Diagnostic Performance of Various Ultrasound Risk Stratification Systems for Benign and Malignant Thyroid Nodules: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Protocol and Literature Search Strategy
2.2. Selection Criteria
2.3. Data Extraction and Risk of Bias Assessment
2.4. Statistical Analysis and Outcome Measurements
3. Results
3.1. Search and Study Selection
3.2. Diagnostic Accuracy in Various US Risk Stratification Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.H.; Lee, Y.H.; Lim, H.K.; Moon, W.J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, S.; Sarti, D.A.; Cain, D.R.; Braunstein, G.D. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch. Intern. Med. 1994, 154, 1838–1840. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Du, L. A rapidly increasing trend of thyroid cancer incidence in selected East Asian countries: Joinpoint regression and age-period-cohort analyses. Gland Surg. 2020, 9, 968–984. [Google Scholar] [CrossRef]
- Kim, P.H.; Suh, C.H.; Baek, J.H.; Chung, S.R.; Choi, Y.J.; Lee, J.H. Diagnostic performance of four ultrasound risk stratification systems: A systematic review and meta-analysis. Thyroid 2020, 30, 1159–1168. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.H.; Kim, S.W.; Basurrah, M.A.; Hwang, S.H. Clinical and laboratory features for various criteria of eosinophilic chronic rhinosinusitis: A systematic review and meta-analysis. Clin. Exp. Otorhinolaryngol. 2022, 15, 230–246. [Google Scholar] [CrossRef]
- Reitsma, J.B.; Glas, A.S.; Rutjes, A.W.; Scholten, R.J.; Bossuyt, P.M.; Zwinderman, A.H. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 2005, 58, 982–990. [Google Scholar] [CrossRef]
- Hoeboer, S.H.; van der Geest, P.J.; Nieboer, D.; Groeneveld, A.B. The diagnostic accuracy of procalcitonin for bacteraemia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2015, 21, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.K. Thyroid imaging reporting and data system for US features of nodules: A step in establishing better stratification of cancer risk. Radiology 2011, 260, 892–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Wu, Y.; Wu, R.-X.; Zhang, Y.-Z.; Gu, J.-Y.; Ye, X.-H.; Tang, W.; Xu, S.-H.; Liu, C.; Wu, X.-H. Validation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination. Endocrine 2019, 64, 299–307. [Google Scholar] [CrossRef]
- Shi, Y.X.; Chen, L.; Liu, Y.C.; Zhan, J.; Diao, X.H.; Fang, L.; Chen, Y. Differences among the Thyroid Imaging Reporting and Data System proposed by Korean, the American College of Radiology and the European Thyroid Association in the diagnostic performance of thyroid nodules. Transl. Cancer Res. 2020, 9, 4958–4967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.B.; Xu, W.; Fu, W.J.; He, B.L.; Liu, H.; Deng, W.F. Comparison of ACR TI-RADS, Kwak TI-RADS, ATA guidelines and KTA/KSThR guidelines in combination with SWE in the diagnosis of thyroid nodules. Clin. Hemorheol. Microcirc. 2021, 78, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, Y.; Wu, S.; Chen, K.; Luo, H.; Huang, J. Diagnostic performance of US-based FNAB criteria of the 2020 Chinese guideline for malignant thyroid nodules: Comparison with the 2017 American College of Radiology guideline, the 2015 American Thyroid Association guideline, and the 2016 Korean Thyroid Association guideline. Quant. Imaging Med. Surg. 2021, 11, 3604–3618. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, S.M.; Alanesi, S.F.; Mahmood, W.S.; Moustafa, Y.M.; Moharram, L.M.; Alharthi, N.F.; Alzahrani, A.M.; Alalawi, Y.S. Clinical and ultrasonographic features in cancer risk stratification of indeterminate thyroid nodules. Saudi Med. J. 2022, 43, 473–478. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, M.; Wu, S. Validating and Comparing C-TIRADS, K-TIRADS and ACR-TIRADS in Stratifying the Malignancy Risk of Thyroid Nodules. Front. Endocrinol. 2022, 13, 899575. [Google Scholar] [CrossRef]
- Lin, Y.; Lai, S.; Wang, P.; Li, J.; Chen, Z.; Wang, L.; Guan, H.; Kuang, J. Performance of current ultrasound-based malignancy risk stratification systems for thyroid nodules in patients with follicular neoplasms. Eur. Radiol. 2022, 32, 3617–3630. [Google Scholar] [CrossRef]
- Qi, T.Y.; Chen, X.; Liu, H.; Mao, L.; Chen, J.; He, B.L.; Zhang, W.B. Comparison of thyroid nodule FNA rates recommended by ACR TI-RADS, Kwak TI-RADS and ATA guidelines. Eur. J. Radiol. 2022, 148, 110152. [Google Scholar] [CrossRef] [PubMed]
- Thedinger, W.; Raman, E.; Dhingra, J.K. Comparative Study of ACR TI-RADS and ATA 2015 for Ultrasound Risk Stratification of Thyroid Nodules. Otolaryngol. Head Neck Surg. 2022, 167, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gong, Z.; Li, S.; Fan, P.; Yue, G.; Zou, G.; He, S.; Wang, J.; Xu, J. The value of neutrophil-to-lymphocyte ratio combined with the thyroid imaging reporting and data system in the diagnosis of the nature of thyroid nodules. J. Clin. Lab. Anal. 2022, 36, e24429. [Google Scholar] [CrossRef]
- Huh, S.; Lee, H.S.; Yoon, J.; Kim, E.K.; Moon, H.J.; Yoon, J.H.; Park, V.Y.; Kwak, J.Y. Diagnostic performances and unnecessary US-FNA rates of various TIRADS after application of equal size thresholds. Sci. Rep. 2020, 10, 10632. [Google Scholar] [CrossRef]
- Chung, S.R.; Ahn, H.S.; Choi, Y.J.; Lee, J.Y.; Yoo, R.E.; Lee, Y.J.; Kim, J.Y.; Sung, J.Y.; Kim, J.H.; Baek, J.H. Diagnostic Performance of the Modified Korean Thyroid Imaging Reporting and Data System for Thyroid Malignancy: A Multicenter Validation Study. Korean J. Radiol. 2021, 22, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Freire da Silva, P.; Corrêa de Araújo Arcoverde, L.; de Siqueira Barbosa Arcoverde, L.; Tenório Wanderley Fernandes Lima, G.; Paes de Medeiros Lima, T.; José do Amaral, F.; Bandeira, F. Agreement Between American and European Thyroid Imaging, Reporting, and Data System (TIRADS) in the Diagnosis of 473 Thyroid Nodules From a Single Center in Brazil. Endocr. Pract. 2021, 27, 1108–1113. [Google Scholar] [CrossRef]
- Ha, E.J.; Shin, J.H.; Na, D.G.; Jung, S.L.; Lee, Y.H.; Paik, W.; Hong, M.J.; Kim, Y.K.; Lee, C.Y. Comparison of the diagnostic performance of the modified Korean Thyroid Imaging Reporting and Data System for thyroid malignancy with three international guidelines. Ultrasonography 2021, 40, 594–601. [Google Scholar] [CrossRef]
- Han, M.; Ha, E.J.; Park, J.H. Computer-Aided Diagnostic System for Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the Thyroid Imaging Reporting and Data System Classification and Dichotomous Outcomes. AJNR Am. J. Neuroradiol. 2021, 42, 559–565. [Google Scholar] [CrossRef]
- Hekimsoy, İ.; Öztürk, E.; Ertan, Y.; Orman, M.N.; Kavukçu, G.; Özgen, A.G.; Özdemir, M.; Özbek, S.S. Diagnostic performance rates of the ACR-TIRADS and EU-TIRADS based on histopathological evidence. Diagn. Interv. Radiol. 2021, 27, 511–518. [Google Scholar] [CrossRef]
- Kang, S.; Kwon, S.K.; Choi, H.S.; Kim, M.J.; Park, Y.J.; Park, D.J.; Cho, S.W. Comparison of Korean vs. American Thyroid Imaging Reporting and Data System in Malignancy Risk Assessment of Indeterminate Thyroid Nodules. Endocrinol. Metab. 2021, 36, 1111–1120. [Google Scholar] [CrossRef]
- Na, D.G.; Paik, W.; Cha, J.; Gwon, H.Y.; Kim, S.Y.; Yoo, R.E. Diagnostic performance of the modified Korean Thyroid Imaging Reporting and Data System for thyroid malignancy according to nodule size: A comparison with five society guidelines. Ultrasonography 2021, 40, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Zhou, A.; Guo, S.; Huang, X.; Chen, S.; Li, Y.; Xu, P. Explore the Diagnostic Efficiency of Chinese Thyroid Imaging Reporting and Data Systems by Comparing With the Other Four Systems (ACR TI-RADS, Kwak-TIRADS, KSThR-TIRADS, and EU-TIRADS): A Single-Center Study. Front. Endocrinol. 2021, 12, 763897. [Google Scholar] [CrossRef] [PubMed]
- Scappaticcio, L.; Maiorino, M.I.; Iorio, S.; Docimo, G.; Longo, M.; Grandone, A.; Luongo, C.; Cozzolino, I.; Piccardo, A.; Trimboli, P.; et al. Exploring the Performance of Ultrasound Risk Stratification Systems in Thyroid Nodules of Pediatric Patients. Cancers 2021, 13, 5304. [Google Scholar] [CrossRef]
- Seifert, P.; Schenke, S.; Zimny, M.; Stahl, A.; Grunert, M.; Klemenz, B.; Freesmeyer, M.; Kreissl, M.C.; Herrmann, K.; Görges, R. Diagnostic Performance of Kwak, EU, ACR, and Korean TIRADS as Well as ATA Guidelines for the Ultrasound Risk Stratification of Non-Autonomously Functioning Thyroid Nodules in a Region with Long History of Iodine Deficiency: A German Multicenter Trial. Cancers 2021, 13, 4467. [Google Scholar] [CrossRef]
- Seminati, D.; Capitoli, G.; Leni, D.; Fior, D.; Vacirca, F.; Di Bella, C.; Galimberti, S.; L’Imperio, V.; Pagni, F. Use of Diagnostic Criteria from ACR and EU-TIRADS Systems to Improve the Performance of Cytology in Thyroid Nodule Triage. Cancers 2021, 13, 5439. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kutaiba, N.; Pearce, S.; Digby, S.; Van Gelderen, D. Application of Thyroid Imaging Reporting and Data System (TIRADS) guidelines to thyroid nodules with cytopathological correlation and impact on healthcare costs. Intern. Med. J. 2022, 52, 1366–1373. [Google Scholar] [CrossRef]
- Xiao, J.; Xiao, Q.; Cong, W.; Li, T.; Ding, S.; Shao, C.; Zhang, Y.; Liu, J.; Wu, M.; Jia, H. Discriminating Malignancy in Thyroid Nodules: The Nomogram Versus the Kwak and ACR TI-RADS. Otolaryngol. Head Neck Surg. 2020, 163, 1156–1165. [Google Scholar] [CrossRef]
- Yang, W.; Fananapazir, G.; LaRoy, J.; Wilson, M.; Campbell, M.J. Can the American Thyroid Association, K-Tirads, and Acr-Tirads Ultrasound Classification Systems Be Used to Predict Malignancy in Bethesda Category IV Nodules? Endocr. Pract. 2020, 26, 945–952. [Google Scholar] [CrossRef]
- Yoo, W.S.; Ahn, H.Y.; Ahn, H.S.; Chung, Y.J.; Kim, H.S.; Cho, B.Y.; Seo, M.; Moon, J.H.; Park, Y.J. Malignancy rate of Bethesda category III thyroid nodules according to ultrasound risk stratification system and cytological subtype. Medicine 2020, 99, e18780. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, H.S.; Kim, E.K.; Moon, H.J.; Park, V.Y.; Kwak, J.Y. Pattern-based vs. score-based guidelines using ultrasound features have different strengths in risk stratification of thyroid nodules. Eur. Radiol. 2020, 30, 3793–3802. [Google Scholar] [CrossRef]
- Zhang, W.B.; Li, J.J.; Chen, X.Y.; He, B.L.; Shen, R.H.; Liu, H.; Chen, J.; He, X.F. SWE combined with ACR TI-RADS categories for malignancy risk stratification of thyroid nodules with indeterminate FNA cytology. Clin. Hemorheol. Microcirc. 2020, 76, 381–390. [Google Scholar] [CrossRef]
- Celletti, I.; Fresilli, D.; De Vito, C.; Bononi, M.; Cardaccio, S.; Cozzolino, A.; Durante, C.; Grani, G.; Grimaldi, G.; Isidori, A.M.; et al. TIRADS, SRE and SWE in INDETERMINATE thyroid nodule characterization: Which has better diagnostic performance? Radiol. Med. 2021, 126, 1189–1200. [Google Scholar] [CrossRef]
- Watkins, L.; O’Neill, G.; Young, D.; McArthur, C. Comparison of British Thyroid Association, American College of Radiology TIRADS and Artificial Intelligence TIRADS with histological correlation: Diagnostic performance for predicting thyroid malignancy and unnecessary fine needle aspiration rate. Br. J. Radiol. 2021, 94, 20201444. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Na, D.G.; Gwon, H.Y.; Paik, W.; Kim, W.J.; Song, J.S.; Shim, M.S. Similarities and Differences Between Thyroid Imaging Reporting and Data Systems. AJR Am. J. Roentgenol. 2019, 213, W76–W84. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.L.; Ebner, S.A.; Makkar, J.S.; Bentley-Hibbert, S.; McConnell, R.J.; Lee, J.A.; Hecht, E.M.; Kuo, J.H. A Multidisciplinary Head-to-Head Comparison of American College of Radiology Thyroid Imaging and Reporting Data System and American Thyroid Association Ultrasound Risk Stratification Systems. Oncologist 2020, 25, 398–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koc, A.M.; Adıbelli, Z.H.; Erkul, Z.; Sahin, Y.; Dilek, I. Comparison of diagnostic accuracy of ACR-TIRADS, American Thyroid Association (ATA), and EU-TIRADS guidelines in detecting thyroid malignancy. Eur. J. Radiol. 2020, 133, 109390. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.Y.; Pan, F.S.; Wang, W.; Wang, Z.; Shan, Q.Y.; Lin, J.H.; Luo, J.; Zheng, Y.L.; Hu, H.T.; Ruan, S.M.; et al. Malignancy risk stratification and FNA recommendations for thyroid nodules: A comparison of ACR TI-RADS, AACE/ACE/AME and ATA guidelines. Am. J. Otolaryngol. 2020, 41, 102625. [Google Scholar] [CrossRef]
- Szczepanek-Parulska, E.; Wolinski, K.; Dobruch-Sobczak, K.; Antosik, P.; Ostalowska, A.; Krauze, A.; Migda, B.; Zylka, A.; Lange-Ratajczak, M.; Banasiewicz, T.; et al. S-Detect Software vs. EU-TIRADS Classification: A Dual-Center Validation of Diagnostic Performance in Differentiation of Thyroid Nodules. J. Clin. Med. 2020, 9, 2495. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, B.; Cai, G.; Li, J.; Gu, X. American College of Radiology thyroid imaging report and data system combined with K-RAS mutation improves the management of cytologically indeterminate thyroid nodules. PLoS ONE 2019, 14, e0219383. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Du, J.R.; Wang, H.; Jin, C.X.; Sui, G.Q.; Yang, D.Y.; Lin, Y.Q.; Luo, Q.; Fu, P.; Li, H.Q.; et al. Comparison and preliminary discussion of the reasons for the differences in diagnostic performance and unnecessary FNA biopsies between the ACR TIRADS and 2015 ATA guidelines. Endocrine 2019, 65, 121–131. [Google Scholar] [CrossRef]
- Xiang, P.; Chu, X.; Chen, G.; Liu, B.; Ding, W.; Zeng, Z.; Wu, X.; Wang, J.; Xu, S.; Liu, C. Nodules with nonspecific ultrasound pattern according to the 2015 American Thyroid Association malignancy risk stratification system: A comparison to the Thyroid Imaging Reporting and Data System (TIRADS-Na). Medicine 2019, 98, e17657. [Google Scholar] [CrossRef]
- Phuttharak, W.; Boonrod, A.; Klungboonkrong, V.; Witsawapaisan, T. Interrater Reliability of Various Thyroid Imaging Reporting and Data System (TIRADS) Classifications for Differentiating Benign from Malignant Thyroid Nodules. Asian Pac. J. Cancer Prev. 2019, 20, 1283–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, J.L.; Yang, H.Y.; Liu, R.B.; Liang, M.; Han, P.; Xu, X.L.; Luo, B.M. Fine needle aspiration biopsy indications for thyroid nodules: Compare a point-based risk stratification system with a pattern-based risk stratification system. Eur. Radiol. 2019, 29, 4871–4878. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, M.; He, J.; Wu, S.; Chen, M.; Wan, Y.; Gao, L.; Cai, X.; Ding, J.; Fu, X. Comparison of Different Risk-Stratification Systems for the Diagnosis of Benign and Malignant Thyroid Nodules. Front. Oncol. 2019, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, H.; Yang, Y.; Zhang, X.; Qian, L. The KWAK TI-RADS and 2015 ATA guidelines for medullary thyroid carcinoma: Combined with cell block-assisted ultrasound-guided thyroid fine-needle aspiration. Clin. Endocrinol. 2020, 92, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xi, X.; Jiang, Y.; Yang, X.; Wang, Y.; Zhu, S.; Lai, X.; Zhang, X.; Zhao, R.; Zhang, B. Comparison among TIRADS (ACR TI-RADS and KWAK- TI-RADS) and 2015 ATA Guidelines in the diagnostic efficiency of thyroid nodules. Endocrine 2019, 64, 90–96. [Google Scholar] [CrossRef]
- Gitto, S.; Grassi, G.; De Angelis, C.; Monaco, C.G.; Sdao, S.; Sardanelli, F.; Sconfienza, L.M.; Mauri, G. A computer-aided diagnosis system for the assessment and characterization of low-to-high suspicion thyroid nodules on ultrasound. Radiol. Med. 2019, 124, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.M.; Baek, J.H.; Choi, Y.J.; Chung, S.R.; Sung, T.Y.; Kim, T.Y.; Lee, J.H. Malignancy risk of initially benign thyroid nodules: Validation with various Thyroid Imaging Reporting and Data System guidelines. Eur. Radiol. 2019, 29, 133–140. [Google Scholar] [CrossRef]
- Ha, S.M.; Baek, J.H.; Na, D.G.; Suh, C.H.; Chung, S.R.; Choi, Y.J.; Lee, J.H. Diagnostic Performance of Practice Guidelines for Thyroid Nodules: Thyroid Nodule Size versus Biopsy Rates. Radiology 2019, 291, 92–99. [Google Scholar] [CrossRef]
- Hong, H.S.; Lee, J.Y. Diagnostic Performance of Ultrasound Patterns by K-TIRADS and 2015 ATA Guidelines in Risk Stratification of Thyroid Nodules and Follicular Lesions of Undetermined Significance. AJR Am. J. Roentgenol. 2019, 213, 444–450. [Google Scholar] [CrossRef]
- Persichetti, A.; Di Stasio, E.; Guglielmi, R.; Bizzarri, G.; Taccogna, S.; Misischi, I.; Graziano, F.; Petrucci, L.; Bianchini, A.; Papini, E. Predictive Value of Malignancy of Thyroid Nodule Ultrasound Classification Systems: A Prospective Study. J. Clin. Endocrinol. Metab. 2018, 103, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Herbst, R.; Oyekunle, T.; Jiang, X.; Strickland, K.; Roman, S.; Sosa, J.A. Using the ata and acr ti-rads sonographic classifications as adjunctive predictors of malignancy for indeterminate thyroid nodules. Endocr. Pract. 2019, 25, 908–917. [Google Scholar] [CrossRef]
- Barbosa, T.L.M.; Junior, C.O.M.; Graf, H.; Cavalvanti, T.; Trippia, M.A.; da Silveira Ugino, R.T.; de Oliveira, G.L.; Granella, V.H.; de Carvalho, G.A. ACR TI-RADS and ATA US scores are helpful for the management of thyroid nodules with indeterminate cytology. BMC Endocr. Disord. 2019, 19, 112. [Google Scholar] [CrossRef]
- Macedo, B.M.; Izquierdo, R.F.; Golbert, L.; Meyer, E.L.S. Reliability of Thyroid Imaging Reporting and Data System (TI-RADS), and ultrasonographic classification of the American Thyroid Association (ATA) in differentiating benign from malignant thyroid nodules. Arch. Endocrinol. Metab. 2018, 62, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Chng, C.L.; Tan, H.C.; Too, C.W.; Lim, W.Y.; Chiam, P.P.S.; Zhu, L.; Nadkarni, N.V.; Lim, A.Y.Y. Diagnostic performance of ATA, BTA and TIRADS sonographic patterns in the prediction of malignancy in histologically proven thyroid nodules. Singapore Med. J. 2018, 59, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.M.; Hahn, S.Y.; Shin, J.H.; Ko, E.Y. Inter-exam agreement and diagnostic performance of the Korean thyroid imaging reporting and data system for thyroid nodule assessment: Real-time versus static ultrasonography. Eur. J. Radiol. 2018, 98, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Han, K.; Kim, E.K.; Moon, H.J.; Kwak, J.Y. Diagnosis and Management of Small Thyroid Nodules: A Comparative Study with Six Guidelines for Thyroid Nodules. Radiology 2017, 283, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Trimboli, P.; Deandrea, M.; Mormile, A.; Ceriani, L.; Garino, F.; Limone, P.P.; Giovanella, L. American Thyroid Association ultrasound system for the initial assessment of thyroid nodules: Use in stratifying the risk of malignancy of indeterminate lesions. Head Neck 2018, 40, 722–727. [Google Scholar] [CrossRef]
- Chng, C.L.; Kurzawinski, T.R.; Beale, T. Value of sonographic features in predicting malignancy in thyroid nodules diagnosed as follicular neoplasm on cytology. Clin. Endocrinol. 2015, 83, 711–716. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, H.S.; Kim, E.K.; Moon, H.J.; Kwak, J.Y. Malignancy Risk Stratification of Thyroid Nodules: Comparison between the Thyroid Imaging Reporting and Data System and the 2014 American Thyroid Association Management Guidelines. Radiology 2016, 278, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, B.J.; Xu, H.X.; Xu, J.M.; Zhang, Y.F.; Liu, C.; Wu, J.; Sun, L.P.; Guo, L.H.; Liu, L.N.; et al. Prospective validation of an ultrasound-based thyroid imaging reporting and data system (TI-RADS) on 3980 thyroid nodules. Int. J. Clin. Exp. Med. 2015, 8, 5911–5917. [Google Scholar] [PubMed]
- Srinivas, M.N.; Amogh, V.N.; Gautam, M.S.; Prathyusha, I.S.; Vikram, N.R.; Retnam, M.K.; Balakrishna, B.V.; Kudva, N. A Prospective Study to Evaluate the Reliability of Thyroid Imaging Reporting and Data System in Differentiation between Benign and Malignant Thyroid Lesions. J. Clin. Imaging Sci. 2016, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.J.; Moon, W.J.; Na, D.G.; Lee, Y.H.; Choi, N.; Kim, S.J.; Kim, J.K. A Multicenter Prospective Validation Study for the Korean Thyroid Imaging Reporting and Data System in Patients with Thyroid Nodules. Korean J. Radiol. 2016, 17, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Mao, F.; Xu, H.X.; Zhao, C.K.; Bo, X.W.; Li, X.L.; Li, D.D.; Liu, B.J.; Zhang, Y.F.; Xu, J.M.; Qu, S. Thyroid imaging reporting and data system in assessment of cytological Bethesda Category III thyroid nodules. Clin. Hemorheol. Microcirc. 2017, 65, 163–173. [Google Scholar] [CrossRef]
- Xu, T.; Gu, J.Y.; Ye, X.H.; Xu, S.H.; Wu, Y.; Shao, X.Y.; Liu, D.Z.; Lu, W.P.; Hua, F.; Shi, B.M.; et al. Thyroid nodule sizes influence the diagnostic performance of TIRADS and ultrasound patterns of 2015 ATA guidelines: A multicenter retrospective study. Sci. Rep. 2017, 7, 43183. [Google Scholar] [CrossRef] [Green Version]
- Ha, E.J.; Na, D.G.; Baek, J.H.; Sung, J.Y.; Kim, J.H.; Kang, S.Y. US Fine-Needle Aspiration Biopsy for Thyroid Malignancy: Diagnostic Performance of Seven Society Guidelines Applied to 2000 Thyroid Nodules. Radiology 2018, 287, 893–900. [Google Scholar] [CrossRef]
- Ha, E.J.; Na, D.G.; Moon, W.J.; Lee, Y.H.; Choi, N. Diagnostic Performance of Ultrasound-Based Risk-Stratification Systems for Thyroid Nodules: Comparison of the 2015 American Thyroid Association Guidelines with the 2016 Korean Thyroid Association/Korean Society of Thyroid Radiology and 2017 American College of Radiology Guidelines. Thyroid 2018, 28, 1532–1537. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, N. Clinical diagnostic value of American College of Radiology thyroid imaging report and data system in different kinds of thyroid nodules. BMC Endocrine Disorders 2022, 22, 145. [Google Scholar] [CrossRef] [PubMed]
- Halligan, S.; Altman, D.G.; Mallett, S. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach. Eur. Radiol. 2015, 25, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Trevethan, R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public Health 2017, 5, 307. [Google Scholar] [CrossRef]
- Labrique, A.B.; Pan, W.K. Diagnostic tests: Understanding results, assessing utility, and predicting performance. Am. J. Ophthalmol. 2010, 149, 878–881.e872. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J. Systematic reviews of evaluations of diagnostic and screening tests. BMJ 2001, 323, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.J.; Na, D.G.; Baek, J.H.; Sung, J.Y.; Kim, J.H. Cytology-Ultrasonography Risk-Stratification Scoring System Based on Fine-Needle Aspiration Cytology and the Korean-Thyroid Imaging Reporting and Data System. Thyroid 2017, 27, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.P.; Al Nofal, A.; Montori, V.M.; Hay, I.D.; Morris, J.C. The Impact of Subclinical Disease and Mechanism of Detection on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Olmsted County, Minnesota During 1935 Through 2012. Thyroid 2015, 25, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.S.; Davies, L.; Nixon, I.J.; Palmer, F.L.; Wang, L.Y.; Patel, S.G.; Ganly, I.; Wong, R.J.; Tuttle, R.M.; Morris, L.G. Increasing diagnosis of subclinical thyroid cancers leads to spurious improvements in survival rates. Cancer 2015, 121, 1793–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walgama, E.; Sacks, W.L.; Ho, A.S. Papillary thyroid microcarcinoma: Optimal management versus overtreatment. Curr. Opin. Oncol. 2020, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, E.J.; Na, D.G.; Baek, J.H. Korean thyroid imaging reporting and data system: Current status, challenges, and future perspectives. Korean J. Radiol. 2021, 22, 1569. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, R.M.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303. [Google Scholar] [CrossRef]
- Ha, E.J.; Chung, S.R.; Na, D.G.; Ahn, H.S.; Chung, J.; Lee, J.Y.; Park, J.S.; Yoo, R.-E.; Baek, J.H.; Baek, S.M. 2021 Korean thyroid imaging reporting and data system and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J. Radiol. 2021, 22, 2094. [Google Scholar] [CrossRef]
Sensitivity [95% CIs] | Specificity [95% CIs] | DOR [95% CIs] | AUC | |
---|---|---|---|---|
High (K-TIRADS 5) | 0.6644 [0.5488; 0.7632]; I2 = 99.1% | 0.8904 [0.8495; 0.9212]; I2 = 98.8% | 17.1881 [12.8739; 22.9479]; I2 = 94.7% | 0.881 |
Intermediate (K-TIRADS 4) | 0.9251 [0.8783; 0.9548]; I2 = 97.9% | 0.6280 [0.5790; 0.6746]; I2 = 98.5% | 20.7111 [15.0584; 28.4856]; I2 = 92.6% | 0.792 |
Low (K-TIRADS 3) | 0.9991 [0.9955; 0.9998]; I2 = 94.9% | 0.0823 [0.0381; 0.1685]; I2 = 99.7% | 17.2411 [9.7008; 30.6424]; I2 = 68.3% | 0.904 |
Sensitivity [95% CIs] | Specificity [95% CIs] | DOR [95% CIs] | AUC | |
---|---|---|---|---|
TR5 (Suspicious) | 0.6350 [0.5309; 0.7279]; I2 = 99.2% | 0.8955 [0.8613; 0.9221]; I2 = 98.7% | 16.8442 [13.5328; 20.9658]; I2 = 92.5% | 0.882 |
TR4 (Moderately) | 0.9249 [0.8808; 0.9535]; I2 = 98.0% | 0.5343 [0.4782; 0.5896]; I2 = 98.9% | 13.6381 [9.9396; 18.7128]; I2 = 93.6% | 0.753 |
TR3 (Mildly) | 0.9843 [0.9698; 0.9919]; I2 = 96.9% | 0.2289 [0.1697; 0.3012]; I2 = 99.5% | 13.2478 [9.1596; 19.1605]; I2 = 85.9% | 0.769 |
Sensitivity [95% CIs] | Specificity [95% CIs] | DOR [95% CIs] | AUC | |
---|---|---|---|---|
High | 0.6977 [0.5992; 0.7809]; I2 = 98.8% | 0.8715 [0.8082; 0.9161]; I2 = 99.4% | 15.7398 [11.5605; 21.4299]; I2 = 95.2% | 0.859 |
Intermediate | 0.8800 [0.8239; 0.9199]; I2 = 97.9% | 0.6155 [0.5471; 0.6796]; I2 = 99.2% | 11.5148 [8.2698; 16.0332]; I2 = 95.0% | 0.799 |
Low | 0.9768 [0.9498; 0.9895]; I2 = 98.1% | 0.2261 [0.1614; 0.3073]; I2 = 99.5% | 6.7781 [4.1264; 11.1339]; I2 = 94.2% | 0.694 |
Sensitivity [95% CIs] | Specificity [95% CIs] | DOR [95% CIs] | AUC | |
---|---|---|---|---|
High (EU-TIRADS 5) | 0.7060 [0.6034; 0.7912]; I2 = 98.1% | 0.8392 [0.7707; 0.8901]; I2 = 99.3% | 12.2986 [9.0027; 16.8010]; I2 = 93.6% | 0.843 |
Intermediate (EU-TIRADS 4) | 0.9304 [0.8968; 0.9536]; I2 = 94.2% | 0.5061 [0.4274; 0.5845]; I2 = 99.2% | 13.0061 [9.2913; 18.2062]; I2 = 88.9% | 0.819 |
Low (EU-TIRADS 3) | 0.9914 [0.9763; 0.9969]; I2 = 91.8% | 0.0303 [0.0112; 0.0795]; I2 = 99.3% | 2.9158 [1.4936; 5.6922]; I2 = 74.8% | 0.734 |
Sensitivity [95% CIs] | Specificity [95% CIs] | DOR [95% CIs] | AUC | |
---|---|---|---|---|
5 | 0.1433 [0.1099; 0.1848]; I2 = 94.7% | 0.9961 [0.9908; 0.9983]; I2 = 91.7% | 25.8479 [12.8192; 52.1181]; I2 = 87.7% | 0.647 |
4c | 0.7538 [0.6426; 0.8391]; I2 = 98.5% | 0.8904 [0.8205; 0.9352]; I2 = 99.2% | 24.2039 [15.0245; 38.9914]; I2= 96.6% | 0.895 |
4b | 0.9584 [0.9308; 0.9753]; I2 = 94.5% | 0.6379 [0.4983; 0.7575]; I2 = 99.5% | 38.0578 [22.2904; 64.9785]; I2= 93.7% | 0.929 |
4a | 0.9908 [0.9799; 0.9958]; I2 = 95.3% | 0.3286 [0.1986; 0.4914]; I2 = 99.8% | 45.6067 [26.6992; 77.9037]; I2= 88.4% | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-S.; Kim, B.G.; Stybayeva, G.; Hwang, S.H. Diagnostic Performance of Various Ultrasound Risk Stratification Systems for Benign and Malignant Thyroid Nodules: A Meta-Analysis. Cancers 2023, 15, 424. https://doi.org/10.3390/cancers15020424
Kim J-S, Kim BG, Stybayeva G, Hwang SH. Diagnostic Performance of Various Ultrasound Risk Stratification Systems for Benign and Malignant Thyroid Nodules: A Meta-Analysis. Cancers. 2023; 15(2):424. https://doi.org/10.3390/cancers15020424
Chicago/Turabian StyleKim, Ji-Sun, Byung Guk Kim, Gulnaz Stybayeva, and Se Hwan Hwang. 2023. "Diagnostic Performance of Various Ultrasound Risk Stratification Systems for Benign and Malignant Thyroid Nodules: A Meta-Analysis" Cancers 15, no. 2: 424. https://doi.org/10.3390/cancers15020424
APA StyleKim, J. -S., Kim, B. G., Stybayeva, G., & Hwang, S. H. (2023). Diagnostic Performance of Various Ultrasound Risk Stratification Systems for Benign and Malignant Thyroid Nodules: A Meta-Analysis. Cancers, 15(2), 424. https://doi.org/10.3390/cancers15020424