Ocular Complications of Radiotherapy in Uveal Melanoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Uveal Melanoma
- Small: 1.5–2.4 mm in height and 5–16 mm in diameter;
- Medium: 2.5–10 mm in height and ≤16 mm in diameter;
- Large: >10 mm in height and >16 mm in diameter.
3.2. Radiation Therapy in Uveal Melanoma
3.2.1. Mechanism of Action
3.2.2. Types of Radiation Therapy in Uveal Melanoma—Brachytherapy
3.2.3. Types of Radiation Therapy in Uveal Melanoma—Proton Beam Therapy
3.2.4. Types of Radiation Therapy in Uveal Melanoma—Stereotactic Radiotherapy and Radiosurgery
3.2.5. Recurrences after Radiation Therapy
3.3. Complications of Radiation Therapy
3.3.1. Ocular Surface
3.3.2. Sclera
3.3.3. Iris
3.3.4. Intraocular Inflammation
3.3.5. Lens and Cataract
3.3.6. Vitreous Hemorrhage
3.3.7. Retinal Complications—Retinal Detachment
3.3.8. Retinal Complications—Radiation Retinopathy
- Grade zero: no vascular abnormality except in the tumor area (no retinal vascular leakage);
- Grade one: late foveal leakage;
- Grade two: grade one plus peripheral vascular leakage;
- Grade three: grade two plus nonperfusion greater than one disc area in the midphase;
- Grade four: grade three plus retinal neovascularization.
3.3.9. Retinal Complications—Radiation Maculopathy
- Noncystoid extrafoveal;
- Cystoid extrafoveal;
- Noncystoid foveal;
- Mild or moderate cystoid foveal;
- Severe cystoid foveal.
3.3.10. Choroid
3.3.11. Optic Neuropathy
3.3.12. Secondary Glaucoma—Neovascular Glaucoma
3.3.13. Toxic Tumor Syndrome
3.3.14. Tumor-Related Lipid Exudation
3.3.15. Sympathetic Ophthalmia
3.3.16. Ocular Adnexa
3.3.17. Decrease in Visual Acuity
3.3.18. Enucleation due to Complications
3.4. Reducing Complication Rates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Souto, E.B.; Zielinska, A.; Luis, M.; Carbone, C.; Martins-Gomes, C.; Silva, A.M. Uveal melanoma: Physiopathology and new in situ-specific therapies. Cancer Chemother. Pharmacol. 2019, 84, 15–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furdova, A.; Babal, P.; Kobzova, D.; Zahorjanova, P.; Kapitanova, K.; Sramka, M.; Kralik, G.; Furda, R.; Krasnik, V. Uveal melanoma survival rates after single dose stereotactic radiosurgery. Neoplasma 2018, 65, 965–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foti, P.V.; Travali, M.; Farina, R.; Palmucci, S.; Spatola, C.; Liardo, R.L.E.; Milazzotto, R.; Raffaele, L.; Salamone, V.; Caltabiano, R.; et al. Diagnostic methods and therapeutic options of uveal melanoma with emphasis on MR imaging—Part II: Treatment indications and complications. Insights Into Imaging 2021, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Sarici, A.M.; Pazarli, H. Gamma-knife-based stereotactic radiosurgery for medium- and large-sized posterior uveal melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 251, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Mehta, M. Clinical Outcomes of Proton Radiotherapy for Uveal Melanoma. Clin. Oncol. 2016, 28, e17–e27. [Google Scholar] [CrossRef]
- Cicinelli, M.V.; Di Nicola, M.; Gigliotti, C.R.; Battista, M.; Miserocchi, E.; Vecchio, A.; Mortini, P.; Bandello, F.; Modorati, G.M. Predictive factors of radio-induced complications in 194 eyes undergoing gamma knife radiosurgery for uveal melanoma. Acta Ophthalmol. 2021, 99, e1458–e1466. [Google Scholar] [CrossRef]
- Joye, R.P.; Williams, L.B.; Chan, M.D.; Witkin, A.J.; Schirmer, C.M.; Mignano, J.E.; Wazer, D.E.; Yao, K.C.; Wu, J.K.; Duker, J.S. Local Control and Results of Leksell Gamma Knife Therapy for the Treatment of Uveal Melanoma. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 125–131. [Google Scholar] [CrossRef]
- Tseng, V.L.; Coleman, A.L.; Zhang, Z.-F.; McCannel, T.A. Complications from Plaque versus Proton Beam Therapy for Choroidal Melanoma: A Qualitative Systematic Review. J. Cancer Ther. 2016, 07, 169–185. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.D.; Bergman, L.; Seregard, S. Uveal Melanoma: Epidemiologic Aspects. Ophthalmol. Clin. N. Am. 2005, 18, 75–84. [Google Scholar] [CrossRef]
- Kapoor, A.; Beniwal, V.; Beniwal, S.; Mathur, H.; Kumar, H.S. Management of uveal tract melanoma: A comprehensive review. J. Egypt. Natl. Cancer Inst. 2016, 28, 65–72. [Google Scholar] [CrossRef]
- Weber, B.; Paton, K.; Ma, R.; Pickles, T. Outcomes of Proton Beam Radiotherapy for Large Non-Peripapillary Choroidal and Ciliary Body Melanoma at TRIUMF and the BC Cancer Agency. Ocul. Oncol. Pathol. 2015, 2, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Margo, C.E. The Collaborative Ocular Melanoma Study: An Overview. Cancer Control. 2004, 11, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Collaborative Ocular Melanoma Study Group Comparison of Clinical. Echographic, and Histopathological Measurements from Eyes with Medium-Sized Choroidal Melanomas in the Collaborative Ocular Melanoma Study: COMS Report No. 21. Arch. Ophthalmol. 2003, 121, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Collaborative Ocular Melanoma Study Group. Assessment of Metastatic Disease Status at Death in 435 Patients With Large Choroidal Melanoma in the Collaborative Ocular Melanoma Study (COMS). Arch. Ophthalmol. 2001, 119, 670–676. [Google Scholar] [CrossRef]
- Damato, B.E. Treatment Selection for Uveal Melanoma. Dev. Ophthalmol. 2011, 49, 16–26. [Google Scholar] [CrossRef]
- Modorati, G.M.; Dagan, R.; Mikkelsen, L.H.; Andreasen, S.; Ferlito, A.; Bandello, F. Gamma Knife Radiosurgery for Uveal Melanoma: A Retrospective Review of Clinical Complications in a Tertiary Referral Center. Ocul. Oncol. Pathol. 2019, 6, 115–122. [Google Scholar] [CrossRef]
- Collaborative Ocular Melanoma Study Group. The COMS Randomized Trial of Iodine 125 Brachytherapy for Choroidal Melanoma: V. Twelve-year mortality rates and prognostic factors: COMS report No. 28. Arch. Ophthalmol. 2006, 124, 1684–1693. [Google Scholar] [CrossRef]
- Dogrusöz, M.; Jager, M.J.; Damato, B. Uveal Melanoma Treatment and Prognostication. Asia-Pac. J. Ophthalmol. 2017, 6, 305. [Google Scholar] [CrossRef]
- Groenewald, C.; Konstantinidis, L.; Damato, B. Effects of radiotherapy on uveal melanomas and adjacent tissues. Eye 2012, 27, 163–171. [Google Scholar] [CrossRef]
- Karimi, S.; Arabi, A.; Siavashpour, Z.; Shahraki, T.; Ansari, I. Efficacy and complications of ruthenium-106 brachytherapy for uveal melanoma: A systematic review and meta-analysis. J. Contemp. Brachytherapy 2021, 13, 358–364. [Google Scholar] [CrossRef]
- Puusaari, I.; Heikkonen, J.; Kivelä, T. Ocular complications after iodine brachytherapy for large uveal melanomas. Ophthalmology 2004, 111, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Emara, K.; Weisbrod, D.J.; Sahgal, A.; McGowan, H.; Jaywant, S.; Michaels, H.; Payne, D.; Pintilie, M.; Laperriere, N.; Simpson, E. Stereotactic radiotherapy in the treatment of juxtapapillary choroidal melanoma: Preliminary results. Int. J. Radiat. Oncol. 2004, 59, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Schmelter, V.; Heidorn, S.; Muacevic, A.; Priglinger, S.G.; Foerster, P.; Liegl, R. Robotic assisted CyberKnife radiosurgery for the treatment of iris melanoma. Sci. Rep. 2021, 11, 5685. [Google Scholar] [CrossRef] [PubMed]
- Suesskind, D.; Scheiderbauer, J.; Buchgeister, M.; Partsch, M.; Budach, W.; Bartz-Schmidt, K.U.; Ritz, R.; Grisanti, S.; Paulsen, F. Retrospective Evaluation of Patients With Uveal Melanoma Treated by Stereotactic Radiosurgery With and Without Tumor Resection. JAMA Ophthalmol 2013, 131, 630–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desjardins, L.; Rouic, L.L.-L.; Levy-Gabriel, C.; Cassoux, N.; Dendale, R.; Mazal, A.; Delacroix, S.; Sastre, X.; Plancher, C.; Asselain, B. Treatment of Uveal Melanoma by Accelerated Proton Beam. Dev. Ophthalmol. 2011, 49, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Dalvin, L.A.; Mazloumi, M.M.; Martin, A.; Yaghy, A.; Yang, X.M.; Bakhtiari, S.B.; Li, L.B.; Jennings, E.B.; Mashayekhi, A.; et al. Prophylactic Intravitreal Bevacizumab After Plaque Radiotherapy for Uveal Melanoma: Analysis of Visual Acuity, Tumor Response, and Radiation Complications in 1131 Eyes Based on Patient Age. Asia-Pac. J. Ophthalmol. 2020, 9, 29–38. [Google Scholar] [CrossRef]
- Tarmann, L.; Wackernagel, W.; Ivastinovic, D.; Schneider, M.; Winkler, P.; Langmann, G. Tumor parameters predict the risk of side effects after ruthenium-106 plaque brachytherapy of uveal melanomas. PLoS ONE 2017, 12, e0183833. [Google Scholar] [CrossRef] [Green Version]
- Summanen, P.; Immonen, I.; Kivela, T.; Tommila, P.; Heikkonen, J.; Tarkkanen, A. Radiation related complications after ruthenium plaque radiotherapy of uveal melanoma. Br. J. Ophthalmol. 1996, 80, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.C.; Oliver, S.; McCannel, T.A. Ocular complications following I-125 brachytherapy for choroidal melanoma. Eye 2009, 23, 1254–1268. [Google Scholar] [CrossRef] [Green Version]
- Seibel, I.; Cordini, D.; Hager, A.; Riechardt, A.I.; Rehak, M.; Böker, A.; Böhmer, D.; Heufelder, J.; Joussen, A.M. Cataract development in patients treated with proton beam therapy for uveal melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1625–1630. [Google Scholar] [CrossRef]
- Yazici, G.; Kiratli, H.; Ozyigit, G.; Sari, S.Y.; Cengiz, M.; Tarlan, B.; Mocan, B.O.; Zorlu, F. Stereotactic Radiosurgery and Fractionated Stereotactic Radiation Therapy for the Treatment of Uveal Melanoma. Int. J. Radiat. Oncol. 2017, 98, 152–158. [Google Scholar] [CrossRef]
- Puusaari, I.; Heikkonen, J.; Kivelä, T. Effect of Radiation Dose on Ocular Complications after Iodine Brachytherapy for Large Uveal Melanoma: Empirical Data and Simulation of Collimating Plaques. Investig. Opthalmol. Vis. Sci. 2004, 45, 3425–3434. [Google Scholar] [CrossRef]
- Siedlecki, J.; Reiterer, V.; Leicht, S.; Foerster, P.; Kortüm, K.; Schaller, U.; Priglinger, S.; Fuerweger, C.; Muacevic, A.; Eibl-Lindner, K. Incidence of secondary glaucoma after treatment of uveal melanoma with robotic radiosurgery versus brachytherapy. Acta Ophthalmol. 2017, 95, e734–e739. [Google Scholar] [CrossRef] [Green Version]
- Thariat, J.; Grange, J.-D.; Mosci, C.; Rosier, L.; Maschi, C.; Lanza, F.; Nguyen, A.M.; Jaspart, F.; Bacin, F.; Bonnin, N.; et al. Visual Outcomes of Parapapillary Uveal Melanomas Following Proton Beam Therapy. Int. J. Radiat. Oncol. 2015, 95, 328–335. [Google Scholar] [CrossRef]
- Gigliotti, C.R.; Modorati, G.; Di Nicola, M.; Fiorino, C.; Perna, L.A.; Miserocchi, E.; Franzin, A.; Picozzi, P.; Bolognesi, A.; Mortini, P.; et al. Predictors of radio-induced visual impairment after radiosurgery for uveal melanoma. Br. J. Ophthalmol. 2017, 102, 833–839. [Google Scholar] [CrossRef]
- Seibel, I.; Cordini, D.; Hager, A.; Tillner, J.; Riechardt, A.I.; Heufelder, J.; Davids, A.M.; Rehak, M.; Joussen, A.M. Predictive risk factors for radiation retinopathy and optic neuropathy after proton beam therapy for uveal melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1787–1792. [Google Scholar] [CrossRef]
- Özcan, G.; Gündüz, A.K.; Mirzayev, I.; Oysul, K.; Uysal, H. Early Results of Stereotactic Radiosurgery in Uveal Melanoma and Risk Factors for Radiation Retinopathy. Turk. J. Ophthalmol. 2020, 50, 156–162. [Google Scholar] [CrossRef]
- Pagliara, M.M.; Tagliaferri, L.; Azario, L.; Lenkowicz, J.; Lanza, A.; Autorino, R.; Caputo, C.G.; Gambacorta, M.A.; Valentini, V.; Blasi, M.A. Ruthenium brachytherapy for uveal melanomas: Factors affecting the development of radiation complications. Brachytherapy 2018, 17, 432–438. [Google Scholar] [CrossRef]
- Heimann, H.; Coupland, S.E.; Gochman, R.; Hellmich, M.; Foerster, M.H. Alterations in expression of mucin, tenascin-c and syndecan-1 in the conjunctiva following retinal surgery and plaque radiotherapy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 239, 488–495. [Google Scholar] [CrossRef]
- Passarin, O.; Zografos, L.; Schalenbourg, A.; Moulin, A.; Hospital, J.E. Scleritis after Proton Therapy in Uveal Melanoma. Klin Monatsbl. Augenheilkd 2012, 229, 395–398. [Google Scholar] [CrossRef]
- Kaliki, S.; Shields, C.L.; Rojanaporn, D.; Badal, J.; Devisetty, L.; Emrich, J.; Komarnicky, L.; Shields, J.A. Scleral Necrosis after Plaque Radiotherapy of Uveal Melanoma: A Case-Control Study. Ophthalmology 2013, 120, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Gündüz, K.; Shields, C.L.; Shields, J.A.; Cater, J.; Freire, J.E.; Brady, L.W. Plaque Radiotherapy of Uveal Melanoma With Predominant Ciliary Body Involvement. Arch. Ophthalmol. 1999, 117, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, Z.M.; Huth, B.; Augsburger, J.J. Scleral necrosis in patients with posterior uveal melanomas evaluated by transcleral fine needle aspiration biopsy and treated by 125I plaque. Arq. Bras. Oftalmol. 2018, 81, 33. [Google Scholar] [CrossRef] [PubMed]
- Jabbarli, L.; Guberina, M.; Biewald, E.; Flühs, D.; Guberina, N.; Le Guin, C.H.D.; Sauerwein, W.; Bornfeld, N.; Stuschke, M.; Bechrakis, N.E. Scleral necrosis after brachytherapy for uveal melanoma: Analysis of risk factors. Clin. Exp. Ophthalmol. 2021, 49, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.E.; Grewal, D.S.; Mruthyunjaya, P. Conjunctival Dehiscence and Scleral Necrosis following Iodine-125 Plaque Brachytherapy for Uveal Melanoma: A Report of 3 Cases. Ocul. Oncol. Pathol. 2018, 4, 291–296. [Google Scholar] [CrossRef]
- Lumbroso, L.; Desjardins, L.; Levy, C.; Plancher, C.; Frau, E.; D’Hermies, F.; Schlienger, P.; Mammar, H.; Delacroix, S.; Nauraye, C.; et al. Intraocular inflammation after proton beam irradiation for uveal melanoma. Br. J. Ophthalmol. 2001, 85, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Tran, B.-K.; Schalenbourg, A.; Bovey, E.; Zografos, L.; Wolfensberger, T.J. Role of Vitreoretinal Surgery in Maximizing Treatment Outcome Following Complications after Proton Therapy for Uveal Melanoma. Retina 2013, 33, 1777–1783. [Google Scholar] [CrossRef] [Green Version]
- Bansal, A.S.; Bianciotto, C.G.; Maguire, J.I.; Regillo, C.D.; Shields, J.A.; Shields, C.L. Safety of Pars Plana Vitrectomy in Eyes With Plaque-Irradiated Posterior Uveal Melanoma. Arch. Ophthalmol. 2012, 130, 1285–1290. [Google Scholar] [CrossRef] [Green Version]
- Beykin, G.; Pe’Er, J.; Hemo, Y.; Frenkel, S.; Chowers, I. Pars plana vitrectomy to repair retinal detachment following brachytherapy for uveal melanoma. Br. J. Ophthalmol. 2013, 97, 1534–1537. [Google Scholar] [CrossRef]
- Harbour, J.W.; Ahmad, S.; El-Bash, M. Rate of resolution of exudative retinal detachment after plaque radiotherapy for uveal melanoma. Arch. Ophthalmol. 2002, 120, 1463–1469. [Google Scholar] [CrossRef]
- McCannel, T.A.; Kim, E.; Kamrava, M.; Lamb, J.; Caprioli, J.; Yang, D.; McCannel, C.A. New Ultra–Wide-Field Angiographic Grading Scheme for Radiation Retinopathy after Iodine-125 Brachytherapy for Uveal Melanoma. Retina 2018, 38, 2415–2421. [Google Scholar] [CrossRef]
- Horgan, N.; Shields, C.L.; Mashayekhi, A.; Shields, J.A. Classification and treatment of radiation maculopathy. Curr. Opin. Ophthalmol. 2010, 21, 233–238. [Google Scholar] [CrossRef]
- Fallico, M.; Chronopoulos, A.; Schutz, J.S.; Reibaldi, M. Treatment of radiation maculopathy and radiation-induced macular edema: A systematic review. Surv. Ophthalmol. 2020, 66, 441–460. [Google Scholar] [CrossRef]
- Reichenbach, A.; Wurm, A.; Pannicke, T.; Iandiev, I.; Bringmann, A. Müller Cells as Players in Retinal Degeneration and Edema. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 245, 627–636. [Google Scholar] [CrossRef]
- Frizziero, L.; Parrozzani, R.; Trainiti, S.; Pilotto, E.; Miglionico, G.; Pulze, S.; Midena, E. Intravitreal dexamethasone implant in radiation-induced macular oedema. Br. J. Ophthalmol. 2017, 101, 1699–1703. [Google Scholar] [CrossRef]
- Shields, C.L.; Demirci, H.; Marr, B.P.; Mashayekhi, A.; Dai, V.V.; Materin, M.A.; Shields, J.A. Intravitreal Triamcinolone Acetonide for Acute Radiation Papillopathy. Retina 2006, 26, 537–544. [Google Scholar] [CrossRef]
- Levy, R.L.; Miller, N.R. Hyperbaric oxygen therapy for radiation-induced optic neuropathy. Ann. Acad. Med. Singap. 2006, 35, 151–157. [Google Scholar]
- Riechardt, A.I.; Cordini, D.; Rehak, M.; Hager, A.; Seibel, I.; Böker, A.; Gundlach, E.; Heufelder, J.; Joussen, A.M. Trabeculectomy in patients with uveal melanoma after proton beam therapy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1379–1385. [Google Scholar] [CrossRef]
- Sharkawi, E.; Oleszczuk, J.D.; Bergin, C.; Zografos, L. Baerveldt shunts in the treatment of glaucoma secondary to anterior uveal melanoma and proton beam radiotherapy. Br. J. Ophthalmol. 2012, 96, 1104–1107. [Google Scholar] [CrossRef]
- Seibel, I.; Riechardt, A.I.; Heufelder, J.; Cordini, D.; Joussen, A.M. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation. Am. J. Ophthalmol. 2017, 178, 94–100. [Google Scholar] [CrossRef]
- Brour, J.; Desjardins, L.; Lehoang, P.; Bodaghi, B.; Lumbroso-Lerouic, L.; Dendale, R.; Cassoux, N. Sympathetic Ophthalmia after Proton Beam Irradiation for Choroïdal Melanoma. Ocul. Immunol. Inflamm. 2012, 20, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Detorakis, E.T.; Engstrom, R.E.; Wallace, R.; Straatsma, B.R. Iris and anterior chamber angle neovascularization after iodine 125 brachytherapy for uveal melanoma. Ophthalmology 2005, 112, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Mahdjoubi, A.; Najean, M.; Lemaitre, S.; Dureau, S.; Dendale, R.; Levy, C.; Rouic, L.L.-L.; Desjardins, L.; Cassoux, N. Intravitreal bevacizumab for neovascular glaucoma in uveal melanoma treated by proton beam therapy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 256, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, A.; Tuncer, S.; Shields, C.L.; Shields, J.A. Tumor-related Lipid Exudation and Associated Tumor-related Complications after Plaque Radiotherapy of Posterior Uveal Melanoma. Eur. J. Ophthalmol. 2013, 23, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.D.; Harbour, J.W. Lipid Exudation Following Plaque Radiotherapy for Posterior Uveal Melanoma. Am. J. Ophthalmol. 2006, 141, 594–595.e1. [Google Scholar] [CrossRef]
- Mashayekhi, A.; Tuncer, S.; Shields, C.L.; Shields, J.A. Tumor-related Lipid Exudation after Plaque Radiotherapy of Choroidal Melanoma: The Role of Bruch’s Membrane Rupture. Ophthalmology 2010, 117, 1013–1023. [Google Scholar] [CrossRef]
- Choi, Y.J.; Kim, T.W.; Kim, S.; Choung, H.; Lee, M.J.; Kim, N.; Khwarg, S.I.; Yu, Y.S. Effects on Periocular Tissues after Proton Beam Radiation Therapy for Intraocular Tumors. J. Korean Med. Sci. 2018, 33, e120. [Google Scholar] [CrossRef]
- Sener, E.C.; Kiratli, H.; Gedik, S.; Sanac, A.S. Ocular motility disturbances after episcleral plaque brachytherapy for uveal melanoma. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2004, 8, 38–45. [Google Scholar] [CrossRef]
- Nasser, Q.J.; Gombos, D.; Williams, M.D.; Guadagnolo, B.A.; Morrison, W.H.; Garden, A.; Beadle, B.M.; Canseco, E.; Esmaeli, B. Management of Radiation-Induced Severe Anophthalmic Socket Contracture in Patients With Uveal Melanoma. Ophthalmic Plast. Reconstr. Surg. 2012, 28, 208–212. [Google Scholar] [CrossRef]
- Papakostas, T.D.; Morrison, M.A.; Lane, A.M.; Awh, C.; DeAngelis, M.M.; Gragoudas, E.S.; Kim, I.K. Genetic Risk Factors for Radiation Vasculopathy. Investig. Opthalmol. Vis. Sci. 2018, 59, 1547–1553. [Google Scholar] [CrossRef] [Green Version]
- García-Alvarez, C.; Saornil, M.A.; López-Lara, F.; Almaraz, A.; Muñoz, M.F.; Frutos-Baraja, J.; Muiños, Y. Episcleral brachytherapy for uveal melanoma: Analysis of 136 cases. Clin. Transl. Oncol. 2012, 14, 350–355. [Google Scholar] [CrossRef]
- Yang, X.; Dalvin, L.A.; Mazloumi, M.; Chang, M.; Shields, J.A.; Mashayekhi, A.; Shields, C.L. Impact of uveal melanoma thickness on post-plaque radiotherapy outcomes in the prophylactic anti-vascular endothelial growth factor era in 1131 patients. Clin. Exp. Ophthalmol. 2020, 48, 610–623. [Google Scholar] [CrossRef]
- Parker, T.; Rigney, G.; Kallos, J.; Stefko, S.T.; Kano, H.; Niranjan, A.; Green, A.L.; Aziz, T.; Rath, P.; Lunsford, L.D. Gamma knife radiosurgery for uveal melanomas and metastases: A systematic review and meta-analysis. Lancet Oncol. 2020, 21, 1526–1536. [Google Scholar] [CrossRef]
- Murray, T.G.; Markoe, A.M.; Gold, A.S.; Ehlies, F.; Bermudez, E.; Wildner, A.; Latiff, A. Long-Term Followup Comparing Two Treatment Dosing Strategies of 125I Plaque Radiotherapy in the Management of Small/Medium Posterior Uveal Melanoma. J. Ophthalmol. 2013, 2013, 517032. [Google Scholar] [CrossRef] [Green Version]
- Perez, B.A.; Mettu, P.; Vajzovic, L.; Rivera, D.; Alkaissi, A.; Steffey, B.A.; Cai, J.; Stinnett, S.; Dutton, J.J.; Buckley, E.G.; et al. Uveal Melanoma Treated With Iodine-125 Episcleral Plaque: An Analysis of Dose on Disease Control and Visual Outcomes. Int. J. Radiat. Oncol. 2014, 89, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Damato, B.; Heimann, H. Personalized Treatment of Uveal Melanoma. Eye 2013, 27, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Laguardia, M.; Damato, B. Eccentric Ruthenium Plaque Radiotherapy of Posterior Choroidal Melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 1533–1540. [Google Scholar] [CrossRef]
- Böker, A.; Pilger, D.; Cordini, D.; Seibel, I.; Riechardt, A.I.; Joussen, A.M.; Bechrakis, N.E. Neoadjuvant proton beam irradiation vs. adjuvant ruthenium brachytherapy in transscleral resection of uveal melanoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1767–1775. [Google Scholar] [CrossRef]
Complication | Ru-106 Brachytherapy | I-125 Brachytherapy | PBT | SRS |
---|---|---|---|---|
Cataract | 4.2–53.8% | 8–69% | 20–62% | 15–67.8% |
Rubeosis iridis | 4.8–12% | 4–19% | 12–45% | - |
Secondary glaucoma | 2–12% | - | 7–30% | 5.6–15.2% |
Neovascular glaucoma | 10% | 2–45% | 11.7–23% | 3–35% |
Vitreous hemorrhage | 12.7–15% | 3.1–36% | 9–14% | 4–14.4% |
Retinal detachment | 17.4% | 7.3–25% | 38% | - |
Radiation retinopathy | 20–53% | 10–62.8% | 23–68.1% | 5–44% |
Radiation maculopathy | 19.6–50% | 13–52% | 30–66.5% | 9–30% |
Optic neuropathy | 2–32.8% | 3.6–46% | 7–47.5% | 9–41% |
Complication | Ru-106 Brachytherapy | I-125 Brachytherapy | PBT | SRS |
---|---|---|---|---|
Cataract | -tumor height > 5 mm -increased LBD -anterior location -radiation dose to tumor apex > 90 Gy [27,28] | -increased tumor height -LBD > 10 mm -high radiation dose to the lens -male gender -age > 65 years [21,29] | -tumor close to the optic nerve -high radiation dose to the lens -advanced age [30] | -tumor dimensions (T3 or T4 in the TNM classification) -tumor further from the fovea/anteriorly located -high radiation dose to the lens [4,31] |
Rubeosis iridis | -LBD > 15 mm [28] | -increased tumor height -disinsertion of horizontal rectus muscle -high radiation dose to the opposite retina [29,32] | - | - |
Secondary glaucoma | -mushroom-like shape -LBD > 15 mm -distance between tumor and disc margin > 10 mm [27,28] | -increased tumor thickness -IOP at diagnosis -pretreatment exudative retinal detachment -increased radiation dose to the opposite retina [21,32,33] | - | -increased tumor thickness [33] |
Neovascular glaucoma | -LBD > 15 mm -TNM class T3 and T4 [28] | -increased tumor height [29] | -proximity to the papilla [34] | -increased tumor thickness >7.4 mm [6]/> 8.7 mm [35] -less pigmented UM -Bruch’s membrane rupture -the volume of the posterior pole receiving > 20 Gy -peripapillary location -anteriorly located tumor [4] |
Radiation retinopathy | -increased radiation dose to tumor apex [27] | -increased tumor thickness -tumor location -higher radiation dose -younger age [26,29] | -tumor less than 2.5 mm from macula -increased tumor thickness [36] | -tumor located in the macular region -reduced distance between tumor and optic disc -radiation dose > 14.9 Gy -diabetes mellitus -younger age [6,35,37] |
Radiation maculopathy | -mushroom-like shape -increased tumor height and volume -distance between tumor margin and fovea < 2 mm -radiation dose to fovea >50 Gy -subretinal fluid -diabetes mellitus [27,28,38] | -tumor height > 4 mm -increased LBD -radiation dose to macula > 90 Gy -proximity of tumor to foveola -male gender -younger age [26,29] | -tumor proximity to fovea -high radiation dose to fovea [36] | - |
Optic neuropathy | -distance between tumor and disc < 1.5 mm/1 DD -increased LBD [27,28] | -dose to optic nerve > 55 Gy -distance between tumor and optic disc < 4 mm -increased LBD -ciliary body involvement [21,29] | -tumor proximity to papilla -high radiation dose to the optic disc [36] | -tumor close to the papilla -high radiation dose to the optic nerve -distance of the optic nerve from the prescription isodose [6,35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemba, M.; Dumitrescu, O.-M.; Gheorghe, A.G.; Radu, M.; Ionescu, M.A.; Vatafu, A.; Dinu, V. Ocular Complications of Radiotherapy in Uveal Melanoma. Cancers 2023, 15, 333. https://doi.org/10.3390/cancers15020333
Zemba M, Dumitrescu O-M, Gheorghe AG, Radu M, Ionescu MA, Vatafu A, Dinu V. Ocular Complications of Radiotherapy in Uveal Melanoma. Cancers. 2023; 15(2):333. https://doi.org/10.3390/cancers15020333
Chicago/Turabian StyleZemba, Mihail, Otilia-Maria Dumitrescu, Alina Gabriela Gheorghe, Madalina Radu, Mihai Alexandru Ionescu, Andrei Vatafu, and Valentin Dinu. 2023. "Ocular Complications of Radiotherapy in Uveal Melanoma" Cancers 15, no. 2: 333. https://doi.org/10.3390/cancers15020333
APA StyleZemba, M., Dumitrescu, O. -M., Gheorghe, A. G., Radu, M., Ionescu, M. A., Vatafu, A., & Dinu, V. (2023). Ocular Complications of Radiotherapy in Uveal Melanoma. Cancers, 15(2), 333. https://doi.org/10.3390/cancers15020333