.060 | 1.03 (0.26–4.13) | 0.960 |
Sideness | 0.45 (0.12–1.69) | 0.240 | —— | —— |
Lymph node ratio | 39.28 (1.71–902.80) | 0.020 | 11.78 (0.14–976.82) | 0.270 |
Charlson Score | 1.31 (0.99–1.74) | 0.060 | 1.32 (0.89–1.95) | 0.170 |
Sporadic CRC (n = 20) | ||||
CD3 | 1.00 (1.00–1.00) | 0.090 | 1.00 (1.00–1.01) | 0.039 |
CD4 | 1.00 (1.00–1.00) | 0.426 | —— | —— |
CD8 | 1.00 (1.00–1.01) | 0.131 | —— | —— |
Foxp3 | 0.99 (0.98–1.00) | 0.188 | —— | —— |
TIGIT | 1.00 (0.99–1.01) | 0.589 | —— | —— |
TOX | 1.00 (0.99–1.00) | 0.710 | —— | —— |
CD20 | 1.00 (1.00–1.00) | 0.908 | —— | —— |
CD66b | 1.00 (1.00–1.00) | 0.926 | —— | —— |
Age | 0.99 (0.94–1.05) | 0.803 | —— | —— |
Gender | 0.38 (0.07–2.07) | 0.262 | —— | —— |
Tumor stage | 2.54 (0.93–6.91) | 0.069 | 2.94 (1.18–7.33) | 0.021 |
Sidedness | 0.68 (0.14–3.24) | 0.633 | —— | —— |
Lymph node ratio | 31.00 (0.28–3486.38) | 0.154 | —— | —— |
Charlson Score | 1.09 (0.73–1.62) | 0.688 | —— | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schardey, J.; Lu, C.; Neumann, J.; Wirth, U.; Li, Q.; Jiang, T.; Zimmermann, P.; Andrassy, J.; Bazhin, A.V.; Werner, J.; et al. Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer. Cancers 2023, 15, 4743. https://doi.org/10.3390/cancers15194743
Schardey J, Lu C, Neumann J, Wirth U, Li Q, Jiang T, Zimmermann P, Andrassy J, Bazhin AV, Werner J, et al. Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer. Cancers. 2023; 15(19):4743. https://doi.org/10.3390/cancers15194743
Chicago/Turabian StyleSchardey, Josefine, Can Lu, Jens Neumann, Ulrich Wirth, Qiang Li, Tianxiao Jiang, Petra Zimmermann, Joachim Andrassy, Alexandr V. Bazhin, Jens Werner, and et al. 2023. "Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer" Cancers 15, no. 19: 4743. https://doi.org/10.3390/cancers15194743
APA StyleSchardey, J., Lu, C., Neumann, J., Wirth, U., Li, Q., Jiang, T., Zimmermann, P., Andrassy, J., Bazhin, A. V., Werner, J., & Kühn, F. (2023). Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer. Cancers, 15(19), 4743. https://doi.org/10.3390/cancers15194743