The Role of PET Imaging in the Differential Diagnosis between Radiation Necrosis and Recurrent Disease in Irradiated Adult-Type Diffuse Gliomas: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Data Extraction and Analysis
2.4. Analysis of Quality
3. Results
3.1. Study Selection
3.2. Study Characteristics and Risk of Bias within Studies
3.3. Main Results
3.3.1. Imaging of Glucose Metabolism: [18F]FDG
3.3.2. Amino Acid Tracers: [18F]FET and [11C]MET
3.3.3. Targeting Cell Membrane Metabolism: [11C]CHO
3.3.4. Targeting Glutamate Carboxypeptidase II (Prostate-Specific Membrane Antigen): [68Ga]Ga-PSMA-11
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Burger, C.; Mahaley, S.; Dudka, L.; Vogel, F.S. The morphologic effects of radiation administered therapeutically for intracranial gliomas.A Postmortem study of 25 cases. Cancer 1978, 44, 1256–1272. [Google Scholar] [CrossRef]
- Rabin, B.M.; Meyer, J.R.; Berlin, J.W.; Marymount, M.H.; Palka, P.S.; Russell, E.J. Radiation-induced Changes in the Central Nervous System and Head and Neck. Radiographics 1996, 16, 1055–1072. [Google Scholar] [CrossRef]
- Ruben, J.D.; Dally, M.; Bailey, M.; Smith, R.; McLean, C.A.; Fedele, P. Cerebral radiation necrosis: Incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 499–508. [Google Scholar] [CrossRef]
- Kumar, A.J.; Leeds, N.E.; Fuller, G.N.; Van Tassel, P.; Maor, M.H.; Sawaya, R.E.; Levin, V.A. Malignant gliomas: MR imaging spectrum of radiation therapy-and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000, 217, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Brandes, A.A.; Tosoni, A.; Spagnolli, F.; Frezza, G.; Leonardi, M.; Calbucci, F.; Franceschi, E. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: Pitfalls in neurooncology. Neuro Oncol. 2008, 10, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Verma, N.; Cowperthwaite, M.C.; Burnett, M.G.; Markey, M.K. Differentiating tumor recurrence from treatment necrosis: A review of neuro-oncologic imaging strategies. Neuro Oncol. 2013, 15, 515–534. [Google Scholar] [CrossRef] [Green Version]
- Zikou, A.; Sioka, C.; Alexiou, G.A.; Fotopoulos, A.; Voulgaris, S.; Argyropoulou, M.I. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas. Contrast Media Mol. Imaging 2018, 2018, 6828396. [Google Scholar] [CrossRef]
- Law, I.; Albert, N.L.; Arbizu, J.; Boellaard, R.; Drzezga, A.; Galldiks, N.; la Fougère, C.; Langen, K.-J.; Lopci, E.; Lowe, V.; et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 540–557. [Google Scholar] [CrossRef]
- Wong, T.Z.; Van der Westhuizen, G.J.; Coleman, R.E. Positron emission tomography imaging of brain tumors. Neuroimaging Clin. N. Am. 2002, 12, 615–626. [Google Scholar] [CrossRef]
- Moreau, A.; Febvey, O.; Mognetti, T.; Frappaz, D.; Kryza, D. Contribution of Different Positron Emission Tomography Tracers in Glioma Management: Focus on Glioblastoma. Front. Oncol. 2019, 9, 1134. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, A.; Borys, D.; Gorczewska, I. Radiomics and artificial Intelligence for PET imaging analysis. Nucl. Med. Rev. Cent. East. Eur. 2020, 23, 36–39. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 89. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 320, 906–908. [Google Scholar] [CrossRef]
- Pyatigorskaya, N.; Sgard, B.; Bertaux, M.; Yahia-Cherif, L.; Kas, A. Can FDG-PET/MR help to overcome limitations of sequential MRI and PET-FDG for differential diagnosis between recurrence/progression and radionecrosis of high-grade gliomas? J. Neuroradiol. 2021, 48, 189–194. [Google Scholar] [CrossRef]
- Takenaka, S.; Asano, Y.; Shinoda, J.; Nomura, Y.; Yonezawa, S.; Miwa, K.; Yano, H.; Iwama, T. Comparison of 11c-methionine, 11c-choline, and 18f-fluorodeoxyglucose-positron emission tomography for distinguishing glioma recurrence from radiation necrosis. Neurol. Med. Chir. 2014, 54, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Qiao, Z.; Zhao, X.; Li, X.; Wang, X.; Wu, T.; Chen, Z.; Fan, D.; Chen, Q.; Ai, L. Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1400–1411. [Google Scholar] [CrossRef] [Green Version]
- Jena, A.; Taneja, S.; Jha, A.; Damesha, N.K.; Negi, P.; Jadhav, G.K.; Verma, S.M.; Sogani, S.K. Multiparametric evaluation in differentiating glioma recurrence from treatment-induced necrosis using simultaneous 18F-FDG-PET/MRI: A single-institution retrospective study. Am. J. Neuroradiol. 2017, 38, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Sogani, S.K.; Jena, A.; Taneja, S.; Gambhir, A.; Mishra, A.K.; D’Souza, M.M.; Verma, S.M.; Hazari, P.P.; Negi, P.; Jadhav, G.K.R. Potential for differentiation of glioma recurrence from radionecrosis using integrated 18F-fluoroethyl-L-tyrosine (FET) positron emission tomography/magnetic resonance imaging: A prospective evaluation. Neurol. India 2017, 65, 293–301. [Google Scholar]
- Pyka, T.; Hiob, D.; Preibisch, C.; Gempt, J.; Wiestler, B.; Schlegel, J.; Straube, C.; Zimmer, C. Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur. J. Radiol. 2018, 103, 32–37. [Google Scholar] [CrossRef]
- Terakawa, Y.; Tsuyuguchi, N.; Iwai, Y.; Yamanaka, K.; Higashiyama, S.; Takami, T.; Ohata, K. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J. Nucl. Med. 2008, 49, 694–699. [Google Scholar] [CrossRef] [Green Version]
- Minamimoto, R.; Saginoya, T.; Kondo, C.; Tomura, N.; Ito, K.; Matsuo, Y.; Matsunaga, S.; Shuto, T.; Akabane, A.; Miyata, Y.; et al. Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: Visual assessment versus quantitative assessment. PLoS ONE 2015, 10, e0132515. [Google Scholar] [CrossRef]
- Vidmar, M.S.; Doma, A.; Smrdel, U.; Zevnik, K.; Studen, A. The Value of FET PET/CT in Recurrent Glioma with a Different IDH Mutation Status: The Relationship between Imaging and Molecular Biomarkers. Int. J. Mol. Sci. 2022, 23, 6787. [Google Scholar] [CrossRef]
- Kumar, A.; ArunRaj, S.T.; Bhullar, K.; Haresh, K.P.; Gupta, S.; Ballal, S.; Yadav, M.; Singh, M.; Damle, N.A.; Garg, A.; et al. Ga-68 PSMA PET/CT in recurrent high-grade gliomas: Evaluating PSMA expression in vivo. Neuroradiology 2022, 64, 969–979. [Google Scholar] [CrossRef]
- Patronas, N.J.; Di Chiro, G.; Brooks, R.A. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982, 144, 885–889. [Google Scholar] [CrossRef]
- Doyle, W.K.; Budinger, T.F.; Valk, P.E.; Levin, V.A.; Gutin, P.H. Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and82Rb positron emission tomography. J. Comput. Assist. Tomogr. 1987, 11, 563–570. [Google Scholar] [CrossRef]
- Verger, A.; Darcourt, J. PET Imaging in Neuro-Oncology: An Update and Overview of a Rapidly Growing Area. Cancers 2022, 14, 1103. [Google Scholar] [CrossRef]
- Sollini, M.; Antunovic, L.; Chiti, A.; Kirienko, M. Towards clinical application of image mining: A systematic review on artificial intelligence and radiomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2656–2672. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Li, S.; Kuang, Y.; Hill, V.B.; Heimberger, A.B.; Zhai, L.; Zhai, S. Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Front. Oncol. 2022, 12, 924245. [Google Scholar] [CrossRef]
- Sollini, M.; Sghedoni, R.; Erba, P.A.; Cavuto, S.; Froio, A.; De Berti, G.; Pisanello, A.; Fraternali, A.; Iori, M.; Iaccarino, C.; et al. Diagnostic performances of [18F]fluorocholine positron emission tomography in brain tumors. Q. J. Nucl. Med. Mol. Imaging 2018, 62, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Río, M.; Testart Dardel, N.; Santiago Chinchilla, A.; Rodríguez-Fernández, A.; Olivares Granados, G.; Luque Caro, R.; Zurita Herrera, M.; Chamorro Santos, C.E.; Lardelli-Claret, P.; Llamas-Elvira, J.M. 18F-Fluorocholine PET/CT as a complementary tool in the follow-up of low-grade glioma: Diagnostic accuracy and clinical utility. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Withofs, N.; Kumar, R.; Alavi, A.; Hustinx, R. Facts and Fictions About [18F]FDG versus Other Tracers in Managing Patients with Brain Tumors: It Is Time to Rectify the Ongoing Misconceptions. PET Clin. 2022, 17, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.C.; Malhotra, M.; Cryan, J.F.; O’Driscoll, C.M. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br. J. Pharmacol. 2016, 3041–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jena, A.; Taneja, S.; Khan, A.A.; Sogani, S.K. Recurrent Glioma: Does Qualitative Simultaneous 18F-DOPA PET/mp-MRI Improve Diagnostic Workup? An Initial Experience. Clin. Nucl. Med. 2021, 46, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Río, M.; Rodríguez-Fernández, A.; Ramos-Font, C.; López-Ramírez, E.; Llamas-Elvira, J.M. Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 966–975. [Google Scholar] [CrossRef]
- Nihashi, T.; Dahabreh, I.J.; Terasawa, T. Diagnostic Accuracy of PET for Recurrent Glioma Diagnosis: A Meta-Analysis. Am. J. Neuroradiol. 2013, 34, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.M.; Zhang, B.; Wu, Y.W.; Zhang, W.; Chen, Y.Y. Detection of glioma recurrence by 11C-methionine positron emission tomography and dynamic susceptibility contrast-enhanced magnetic resonance imaging: A meta-analysis. Nucl. Med. Commun. 2013, 34, 758–766. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; Xie, P.; Li, W.; Li, X.; Ma, L. Comparison of magnetic resonance spectroscopy and positron emission tomography in detection of tumor recurrence in posttreatment of glioma: A diagnostic meta-analysis. Asia. Pac. J. Clin. Oncol. 2015, 11, 97–105. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Y.; Zhang, H.; Xu, G.; Chen, L. A meta-analysis comparing 18F-FLT PET with 18F-FDG PET for assessment of brain tumor recurrence. Nucl. Med. Commun. 2015, 36, 695–701. [Google Scholar] [CrossRef]
- Xu, W.; Gao, L.; Shao, A.; Zheng, J.; Zhang, J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget 2017, 8, 91030–91039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Zheng, J.; Xu, W.; Weng, J.; Gao, L.; Tao, L.; Liang, F.; Zhang, J. Accuracy of 18F-FDOPA Positron Emission Tomography and 18F-FET Positron Emission Tomography for Differentiating Radiation Necrosis from Brain Tumor Recurrence. World Neurosurg. 2018, 114, e1211–e1224. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xu, W.; Li, T.; Zheng, J.; Chen, G. Accuracy of 11C-choline positron emission tomography in differentiating glioma recurrence from radiation necrosis: A systematic review and meta-analysis. Medicine 2018, 97, e11556. [Google Scholar] [CrossRef] [PubMed]
- Furuse, M.; Nonoguchi, N.; Yamada, K.; Shiga, T.; Combes, J.D.; Ikeda, N.; Kawabata, S.; Kuroiwa, T.; Miyatake, S.I. Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: A systematic review. Radiat. Oncol. 2019, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Zwart, P.L.; van Dijken, B.R.J.; Holtman, G.A.; Stormezand, G.N.; Dierckx, R.A.J.O.; van Laar, P.J.; van der Hoorn, A. Diagnostic Accuracy of PET Tracers for the Differentiation of Tumor Progression from Treatment-Related Changes in High-Grade Glioma: A Systematic Review and Metaanalysis. J. Nucl. Med. 2020, 61, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Zorrilla-Veloz, R.I.; Hu, J.; Guan, B.; Ma, X. Diagnostic Accuracy of PET for Differentiating True Glioma Progression From Post Treatment-Related Changes: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 671867. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, P.; Herzog, H.; Rota Kops, E.; Stoffels, G.; Judov, N.; Filss, C.; Galldiks, N.; Tellmann, L.; Weiss, C.; Sabel, M.; et al. Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur. Radiol. 2015, 25, 3017–3024. [Google Scholar] [CrossRef]
- Saito, T.; Maruyama, T.; Muragaki, Y.; Tanaka, M.; Nitta, M.; Shinoda, J.; Aki, T.; Iseki, H.; Kurisu, K.; Okada, Y. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. Am. J. Neuroradiol. 2013, 34, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Mertens, K.; Acou, M.; Van Hauwe, J.; De Ruyck, I.; Van Den Broecke, C.; Kalala, J.P.O.; D’Asseler, Y.; Goethals, I. Validation of 18F-FDG PET at conventional and delayed intervals for the discrimination of high-grade from low-grade gliomas: A stereotactic PET and MRI study. Clin. Nucl. Med. 2013, 38, 495–500. [Google Scholar] [CrossRef]
- Ninatti, G.; Sollini, M.; Bono, B.; Gozzi, N.; Fedorov, D.; Antunovic, L.; Gelardi, F.; Navarria, P.; Politi, L.S.; Pessina, F.; et al. Preoperative [11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro. Oncol. 2022, 24, 1546–1556. [Google Scholar] [CrossRef]
Study Characteristics | Included Studies |
---|---|
(n = 10) | |
Number of patients | |
≥100 | 1 |
<100 | 9 |
Study type | |
Prospective | 2 |
Retrospective | 8 |
Radiopharmaceuticals | |
[18F]FDG | 2 |
[11C]MET | 2 |
[18F]FET | 3 |
[11C]CHO | 0 |
[68Ga]Ga-PSMA-11 | 1 |
Mixed | 2 |
Image analysis | |
Visual | 0 |
Semi-quantitative | 6 |
Radiomics | 1 |
Mixed | 3 |
Neuropathological confirmation | |
Yes | 1 |
No | 0 |
Partial | 5 |
Not specified | 4 |
Study | N of Patients (n of Lesions) | Glioma Type Distribution | Image Analysis Method | Neuropathological Confirmation (%) | Main Results |
---|---|---|---|---|---|
[16] | 22 (ns) | - 1 grade 3 IDH-mut astrocytoma - 4 grade 2 oligodendroglioma - 17 GBM | Visual Semi-quantitative | 8/22 (36%) | - Visual: sens 61%, spec 75%, acc 63% - Semi-quantitative (TBRmax cutoff 2.44): sens 85%, spec 50%, acc 77%, AUC 0.690 |
[18] | 160 (ns) | - 72 grade 2 nos - 45 grade 3 nos - 43 GBM | Radiomics | ns | - Primary cohort: sens 74%, spec 90%, acc 78%, AUC 0.868 - Validation cohort: sens 69%, spec 77%, acc 71%, AUC 0.810 |
[17] | 50 (ns) | - 23 grade 3 IDH-mut astrocytoma - 12 grade 3 oligodendroglioma - 15 GBM | Semi-quantitative | 50/50 (100%) | TBRmax cutoff 1.26: sens 77%, spec 75%, AUC 0.774 |
[19] | 35 (41) | - 9 grade 3 IDH-mut astrocytoma - 7 grade 2 oligodendroglioma - 4 grade 3 oligodendroglioma - 15 GBM | Semi-quantitative | 18/35 (51%) | - TBRmax cutoff 1.579: sens 93%, 72.7%, 87.8%, AUC 0.827 - TBRmean cutoff 1.179: sens 90%, 81.8%, 87.8%, AUC 0.888 |
Study | N of Patients (n of Lesions) | Glioma Type Distribution | Image Analysis Method | Neuropathological Confirmation (%) | Main Results |
---|---|---|---|---|---|
a—[18F]FET | |||||
[20] | 32 (32) | Ns | Semi-quantitative | 12/32 (38%) | - TBRmax cutoff 2.09: sens 100%, spec 72%, acc 94%, AUC 0.886 - TBRmean cutoff 1.517: sens 89%, spec 86%, acc 88%, AUC 0.886 |
[21] | 46 (63) | - 2 grade 2 IDH-mut astrocytoma - 13 grade 3 IDH-mut astrocytoma - 1 grade 2 oligodendroglioma - 3 grade 3 oligodendroglioma - 27 GBM | Semi-quantitative | 23/63 (37%) | - TBRmax at 10–20 min cutoff 1.71: sens 76%, spec 85%, AUC 0.848 - TBRmax at 30–40 min cutoff 2.07: sens 80%, spec 85%, AUC 0.863 - TTP 20 min: sens 64%, spec 79%, AUC 0.728 |
[24] | 42 (ns) | Ns | Semi-quantitative | 11/47 (23%) | - TBRmax cutoff 3.03: sens 77%, spec 82%, acc 79% - TBRmean cutoff 2.04: sens 71%, spec 91%, acc 76% |
b—[11C]MET | |||||
[18] | 160 (ns) | - 72 grade 2 nos - 45 grade 3 nos - 43 GBM | Radiomics | Ns | - Primary cohort: sens 73%, spec 69%, acc 72%, AUC 0.767 - Validation cohort: sens 75%, spec 69%, acc 74%, AUC 0.750 |
[17] | 50 (ns) | - 23 grade 3 IDH-mut astrocytoma - 12 grade 3 oligodendroglioma - 15 GBM | Semi-quantitative | 50/50 (100%) | TBRmax cutoff 2.51: sens 91%, spec 88%, AUC 0.925 |
[22] | 26 (32) | - 6 grade 2 nos - 6 grade 3 nos - 14 GBM | Semi-quantitative | Ns | TBRmean cutoff 1.58: sens 75%, spec 75% |
[23] | 31 (ns) | - 12 grade 3 IDH-mut astrocytoma - 19 GBM | Visual Semi-quantitative | Ns | - Visual: sens 81%, spec 50%, acc 71%, AUC 0.65 - Semi-quantitative (TBRmax cutoff 1.8): AUC 0.59 |
Study | N of Patients (n of Lesions) | Glioma Type Distribution | Image Analysis Method | Neuropathological Confirmation (%) | Main Results |
---|---|---|---|---|---|
[17] | 50 (ns) | - 23 grade 3 IDH-mut astrocytoma - 12 grade 3 oligodendroglioma - 15 GBM | Semi-quantitative | 50/50 (100%) | TBRmax cutoff 8.92: sens 74%, spec 88%, AUC 0.814 |
Study | N of Patients (n of Lesions) | Glioma Type Distribution | Image Analysis Method | Neuropathological Confirmation (%) | Main Results |
---|---|---|---|---|---|
[25] | 30 (49) | - 3 grade 3 oligodendroglioma - 8 grade 3 IDH-mut astrocytoma - 19 GBM | Visual Semi-quantitative | Ns | PET positive in all recurrent tumours, no significant radiopharmaceutical accumulation in patients with radiation necrosis—median TBRmax recurrent tumours 36.1 (IQR 22.2–55.3) vs. radiation necrosis 1.08 |
Reference | [18F]FDG | [11C]MET | [18F]FET | [11C]Choline | [18F]DOPA | [18F]FLT |
---|---|---|---|---|---|---|
Nihashi et al., 2013 [37] | Sens 77% (95% CI: 66–85%), spec 78% (95% CI: 54–91%) | * Sens 70% (95% CI: 50–84%), spec 93% (95% CI: 44–100%) | Ne | Ne | Ne | Ne |
Deng et al., 2013 [38] | Ne | Sens 87% (95% CI: 81–92%), spec 81% (95% CI: 72–80%), AUC 0.8938 | Ne | Ne | Ne | Ne |
Wang et al., 2015 [39] | Sens 70% (95% CI: 64–75%), spec 88% (95% CI: 80–93%), AUC 0.8661 | Sens 85% (95% CI: 76–91%), spec 83% (95% CI: 71–92%), AUC 0.8914 | Ne | Ne | Ne | Ne |
Li et al., 2015 [40] | Sens 78% (95% CI: 69–85%), spec 77% (95% CI: 66–85%), AUC 0.84 | Ne | Ne | Ne | Ne | Sens 82% (95% CI: 51–95%), spec 76% (95% CI: 50–91%), AUC 0.85 |
Xu et al., 2017 [41] | Ne | Sens 88% (95% CI: 85–91%), spec 85% (95% CI: 80–89%), AUC 0.9352 | Ne | Ne | Ne | Ne |
Yu et al., 2018 [42] | Ne | Ne | Sens 82% (95% CI: 79–84%), spec 80% (95% CI: 76–83%), AUC 0.8976 | Ne | Sens 85% (95% CI: 81–88%), spec 77% (95% CI: 74–81%), AUC 0.8771 | Ne |
Gao et al., 2018 [43] | Ne | Ne | Ne | Sens 87% (95% CI: 78–93%), spec 82% (95% CI: 69–91%) | Ne | Ne |
Furuse et al., 2019 [44] | Sens 79% (95% CI: 60–90%), spec 70% (95% CI: 58–81%) | Sens 79% (95% CI: 65–88%), spec 82% (95% CI: 68–91%) | Sens 91% (95% CI: 79–97%), spec 95% (95% CI: 61–99%) | Ne | Ne | Ne |
De Zwart et al., 2020 [45] | * Sens 84% (95% CI: 72–92%), spec 84% (95% CI: 69–93%) | * Sens 93% (95% CI: 80–98%), spec 82% (95% CI: 68–91%) | * Sens 90% (95% CI: 81–95%), spec 85% (95% CI: 71–93%) | Ne | Ne | Ne |
Cui et al., 2021 [46] | Sens 78% (95% CI: 71–83%), spec 87% (95% CI: 80–92%) | Sens 92% (95% CI: 83–96%), spec 78% (95% CI: 69–86%) | Sens 88% (95% CI: 80–93%), spec 78% (95% CI: 69–85%) | Ne | Sens 85% (95% CI: 80–89%), spec 70% (95% CI: 60–79%) | Ne |
Study | Glioma Type | N of Patients | Visual Analysis | Semi-Quantitative Analysis | Radiomic Analysis |
---|---|---|---|---|---|
[18F]FDG | |||||
[16,17,18,19] | Grade 3 IDH-mut astrocytoma | ∑ 33 | ++ | ++ | +/− |
Grade 2 oligodendroglioma | ∑ 11 | + | + | ? | |
Grade 3 oligodendroglioma | ∑ 16 | + | + | ? | |
GBM | ∑ 90 | ++ | ++ | +/− | |
[18F]FET | |||||
[21] | Grade 2 IDH-mut astrocytoma | 2 | ? | +/− | ? |
Grade 3 IDH-mut astrocytoma | 13 | ? | + | ? | |
Grade 2 oligodendroglioma | 1 | ? | +/− | ? | |
Grade 3 oligodendroglioma | 3 | ? | +/− | ? | |
GBM | 27 | ? | ++ | ? | |
[11C]MET | |||||
[17,18,22,23] | Grade 3 IDH-mut astrocytoma | ∑ 35 | ++ | ++ | ? |
Grade 3 oligodendroglioma | 12 | ? | + | ? | |
GBM | ∑ 91 | ++ | ++ | +/− | |
[11C]CHO | |||||
[17] | Grade 3 IDH-mut astrocytoma | 23 | ? | + | ? |
Grade 3 oligodendroglioma | 12 | ? | + | ? | |
GBM | 15 | ? | + | ? | |
[68Ga]Ga-PSMA-11 | |||||
[25] | Grade 3 oligodendroglioma | 3 | +/− | +/− | ? |
Grade 3 IDH-mut astrocytoma | 8 | +/− | +/− | ? | |
GBM | 19 | + | + | ? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninatti, G.; Pini, C.; Gelardi, F.; Sollini, M.; Chiti, A. The Role of PET Imaging in the Differential Diagnosis between Radiation Necrosis and Recurrent Disease in Irradiated Adult-Type Diffuse Gliomas: A Systematic Review. Cancers 2023, 15, 364. https://doi.org/10.3390/cancers15020364
Ninatti G, Pini C, Gelardi F, Sollini M, Chiti A. The Role of PET Imaging in the Differential Diagnosis between Radiation Necrosis and Recurrent Disease in Irradiated Adult-Type Diffuse Gliomas: A Systematic Review. Cancers. 2023; 15(2):364. https://doi.org/10.3390/cancers15020364
Chicago/Turabian StyleNinatti, Gaia, Cristiano Pini, Fabrizia Gelardi, Martina Sollini, and Arturo Chiti. 2023. "The Role of PET Imaging in the Differential Diagnosis between Radiation Necrosis and Recurrent Disease in Irradiated Adult-Type Diffuse Gliomas: A Systematic Review" Cancers 15, no. 2: 364. https://doi.org/10.3390/cancers15020364
APA StyleNinatti, G., Pini, C., Gelardi, F., Sollini, M., & Chiti, A. (2023). The Role of PET Imaging in the Differential Diagnosis between Radiation Necrosis and Recurrent Disease in Irradiated Adult-Type Diffuse Gliomas: A Systematic Review. Cancers, 15(2), 364. https://doi.org/10.3390/cancers15020364