The Association between Mediated Deprivation and Ovarian Cancer Survival among African American Women
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Deprivation
2.2.1. Yost Index
2.2.2. Singh Index (ADI)
2.2.3. Kolak Measures
2.2.4. Concentrated Disadvantage Index (CDI)
2.2.5. Percent under the Poverty Line (POV)
2.3. The Spatial Context
2.4. Bayesian Mediation Methodology
3. Mediation Models as Applied in AACES
3.1. Outcome
3.2. Exposures
3.3. Mediators
3.4. Modifiers
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorice, K.A.; Fang, C.Y.; Wiese, D.; Ortiz, A.; Chen, Y.; Henry, K.A.; Lynch, S.M. Systematic review of neighborhood socioeconomic indices studied across the cancer control continuum. Cancer Med. 2022, 11, 2125–2144. [Google Scholar] [CrossRef] [PubMed]
- Schildkraut, J.M.; Alberg, A.J.; Bandera, E.V.; Barnholtz-Sloan, J.; Bondy, M.; Cote, M.L.; Funkhouser, E.; Peters, E.; Schwartz, A.G.; Terry, P.; et al. A multi-center population-based case–control study of ovarian cancer in African-American women: The African American Cancer Epidemiology Study (AACES). BMC Cancer 2014, 14, 688. [Google Scholar] [CrossRef] [PubMed]
- Lawson, A.B.; Kim, J.; Johnson, C.; Hastert, T.; Bandera, E.V.; Alberg, A.J.; Terry, P.; Akonde, M.; Mandle, H.; Cote, M.L.; et al. Deprivation and segregation in ovarian cancer survival among African American women: A mediation analysis. Ann. Epidemiol. 2023, 86, 57–64. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER Research Plus Data, 17 Registries. Available online: https://www.seer.cancer.gov (accessed on 14 June 2022).
- Hossain, F.; Danos, D.; Prakash, O.; Gilliland, A.; Ferguson, T.F.; Simonsen, N.; Leonardi, C.; Yu, Q.; Wu, X.-C.; Miele, L.; et al. Neighborhood Social Determinants of Triple Negative Breast Cancer. Front. Public Heal. 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Roseland, M.E.; Pressler, M.E.; Lamerato, L.E.; Krajenta, R.; Ruterbusch, J.J.; Booza, J.C.; Schwartz, K.; Simon, M.S. Racial differences in breast cancer survival in a large urban integrated health system. Cancer 2015, 121, 3668–3675. [Google Scholar] [CrossRef]
- Singh, G.K.; Jemal, A. Socioeconomic and Racial/Ethnic Disparities in Cancer Mortality, Incidence, and Survival in the United States, 1950–2014: Over Six Decades of Changing Patterns and Widening Inequalities. J. Environ. Public Health 2017, 2017, 2819372. [Google Scholar] [CrossRef]
- Madhav, K.C.; Oral, E.; Rung, A.L.; Trapido, E.J.; Rozek, L.S.; Fontham, E.T.H.; Bensen, J.T.; Farnan, L.; Steck, S.E.; Song, L.; et al. Neighborhood deprivation and risk of mortality among men with prostate cancer: Findings from a long-term follow-up study. Prostate 2022, 82, 783–792. [Google Scholar] [CrossRef]
- Yost, K.; Perkins, C.; Cohen, R.; Morris, C.; Wright, W. Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 2001, 12, 703–711. [Google Scholar] [CrossRef]
- Ross, J.; Braswell, K.V.; da Silva, L.M.; Mujica, F.; Stutsman, S.; Finan, M.A.; Nicolson, W.; Harmon, M.D.; Missanelli, M.; Cohen, A.; et al. Unraveling the etiology of ovarian cancer racial disparity in the deep south: Is it nature or nurture? Gynecol. Oncol. 2017, 145, 329–333. [Google Scholar] [CrossRef]
- Singh, G.K. Area deprivation and widening inequalities in US mortality, 1969–1998. Am. J. Public Health 2003, 93, 1137–1143. [Google Scholar] [CrossRef]
- Singh, G.K.; Lin, C.-C.C. Area Deprivation and Inequalities in Health and Health Care Outcomes. Ann. Intern. Med. 2019, 171, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Kolak, M.; Bhatt, J.; Park, Y.H.; Padrón, N.A.; Molefe, A. Quantification of Neighborhood-Level Social Determinants of Health in the Continental United States. JAMA Netw. Open 2020, 3, e1919928. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.; Chen, J.T.; Waterman, P.D.; Rehkopf, D.H.; Subramanian, S.V. Race/ethnicity, gender, and monitoring socioeconomic gradients in health: A comparison of area-based socioeconomic measures—The public health disparities geocoding project. Am. J. Public Health 2003, 93, 1655–1671. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; MacKinnon, D.P. Bayesian mediation analysis. Psychol. Methods 2009, 14, 301–322. [Google Scholar] [CrossRef] [PubMed]
- McCandless, L.C.; Gustafson, P.; Levy, A.R. Bayesian sensitivity analysis for unmeasured confounding in observational studies. Stat. Med. 2006, 26, 2331–2347. [Google Scholar] [CrossRef]
- McCandless, L.C.; Somers, J.M. Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis. Stat. Methods Med. Res. 2019, 28, 515–531. [Google Scholar] [CrossRef]
- Greenland, S. Multiple bias modelling for analysis of observational data. J. R. Stat. Soc. Ser. A 2005, 168, 267–306. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Causal mediation analysis with survival data. Epidemiology 2011, 22, 582–585. [Google Scholar] [CrossRef]
- Greenland, S. Bayesian perspectives for epidemiologic research, part III. Int. J. Epidemiol. 2009, 38, 1662–1673. [Google Scholar] [CrossRef]
- Dellaportas, P.; Forster, J.J.; Ntzoufras, I. On Bayesian model and variable selection using MCMC. Stat. Comput. 2002, 12, 27–36. [Google Scholar] [CrossRef]
- Barbieri, M.M.; Berger, J.O. Optimal predictive model selection. Ann. Stat. 2004, 32, 870–897. [Google Scholar] [CrossRef]
- de Valpine, P.; Turek, D.; Paciorek, C.J.; Anderson-Bergman, C.; Lang, D.T.; Bodik, R. Programming with models: Writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 2017, 26, 403–413. [Google Scholar] [CrossRef]
- van der Burg, M.E.; van Lent, M.; Buyse, M.; Kobierska, A.; Colombo, N.; Favalli, G.; Lacave, A.J.; Nardi, M.; Renard, J.; Pecorelli, S. The effect of debulking surgery after induction chemotherapy on the prognosis in advanced epithelial ovarian cancer. Gyne-cological Cancer Cooperative Group of the European Organization for Research and Treatment of Cancer. N. Engl. J. Med. 1995, 332, 629–634. [Google Scholar] [CrossRef]
- Song, Y.J. Prediction of optimal debulking surgery in ovarian cancer. Gland. Surg. 2021, 10, 1173–1181. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P. Imputing missing covariate values for the Cox model. Stat. Med. 2009, 28, 1982–1998. [Google Scholar] [CrossRef] [PubMed]
- Hodeib, M.; Chang, J.; Liu, F.; Ziogas, A.; Dilley, S.; Randall, L.M.; Anton-Culver, H.; Bristow, R.E. Socioeconomic status as a predictor of adherence to treatment guidelines for early-stage ovarian cancer. Gynecol. Oncol. 2015, 138, 121–127. [Google Scholar] [CrossRef]
- Hufnagel, D.H.; Khabele, D.; Yull, F.E.; Hull, P.C.; Schildkraut, J.; Crispens, M.A.; Beeghly-Fadiel, A. Increasing Area Deprivation Index negatively impacts ovarian cancer survival. Cancer Epidemiol. 2021, 74, 102013. [Google Scholar] [CrossRef]
- Peterson, C.E.; Rauscher, G.H.; Johnson, T.P.; Kirschner, C.V.; Barrett, R.E.; Kim, S.; Fitzgibbon, M.L.; Joslin, C.E.; Davis, F.G. The association between neighborhood socioeconomic status and ovarian cancer tumor characteristics. Cancer Causes Control 2014, 25, 633–637. [Google Scholar] [CrossRef]
- Brewer, K.C.; Peterson, C.E.; Davis, F.G.; Hoskins, K.; Pauls, H.; Joslin, C.E. The influence of neighborhood socioeconomic status and race on survival from ovarian cancer: A population-based analysis of Cook County, Illinois. Ann. Epidemiol. 2015, 25, 556–563. [Google Scholar] [CrossRef]
- Peterson, C.E.; Rauscher, G.H.; Johnson, T.P.; Kirschner, C.V.; Freels, S.; Barrett, R.E.; Kim, S.; Fitzgibbon, M.L.; Joslin, C.E.; Davis, F.G. The effect of neighborhood disadvantage on the racial disparity in ovarian cancer-specific survival in a large hospital-based study in Cook county, Illinois. Front. Public Health 2015, 3, 8. [Google Scholar] [CrossRef]
- Schildkraut, J.M.; Johnson, C.; Dempsey, L.F.; Qin, B.; Terry, P.; Akonde, M.; Peters, E.S.; Mandle, H.; Cote, M.L.; Peres, L.; et al. Survival of epithelial ovarian cancer in Black women: A society to cell approach in the African American cancer epidemiology study (AACES). Cancer Causes Control 2022, 34, 251–265. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.; Vansteelandt, S. Mediation analysis with multiple mediators. Epidemiol. Methods 2014, 2, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Westrick, A.; Schlumbrecht, M.; Hlaing, W.M.; Kobetz, E.K.; Feaster, D.; Balise, R. Racial and ethnic disparities in the overall survival of women with epithelial ovarian cancer in Florida, 2001–2015. Cancer Causes Control 2020, 31, 333–340. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean (SD) | |
---|---|---|
Days on Study | 1774.50 (962.86) | |
N | Percentage (%) | |
Survival Status | ||
Alive (censored) | 221 | 39.6 |
Deceased | 337 | 60.4 |
Stage | ||
1-Localized | 125 | 23.9 |
2-Regional | 51 | 9.8 |
3-Distant | 346 | 66.3 |
Unknown | 36 | - |
Debulking status—after imputation | ||
1 = Optimal debulking (or CA125 after adjuvant <35) | 391 | 70.1 |
2 = Suboptimal debulking (or CA125 after adjuvant ≥35) | 167 | 29.9 |
Characteristics | Mean (SD) | |
---|---|---|
Age | 58.04 (10.90) | |
BMI | 32.82 (8.42) | |
Kolak measures | ||
URB | −0.40 (0.85) | |
SES | −1.20 (2.10) | |
MOB | −0.48 (1.41) | |
MICA | 0.48 (1.00) | |
Yost 2010 | 9493.66 (921.62) | |
ADI | 108.84 (19.99) | |
Percentage of people live below federal poverty level (POV) | 0.17 (0.13) | |
Concentrated disadvantage index (CDI) | 0.00 (3.92) | |
Characteristics | N | Percentage (%) |
Self-reported income | ||
less than $10,000 | 113 | 22.2 |
$10,000–$24,999 | 120 | 23.6 |
$25,000–$49,999 | 125 | 24.6 |
$50,000–$74,999 | 76 | 14.9 |
$75,000–$100,000 | 44 | 8.6 |
More than $100,000 | 31 | 6.1 |
NA | 49 | - |
Smoking status | ||
Never smoker | 309 | 55.4 |
Ever Smoker (Former/current) | 249 | 44.6 |
PAGA ** | ||
1 = Yes | 130 | 25.1 |
2 = NO | 387 | 74.9 |
NA | 41 | - |
Gibbs Variable Selection for Covariates (Modifiers). Covariates with Values Higher Than 0.5 Will Be Included in the Analysis | |||||
---|---|---|---|---|---|
Mediator: Stage | URB | MOB | SES | MICA | ADI |
Age | 1 | 0.458 | 0.002 | 0.912 | 1 |
BMI | 0.457 | 0.475 | 0.144 | 0.499 | 0.495 |
Self-reported SES | 0.295 | 0.509 | 0.058 | 0.488 | 0.483 |
Smoking | 0.428 | 0.491 | 0.033 | 0.506 | 0.489 |
Physical activity | 0.530 | 0.516 | 1 | 0.504 | 0.511 |
Analysis result with selected modifiers. Each cell shows a posterior mean and its 95% credible interval | |||||
Direct effect (Deprivation indices) | 0.731 (0.560, 0.914) | 0.887 (0.78, 0.999) | 0.895 (0.808, 0.991) | 1.149 (0.916, 1.437) | 1.873 (0.665, 5.456) |
Indirect effect Through stage 1 | 0.674 (0, 4.5 × 1012) | 0.983 (0.221, 3.977) | 0.996 (0.188, 4.571) | 1.022 (0.258, 4.088) | 0.979 (0.141, 6.51) |
Indirect effect Through stage 2 | 0.683 (0, 8.5 × 1011) | 0.995 (0.493, 1.874) | 1.012 (0.508, 2.013) | 0.987 (0.381, 2.476) | 0.980 (0.352, 2.595) |
Indirect effect Through stage 3 | 0.711 (0, 1.06 × 1011) | 0.998 (0.120, 6.812) | 1.028 (0.086, 18.340) | 0.902 (0.037, 12.862) | 1.024 (0.125, 8.055) |
Total effect 1 (Direct + Indirect through stage 1) | 0.492 (0, 3.1 × 1012) | 0.872 (0.198, 3.572) | 0.891 (0.169, 4.112) | 1.175 (0.292, 4.808) | 1.833 (0.214, 16.031) |
Total effect 2 (Direct + Indirect through stage 2) | 0.499 (0, 7.0 × 1011) | 0.882 (0.438, 1.640) | 0.906 (0.455, 1.783) | 1.134 (0.443, 2.879) | 1.835 (0.441, 7.707) |
Total effect 3 (Direct + Indirect through stage 3) | 0.519 (0, 6.82 × 1010) | 0.885 (0.103, 6.069) | 0.92 (0.079, 16.689) | 1.036 (0.046, 14.348) | 1.919 (0.186, 20.697) |
Gibbs Variable Selection for Covariates (modifiers). Covariates with Values Higher Than 0.5 Will Be Included in the Analysis | |||
---|---|---|---|
Mediator: Stage | YOST | CDI | POV |
Age | 1 | 0.001 | 0.972 |
BMI | 0.497 | 0.073 | 0.480 |
Self-reported SES | 0.449 | 0.032 | 0.397 |
Smoking | 0.485 | 1 | 0.491 |
Physical activity | 0.507 | 0.029 | 0.511 |
Analysis result with selected modifiers. Each cell shows a posterior mean and its 95% credible interval | |||
Direct effect (Deprivation indices) | 0.736 (0.566, 0.954) | 1.036 (0.998, 1.075) | 1.823 (0.777, 5.187) |
Indirect effect Through stage 1 | 0.971 (0.073, 10.406) | 0.971 (0.135, 7.717) | 0.99 (0.242, 4.631) |
Indirect effect Through stage 2 | 0.980 (0.292, 3.002) | 0.989 (0.292, 3.369) | 1.016 (0.413, 2.398) |
Indirect effect Through stage 3 | 1.011 (0.101, 12.289) | 1.01 (0.303, 3.504) | 1.071 (0.124, 8.947) |
Total effect 1 (Direct + Indirect through stage 1) | 0.715 (0.050, 7.672) | 1.006 (0.141, 7.987) | 1.806 (0.345, 11.422) |
Total effect 2 (Direct + Indirect through stage 2) | 0.721 (0.211, 2.186) | 1.025 (0.305, 3.474) | 1.852 (0.598, 6.724) |
Total effect 3 (Direct + Indirect through stage 3) | 0.745 (0.073, 7.829) | 1.047 (0.312, 3.616) | 1.953 (0.154, 20.444) |
Gibbs Variable Selection for Covariates (Modifiers). Covariates with Values Higher than 0.5 Will Be Included in the Analysis | |||||
---|---|---|---|---|---|
Mediator: Residual Disease | URB | MOB | SES | MICA | ADI |
Age | 1 | 0 | 0.609 | 0 | 1 |
BMI | 0.499 | 0.007 | 0.109 | 0.1 | 0.512 |
Self-reported SES | 0.392 | 0.002 | 0.020 | 0.004 | 0.369 |
Smoking | 0.462 | 0 | 0.003 | 1 | 0.460 |
Physical activity | 0.484 | 1 | 1 | 0 | 0.436 |
Analysis result with selected modifiers. Each cell shows a posterior mean and its 95% credible interval | |||||
Direct effect (Deprivation indices) | 0.723 (0.592, 0.879) | 0.883 (0.786, 0.999) | 0.891 (0.812, 0.974) | 1.205 (1.016, 1.459) | 1.245 (1.040,1.491) |
Indirect effect Through level 1 | 1.039 (0.277, 4.232) | 1.028 (0.096, 13.161) | 0.980 (0.249, 3.756) | 0.977 (0.148, 5.168) | 1.016 (0.207, 6.387) |
Indirect effect Through level 2 | 0.972 (0.213, 3.299) | 1.001 (0.313, 3.072) | 1.028 (0.332, 3.718) | 1.009 (0.234, 4.694) | 0.987 (0.399, 2.195) |
Total effect 1 (Direct + Indirect through level 1) | 0.751 (0.197, 3.14) | 0.907 (0.086, 11.045) | 0.873 (0.221, 3.366) | 1.177 (0.166, 6.67) | 1.265 (0.259, 7.898) |
Total effect 2 (Direct + Indirect through level 2) | 0.702 (0.150, 2.403) | 0.884 (0.277, 2.708) | 0.916 (0.299, 3.267) | 1.216 (0.284, 5.561) | 1.228 (0.494, 2.72) |
Gibbs Variable Selection for Covariates (Modifiers). Covariates with Values Higher Than 0.5 Will Be Included in the Analysis | |||
---|---|---|---|
Mediator: Residual Disease | YOST | CDI | POV |
Age | 1 | 1 | 1 |
BMI | 0.50 | 0.467 | 0.510 |
Self-reported SES | 0.476 | 0.309 | 0.441 |
Smoking | 0.480 | 0.454 | 0.485 |
Physical activity | 0.495 | 0.409 | 0.494 |
Analysis result with selected modifiers. Each cell shows a posterior mean and its 95% credible interval | |||
Direct effect (Deprivation indices) | 0.816 (0.664, 1.002) | 1.082 (1.026,1.147) | 1.751 (0.763, 4.518) |
Indirect effect Through level 1 | 1.037 (0.149, 7.080) | 0.993 (0.325, 3.271) | 0.978 (0.116, 6.896) |
Indirect effect Through level 2 | 0.978 (0.299, 3.111) | 1.011 (0.162, 5.797) | 0.996 (0.365, 2.820) |
Total effect 1 (Direct + Indirect through level 1) | 0.846 (0.123, 5.857) | 1.075 (0.347, 3.545) | 1.712 (0.195, 14.927) |
Total effect 2 (Direct + Indirect through level 2) | 0.798 (0.234, 2.565) | 1.094 (0.176, 6.572) | 1.744 (0.492, 6.091) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawson, A.B.; Kim, J.; Johnson, C.; Ratnapradipa, K.L.; Alberg, A.J.; Akonde, M.; Hastert, T.; Bandera, E.V.; Terry, P.; Mandle, H.; et al. The Association between Mediated Deprivation and Ovarian Cancer Survival among African American Women. Cancers 2023, 15, 4848. https://doi.org/10.3390/cancers15194848
Lawson AB, Kim J, Johnson C, Ratnapradipa KL, Alberg AJ, Akonde M, Hastert T, Bandera EV, Terry P, Mandle H, et al. The Association between Mediated Deprivation and Ovarian Cancer Survival among African American Women. Cancers. 2023; 15(19):4848. https://doi.org/10.3390/cancers15194848
Chicago/Turabian StyleLawson, Andrew B., Joanne Kim, Courtney Johnson, Kendra L. Ratnapradipa, Anthony J. Alberg, Maxwell Akonde, Theresa Hastert, Elisa V. Bandera, Paul Terry, Hannah Mandle, and et al. 2023. "The Association between Mediated Deprivation and Ovarian Cancer Survival among African American Women" Cancers 15, no. 19: 4848. https://doi.org/10.3390/cancers15194848
APA StyleLawson, A. B., Kim, J., Johnson, C., Ratnapradipa, K. L., Alberg, A. J., Akonde, M., Hastert, T., Bandera, E. V., Terry, P., Mandle, H., Cote, M. L., Bondy, M., Marks, J., Peres, L. C., Schildkraut, J., & Peters, E. S. (2023). The Association between Mediated Deprivation and Ovarian Cancer Survival among African American Women. Cancers, 15(19), 4848. https://doi.org/10.3390/cancers15194848