Deep Learning-Based Early Warning Score for Predicting Clinical Deterioration in General Ward Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Operation of the Medical Emergency Team
2.3. Data Collection
2.4. Data Processing and Model Development
2.5. Statistical Analysis
3. Results
3.1. Prediction Results Using 10-Fold Cross-Validation on the Training Set
3.2. Additional Validation Using a Deployed Model on the Held-Out Test Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUROC | Area under the receiver operating characteristic |
BT | Body temperature |
Can-EWS | Deep learning-based EWS for cancer patients |
EWS | Early warning score |
GRU | Gated recurrent unit |
HR | Heart rate |
ICU | Intensive care unit |
IHCA | In-hospital cardiac arrest |
MET | Medical emergency team |
MEWS | Modified early warning score |
NPV | Negative predictive value |
PPV | Positive predictive value |
RR | Respiratory rate |
RRS | Rapid response system |
SBP | Systolic blood pressure |
References
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Esteve, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 3,7513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.D.; Kim, J.W.; Kim, S.C.; Kim, Y.K.; Kim, K.H.; Kim, H.J.; Lee, S.; Rhee, C.K. Prognostic factors in critically ill patients with hematologic malignancies admitted to the intensive care unit. J. Crit. Care 2012, 27, e731–e736. [Google Scholar] [CrossRef]
- Battaglia, C.C.; Hale, K. Hospital-Acquired Infections in Critically Ill Patients with Cancer. J. Intensive Care Med. 2019, 34, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, M.; Sepkowitz, K.A. Nosocomial infections in patients with cancer. Lancet Oncol. 2009, 10, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Frere, C.; Font, C.; Esposito, F.; Crichi, B.; Girard, P.; Janus, N. Incidence, risk factors, and management of bleeding in patients receiving anticoagulants for the treatment of cancer-associated thrombosis. Support Care Cancer 2022, 30, 2919–2931. [Google Scholar] [CrossRef]
- Rahmani, B.; Patel, S.; Seyam, O.; Gandhi, J.; Reid, I.; Smith, N.; Khan, S.A. Current understanding of tumor lysis syndrome. Hematol. Oncol. 2019, 37, 537–547. [Google Scholar] [CrossRef]
- Puxty, K.; McLoone, P.; Quasim, T.; Sloan, B.; Kinsella, J.; Morrison, D.S. Risk of Critical Illness Among Patients with Solid Cancers: A Population-Based Observational Study. JAMA Oncol. 2015, 1, 1078–1085. [Google Scholar] [CrossRef]
- Azoulay, E.; Moreau, D.; Alberti, C.; Leleu, G.; Adrie, C.; Barboteu, M.; Cottu, P.; Levy, V.; Le Gall, J.R.; Schlemmer, B. Predictors of short-term mortality in critically ill patients with solid malignancies. Intensive Care Med. 2000, 26, 1817–1823. [Google Scholar] [CrossRef]
- Taccone, F.S.; Artigas, A.A.; Sprung, C.L.; Moreno, R.; Sakr, Y.; Vincent, J.L. Characteristics and outcomes of cancer patients in European ICUs. Crit. Care 2009, 13, R15. [Google Scholar] [CrossRef]
- Churpek, M.M.; Yuen, T.C.; Winslow, C.; Robicsek, A.A.; Meltzer, D.O.; Gibbons, R.D.; Edelson, D.P. Multicenter development and validation of a risk stratification tool for ward patients. Am. J. Respir. Crit. Care Med. 2014, 190, 649–655. [Google Scholar] [CrossRef]
- Escobar, G.J.; LaGuardia, J.C.; Turk, B.J.; Ragins, A.; Kipnis, P.; Draper, D. Early detection of impending physiologic deterioration among patients who are not in intensive care: Development of predictive models using data from an automated electronic medical record. J. Hosp. Med. 2012, 7, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Buist, M.D.; Jarmolowski, E.; Burton, P.R.; Bernard, S.A.; Waxman, B.P.; Anderson, J. Recognising clinical instability in hospital patients before cardiac arrest or unplanned admission to intensive care. A pilot study in a tertiary-care hospital. Med. J. Aust. 1999, 171, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Romero-Brufau, S.; Whitford, D.; Johnson, M.G.; Hickman, J.; Morlan, B.W.; Therneau, T.; Naessens, J.; Huddleston, J.M. Using machine learning to improve the accuracy of patient deterioration predictions: Mayo Clinic Early Warning Score (MC-EWS). J. Am. Med. Inform. Assoc. 2021, 28, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Bhattacharya, S.; Kaluri, R.; Feng, G.; Tariq, U. Multi-modal prediction of breast cancer using particle swarm optimization with non-dominating sorting. Int. J. Distrib. Sens. Netw. 2020, 16, 1–12. [Google Scholar]
- Zhang, K.; Zhang, X.; Ding, W.; Xuan, N.; Tian, B.; Huang, T.; Zhang, Z.; Cui, W.; Huang, H.; Zhang, G. The prognostic accuracy of national early warning score 2 on predicting clinical deterioration for patients with COVID-19: A systematic review and meta-analysis. Front. Med. 2021, 8, 699880. [Google Scholar] [CrossRef]
- Adimoolam, M.; Govindharaju, K.; John, A.; Mohan, S.; Ahmadian, A.; Ciano, T. A hybrid learning approach for the stage-wise classification and prediction of COVID-19 X-ray images. Expert Syst. 2021, 2021, e12884. [Google Scholar]
- Li, D.; Lyons, P.G.; Lu, C.; Kollef, M. DeepAlerts: Deep learning based multi-horizon alerts for clinical deterioration on oncology hospital wards. Proc. AAAI Conf. Artif. Intell. 2020, 34, 743–750. [Google Scholar] [CrossRef]
- Churpek, M.M.; Yuen, T.C.; Edelson, D.P. Risk stratification of hospitalized patients on the wards. Chest 2013, 143, 1758–1765. [Google Scholar] [CrossRef]
- Azoulay, E.; Pène, F.; Darmon, M.; Lengliné, E.; Benoit, D.; Soares, M.; Vincent, F.; Bruneel, F.; Perez, P.; Lemiale, V.; et al. Managing critically Ill hematology patients: Time to think differently. Blood Rev. 2015, 29, 359–367. [Google Scholar] [CrossRef]
- Mokart, D.; Lambert, J.; Schnell, D.; Fouché, L.; Rabbat, A.; Kouatchet, A.; Lemiale, V.; Vincent, F.; Lengliné, E.; Bruneel, F.; et al. Delayed intensive care unit admission is associated with increased mortality in patients with cancer with acute respiratory failure. Leuk. Lymphoma 2013, 54, 1724–1729. [Google Scholar] [CrossRef]
- Peigne, V.; Rusinová, K.; Karlin, L.; Darmon, M.; Fermand, J.P.; Schlemmer, B.; Azoulay, E. Continued survival gains in recent years among critically ill myeloma patients. Intensive Care Med. 2009, 35, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Devita, M.A.; Bellomo, R.; Hillman, K.; Kellum, J.; Rotondi, A.; Teres, D.; Auerbach, A.; Chen, W.J.; Duncan, K.; Kenward, G.; et al. Findings of the first consensus conference on medical emergency teams. Crit. Care Med. 2006, 34, 2463–2478. [Google Scholar] [CrossRef] [PubMed]
- Umscheid, C.A.; Betesh, J.; VanZandbergen, C.; Hanish, A.; Tait, G.; Mikkelsen, M.E.; French, B.; Fuchs, B.D. Development, implementation, and impact of an automated early warning and response system for sepsis. J. Hosp. Med. 2015, 10, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Cooksley, T.; Kitlowski, E.; Haji-Michael, P. Effectiveness of Modified Early Warning Score in predicting outcomes in oncology patients. QJM Int. J. Med. 2012, 105, 1083–1088. [Google Scholar] [CrossRef]
- Suhr, K.; Steen, C.; Albrecht-Thompson, R.; Williams, J. NEWS Scoring System: Use in Hematologic Malignancies and Cellular Therapeutics Patient Populations. Clin. J. Oncol. Nurs. 2020, 24, E21–E27. [Google Scholar] [CrossRef]
- Shillan, D.; Sterne, J.A.C.; Champneys, A.; Gibbison, B. Use of machine learning to analyse routinely collected intensive care unit data: A systematic review. Crit. Care 2019, 23, 284. [Google Scholar] [CrossRef]
- Kwon, J.M.; Lee, Y.; Lee, Y.; Lee, S.; Park, J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J. Am. Heart Assoc. 2018, 7, e008678. [Google Scholar] [CrossRef]
- Shamout, F.E.; Zhu, T.; Sharma, P.; Watkinson, P.J.; Clifton, D.A. Deep Interpretable Early Warning System for the Detection of Clinical Deterioration. IEEE J. Biomed. Health Inform. 2020, 24, 437–446. [Google Scholar] [CrossRef]
- Song, J.U.; Suh, G.Y.; Park, H.Y.; Lim, S.Y.; Han, S.G.; Kang, Y.R.; Kwon, O.J.; Woo, S.; Jeon, K. Early intervention on the outcomes in critically ill cancer patients admitted to intensive care units. Intensive Care Med. 2012, 38, 1505–1513. [Google Scholar] [CrossRef]
- Na, S.J.; Ko, R.E.; Ko, M.G.; Koh, A.; Chung, C.R.; Suh, G.Y.; Jeon, K. Risk Factors for Early Medical Emergency Team Reactivation in Hospitalized Patients. Crit. Care Med. 2020, 48, e1029–e1037. [Google Scholar] [CrossRef] [PubMed]
- American College of Surgeons, Committee on Trauma; Subcommittee on Advanced Trauma Life Support. Advanced Trauma Life Support Course for Physicians; American College of Surgeons: Chicago, IL, USA, 1989; ISBN 0962037052. [Google Scholar]
- Kelly, C.A.; Upex, A.; Bateman, D.N. Comparison of consciousness level assessment in the poisoned patient using the alert/verbal/painful/unresponsive scale and the Glasgow Coma Scale. Ann. Emerg. Med. 2004, 44, 108–113. [Google Scholar] [CrossRef]
- Subbe, C.P.; Kruger, M.; Rutherford, P.; Gemmel, L. Validation of a modified Early Warning Score in medical admissions. QJM Int. J. Med. 2001, 94, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Hillman, K.; Chen, J.; Cretikos, M.; Bellomo, R.; Brown, D.; Doig, G.; Finfer, S.; Flabouris, A. Introduction of the medical emergency team (MET) system: A cluster-randomised controlled trial. Lancet 2005, 365, 2091–2097. [Google Scholar] [PubMed]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Kause, J.; Smith, G.; Prytherch, D.; Parr, M.; Flabouris, A.; Hillman, K. A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom--the ACADEMIA study. Resuscitation 2004, 62, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Yuen, T.C.; Huber, M.T.; Park, S.Y.; Hall, J.B.; Edelson, D.P. Predicting cardiac arrest on the wards: A nested case-control study. Chest 2012, 141, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.B.; Prytherch, D.R.; Meredith, P.; Schmidt, P.E.; Featherstone, P.I. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 2013, 84, 465–470. [Google Scholar] [CrossRef]
- Jones, D.A.; DeVita, M.A.; Bellomo, R. Rapid-response teams. N. Engl. J. Med. 2011, 365, 139–146. [Google Scholar] [CrossRef]
- Wise, M.P.; Barnes, R.A.; Baudouin, S.V.; Howell, D.; Lyttelton, M.; Marks, D.I.; Morris, E.C.; Parry-Jones, N. Guidelines on the management and admission to intensive care of critically ill adult patients with haematological malignancy in the UK. Br. J. Haematol. 2015, 171, 179–188. [Google Scholar] [CrossRef]
- Staudinger, T.; Stoiser, B.; Müllner, M.; Locker, G.J.; Laczika, K.; Knapp, S.; Burgmann, H.; Wilfing, A.; Kofler, J.; Thalhammer, F.; et al. Outcome and prognostic factors in critically ill cancer patients admitted to the intensive care unit. Crit. Care Med. 2000, 28, 1322–1328. [Google Scholar] [CrossRef]
- Austin, C.A.; Hanzaker, C.; Stafford, R.; Mayer, C.; Culp, L.; Lin, F.C.; Chang, L. Utilization of rapid response resources and outcomes in a comprehensive cancer center. Crit. Care Med. 2014, 42, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, E.; Soares, M.; Darmon, M.; Benoit, D.; Pastores, S.; Afessa, B. Intensive care of the cancer patient: Recent achievements and remaining challenges. Ann. Intensive Care 2011, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Warrillow, S. Clinical deterioration in cancer patients--the role of the rapid response team. Crit. Care Med. 2014, 42, 997–998. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.R.; Jung, Y.K.; Kim, H.J.; Koh, Y.; Lim, C.M.; Hong, S.B.; Huh, J.W. Derivation and validation of modified early warning score plus SpO2/FiO2 score for predicting acute deterioration of patients with hematological malignancies. Korean J. Intern. Med. 2020, 35, 1477–1488. [Google Scholar] [CrossRef]
- Young, R.S.; Gobel, B.H.; Schumacher, M.; Lee, J.; Weaver, C.; Weitzman, S. Use of the modified early warning score and serum lactate to prevent cardiopulmonary arrest in hematology-oncology patients: A quality improvement study. Am. J. Med. Qual. 2014, 29, 530–537. [Google Scholar] [CrossRef]
- Kim, J.; Chae, M.; Chang, H.J.; Kim, Y.A.; Park, E. Predicting Cardiac Arrest and Respiratory Failure Using Feasible Artificial Intelligence with Simple Trajectories of Patient Data. J. Clin. Med. 2019, 8, 1336. [Google Scholar] [CrossRef]
- Churpek, M.M.; Adhikari, R.; Edelson, D.P. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation 2016, 102, 1–5. [Google Scholar] [CrossRef]
- Pimentel, M.A.; Redfern, O.C.; Malycha, J.; Meredith, P.; Prytherch, D.; Briggs, J.; Young, J.D.; Clifton, D.A.; Tarassenko, L.; Watkinson, P.J. Detecting Deteriorating Patients in Hospital: Development and Validation of a Novel Scoring System. Am. J. Respir. Crit. Care Med. 2021, 204, 44–52. [Google Scholar] [CrossRef]
- Olsen, S.L.; Søreide, E.; Hillman, K.; Hansen, B.S. Succeeding with rapid response systems—A never-ending process: A systematic review of how health-care professionals perceive facilitators and barriers within the limbs of the RRS. Resuscitation 2019, 144, 75–90. [Google Scholar] [CrossRef]
Score/Threshold | Sensitivity, % | Specificity, % | PPV, % | NPV, % | Number of False Alarms per Day |
---|---|---|---|---|---|
MEWS ≥ 3 | 73.1 | 63.8 | 1.3 | 99.7 | 8.7 |
Can-EWS V1 ≥ 0.011 | 73.1 | 94.2 | 6.8 | 99.8 | 0.74 |
Can-EWS V2 ≥ 0.013 | 73.1 | 97.0 | 12.1 | 99.8 | 0.4 |
MEWS ≥ 4 | 52.8 | 85.2 | 2.3 | 99.6 | 3.5 |
Can-EWS V1 ≥ 0.039 | 52.8 | 98.4 | 16.0 | 99.7 | 0.2 |
Can-EWS V2 ≥ 0.065 | 52.8 | 99.3 | 30.0 | 99.7 | 0.09 |
MEWS ≥ 5 | 34.7 | 93.5 | 3.5 | 99.5 | 1.3 |
Can-EWS V1 ≥ 0.130 | 34.7 | 99.6 | 33.2 | 99.6 | 0.05 |
Can-EWS V2 ≥ 0.221 | 34.7 | 99.8 | 55.0 | 99.6 | 0.2 |
Score/Threshold | Sensitivity, % | Specificity, % | PPV, % | NPV, % | Number of False Alarms per Day |
---|---|---|---|---|---|
MEWS ≥ 3 | 72.4 | 64.9 | 1.1 | 99.6 | 8.4 |
Can-EWS V1 ≥ 0.003 | 72.4 | 88.5 | 2.1 | 99.9 | 1.1 |
Can-EWS V2 ≥ 0.002 | 72.4 | 91.3 | 2.8 | 99.9 | 0.86 |
MEWS ≥ 4 | 53.2 | 85.8 | 2.0 | 99.7 | 3.5 |
Can-EWS V1 ≥ 0.013 | 53.2 | 96.3 | 4.8 | 99.8 | 0.36 |
Can-EWS V2 ≥ 0.006 | 53.2 | 97.0 | 5.7 | 99.8 | 0.3 |
MEWS ≥ 5 | 35.6 | 93.8 | 3.0 | 99.8 | 1.5 |
Can-EWS V1 ≥ 0.038 | 35.6 | 98.8 | 8.9 | 99.8 | 0.12 |
Can-EWS V2 ≥ 0.033 | 35.6 | 99.0 | 11.0 | 99.8 | 0.09 |
Can-EWS V1 | Can-EWS V2 | DEWS * | MEWS * | |
---|---|---|---|---|
Cohort | Single-center cancer patients | Single-center cancer patients | Two centers, all-cause admission | Two centers, all-cause admission |
Number of patients | 19,739 | 19,739 | 52,131 | 52,131 |
Years | 2016–2020 | 2016–2020 | 2010–2017 | 2010–2017 |
Score | ≥0.130 | ≥0.221 | ≥52.8 | ≥5 |
Sensitivity | 34.7 | 34.7 | 37.3 | 37.3 |
Specificity | 99.6 | 99.8 | 98.4 | 90.6 |
PPV | 33.2 | 55.0 | 3.7 | 0.6 |
NPV | 99.6 | 99.6 | 99.9 | 99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, R.-E.; Kim, Z.; Jeon, B.; Ji, M.; Chung, C.R.; Suh, G.Y.; Chung, M.J.; Cho, B.H. Deep Learning-Based Early Warning Score for Predicting Clinical Deterioration in General Ward Cancer Patients. Cancers 2023, 15, 5145. https://doi.org/10.3390/cancers15215145
Ko R-E, Kim Z, Jeon B, Ji M, Chung CR, Suh GY, Chung MJ, Cho BH. Deep Learning-Based Early Warning Score for Predicting Clinical Deterioration in General Ward Cancer Patients. Cancers. 2023; 15(21):5145. https://doi.org/10.3390/cancers15215145
Chicago/Turabian StyleKo, Ryoung-Eun, Zero Kim, Bomi Jeon, Migyeong Ji, Chi Ryang Chung, Gee Young Suh, Myung Jin Chung, and Baek Hwan Cho. 2023. "Deep Learning-Based Early Warning Score for Predicting Clinical Deterioration in General Ward Cancer Patients" Cancers 15, no. 21: 5145. https://doi.org/10.3390/cancers15215145
APA StyleKo, R. -E., Kim, Z., Jeon, B., Ji, M., Chung, C. R., Suh, G. Y., Chung, M. J., & Cho, B. H. (2023). Deep Learning-Based Early Warning Score for Predicting Clinical Deterioration in General Ward Cancer Patients. Cancers, 15(21), 5145. https://doi.org/10.3390/cancers15215145