DNA Methylation Aberrations in Dimethylarsinic Acid-Induced Bladder Carcinogenesis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Diets
2.2. Animals
2.3. Animal Experimental Protocols
2.4. Genome-Wide DNA Methylation Analyses of Rat UCs
2.5. Alignment of RRBS Data and Identification of DMRs
2.6. Microarray Gene Expression Analysis
2.7. Quantitative Real-Time PCR (qPCR)
2.8. Correlations between CPXM1 Promoter Methylation and mRNA Expression Levels in Human UCs
2.9. Examination of the DNA Methylation Status within the CPXM1 Promoter Region in Human UC Cell Lines
2.10. Effects of DNA Methyltransferase Inhibitor in Human UC Cell Lines
2.11. Immunohistochemical Analysis
2.12. Statistical Analysis
3. Results
3.1. Determination of Aberrant DNA Methylation in DMAV-Induced Rat UCs
3.2. Determination of Genes Regulated by DNA Hypermethylation in DMAV-Induced Rat UCs
3.3. Evaluation of Gene Expression of Hypermethylated and Downregulated Genes in DMAV-Induced UCs in the Early Stage of DMAV-Induced Bladder Carcinogenesis
3.4. Correlation between Methylation Status and mRNA Expression Level of CPXM1 in Human UCs
3.5. The Correlation Analysis between CPXM1 Expression and DNA Methylation Level in Human UC Cells
3.6. Protein Expression of CPXM1 in Human UCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 11–465. [Google Scholar]
- Khairul, I.; Wang, Q.Q.; Jiang, Y.H.; Wang, C.; Naranmandura, H. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 2017, 8, 23905–23926. [Google Scholar] [CrossRef] [PubMed]
- Bakhshaiesh, T.O.; Armat, M.; Shanehbandi, D.; Sharifi, S.; Baradaran, B.; Hejazi, M.S.; Samadi, N. Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 16, 5191–5197. [Google Scholar] [CrossRef]
- Huang, W.; Zeng, Y.C. A candidate for lung cancer treatment: Arsenic trioxide. Clin. Transl. Oncol. 2019, 21, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Chen, H.; Li, S.; Liu, J.; Diwan, B.A.; Barrett, J.C.; Waalkes, M.P. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: Implications for arsenic hepatocarcinogenesis. Carcinogenesis 2004, 25, 1779–1786. [Google Scholar] [CrossRef]
- Waalkes, M.P.; Liu, J.; Chen, H.; Xie, Y.; Achanzar, W.E.; Zhou, Y.S.; Cheng, M.L.; Diwan, B.A. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J. Natl. Cancer Inst. 2004, 96, 466–474. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamashita, S.; Ushijima, T.; Takumi, S.; Sano, T.; Michikawa, T.; Nohara, K. Genome-wide analysis of DNA methylation changes induced by gestational arsenic exposure in liver tumors. Cancer Sci. 2013, 104, 1575–1585. [Google Scholar] [CrossRef]
- Okamura, K.; Nakabayashi, K.; Kawai, T.; Suzuki, T.; Sano, T.; Hata, K.; Nohara, K. DNA methylation changes involved in the tumor increase in F2 males born to gestationally arsenite-exposed F1 male mice. Cancer Sci. 2019, 110, 2629–2642. [Google Scholar] [CrossRef]
- Islam, R.; Zhao, L.; Wang, Y.; Lu-Yao, G.; Liu, L.Z. Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers 2022, 14, 4502. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.J.; Song, G.; Cui, Y.; Xia, H.F.; Ma, X. Oxidative stress is implicated in arsenic-induced neural tube defects in chick embryos. Int. J. Dev. Neurosci. 2011, 29, 673–680. [Google Scholar] [CrossRef]
- Zhao, C.Q.; Young, M.R.; Diwan, B.A.; Coogan, T.P.; Waalkes, M.P. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc. Natl. Acad. Sci. USA 1997, 94, 10907–10912. [Google Scholar] [CrossRef] [PubMed]
- Marsit, C.J.; Karagas, M.R.; Danaee, H.; Liu, M.; Andrew, A.; Schned, A.; Nelson, H.H.; Kelsey, K.T. Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 2006, 27, 112–116. [Google Scholar] [CrossRef]
- Aposhian, H.V.; Arroyo, A.; Cebrian, M.E.; del Razo, L.M.; Hurlbut, K.M.; Dart, R.C.; Gonzalez-Ramirez, D.; Kreppel, H.; Speisky, H.; Smith, A.; et al. DMPS-arsenic challenge test. I: Increased urinary excretion of monomethylarsonic acid in humans given dimercaptopropane sulfonate. J. Pharmacol. Exp. Ther. 1997, 282, 192–200. [Google Scholar] [PubMed]
- Cohen, S.M.; Ohnishi, T.; Arnold, L.L.; Le, X.C. Arsenic-induced bladder cancer in an animal model. Toxicol. Appl. Pharmacol. 2007, 222, 258–263. [Google Scholar] [CrossRef]
- Cui, X.; Kobayashi, Y.; Hayakawa, T.; Hirano, S. Arsenic speciation in bile and urine following oral and intravenous exposure to inorganic and organic arsenics in rats. Toxicol. Sci. 2004, 82, 478–487. [Google Scholar] [CrossRef]
- Wei, M.; Wanibuchi, H.; Yamamoto, S.; Li, W.; Fukushima, S. Urinary bladder carcinogenicity of dimethylarsinic acid in male F344 rats. Carcinogenesis 1999, 20, 1873–1876. [Google Scholar] [CrossRef]
- Wei, M.; Wanibuchi, H.; Morimura, K.; Iwai, S.; Yoshida, K.; Endo, G.; Nakae, D.; Fukushima, S. Carcinogenicity of dimethylarsinic acid in male F344 rats and genetic alterations in induced urinary bladder tumors. Carcinogenesis 2002, 23, 1387–1397. [Google Scholar] [CrossRef]
- Arnold, L.L.; Eldan, M.; Nyska, A.; van Gemert, M.; Cohen, S.M. Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice. Toxicology 2006, 223, 82–100. [Google Scholar] [CrossRef]
- Basu, A.; Mahata, J.; Gupta, S.; Giri, A.K. Genetic toxicology of a paradoxical human carcinogen, arsenic: A review. Mutat. Res. 2001, 488, 171–194. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Gi, M.; Kawachi, S.; Tatsumi, K.; Ishii, N.; Doi, K.; Kakehashi, A.; Wanibuchi, H. Examination of in vivo mutagenicity of sodium arsenite and dimethylarsinic acid in gpt delta rats. J. Environ. Sci. 2016, 49, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Suzuki, S.; Gi, M.; Kakehashi, A.; Oishi, Y.; Okuno, T.; Yukimatsu, N.; Wanibuchi, H. Dimethylarsinic acid (DMA) enhanced lung carcinogenesis via histone H3K9 modification in a transplacental mouse model. Arch. Toxicol. 2020, 94, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 2010, 1, 94–99. [Google Scholar] [CrossRef]
- Suzuki, S.; Gi, M.; Fujioka, M.; Kakehashi, A.; Wanibuchi, H. Dimethylarsinic acid induces bladder carcinogenesis via the amphiregulin pathway. Toxicol. Lett. 2023, 384, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Bock, C.; Muller, F.; Sun, D.; Meissner, A.; Li, W. RRBSMAP: A fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics 2012, 28, 430–432. [Google Scholar] [CrossRef]
- Stockwell, P.A.; Chatterjee, A.; Rodger, E.J.; Morison, I.M. DMAP: Differential methylation analysis package for RRBS and WGBS data. Bioinformatics 2014, 30, 1814–1822. [Google Scholar] [CrossRef]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef]
- Benoukraf, T.; Wongphayak, S.; Hadi, L.H.; Wu, M.; Soong, R. GBSA: A comprehensive software for analysing whole genome bisulfite sequencing data. Nucleic Acids Res. 2013, 41, e55. [Google Scholar] [CrossRef]
- Koch, A.; De Meyer, T.; Jeschke, J.; Van Criekinge, W. MEXPRESS: Visualizing expression, DNA methylation and clinical TCGA data. BMC Genom. 2015, 16, 636. [Google Scholar] [CrossRef]
- Koch, A.; Jeschke, J.; Van Criekinge, W.; van Engeland, M.; De Meyer, T. MEXPRESS update 2019. Nucleic Acids Res. 2019, 47, W561–W565. [Google Scholar] [CrossRef] [PubMed]
- Uehiro, N.; Sato, F.; Pu, F.; Tanaka, S.; Kawashima, M.; Kawaguchi, K.; Sugimoto, M.; Saji, S.; Toi, M. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. Breast Cancer Res. 2016, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Caudill, M.A.; Wang, J.C.; Melnyk, S.; Pogribny, I.P.; Jernigan, S.; Collins, M.D.; Santos-Guzman, J.; Swendseid, M.E.; Cogger, E.A.; James, S.J. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J. Nutr. 2001, 131, 2811–2818. [Google Scholar] [CrossRef]
- Coppin, J.F.; Qu, W.; Waalkes, M.P. Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells. J. Biol. Chem. 2008, 283, 19342–19350. [Google Scholar] [CrossRef] [PubMed]
- Saintilnord, W.N.; Fondufe-Mittendorf, Y. Arsenic-induced epigenetic changes in cancer development. Semin. Cancer Biol. 2021, 76, 195–205. [Google Scholar] [CrossRef]
- Kim, Y.H.; O’Neill, H.M.; Whitehead, J.P. Carboxypeptidase X-1 (CPX-1) is a secreted collagen-binding glycoprotein. Biochem. Biophys. Res. Commun. 2015, 468, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xin, X.; Morgan, D.; Pintar, J.E.; Fricker, L.D. Identification of mouse CPX-1, a novel member of the metallocarboxypeptidase gene family with highest similarity to CPX-2. DNA Cell Biol. 1999, 18, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.J.; Kwak, H.B.; Kim, H.; Park, J.C.; Lee, Z.H.; Kim, H.H. Elucidation of CPX-1 involvement in RANKL-induced osteoclastogenesis by a proteomics approach. FEBS Lett. 2004, 564, 166–170. [Google Scholar] [CrossRef]
- Kim, Y.H.; Barclay, J.L.; He, J.; Luo, X.; O’Neill, H.M.; Keshvari, S.; Webster, J.A.; Ng, C.; Hutley, L.J.; Prins, J.B.; et al. Identification of carboxypeptidase X (CPX)-1 as a positive regulator of adipogenesis. FASEB J. 2016, 30, 2528–2540. [Google Scholar] [CrossRef]
- Mao, X.H.; Ye, Q.; Zhang, G.B.; Jiang, J.Y.; Zhao, H.Y.; Shao, Y.F.; Ye, Z.Q.; Xuan, Z.X.; Huang, P. Identification of differentially methylated genes as diagnostic and prognostic biomarkers of breast cancer. World J. Surg. Oncol. 2021, 19, 29. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.Y.; Zhou, G.Q.; Sun, Y. An Immune-Related Gene Prognostic Index for Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2021, 27, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Long, F.; Hao, Y.; Li, B.; Li, Y.; Tang, Y.; Li, J.; Zhao, Q.; Chen, J.; Liu, M. A Cancer Associated Fibroblasts-Related Six-Gene Panel for Anti-PD-1 Therapy in Melanoma Driven by Weighted Correlation Network Analysis and Supervised Machine Learning. Front. Med. 2022, 9, 880326. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulovic, S.; Demey, W.; Ullen, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.E.; Dunn, J.R.; du Plessis, D.G.; Shaw, E.J.; Reeves, P.; Gee, A.L.; Warnke, P.C.; Sellar, G.C.; Moss, D.J.; Walker, C. Expression of cellular adhesion molecule ‘OPCML’ is down-regulated in gliomas and other brain tumours. Neuropathol. Appl. Neurobiol. 2007, 33, 77–85. [Google Scholar] [CrossRef]
- Duarte-Pereira, S.; Paiva, F.; Costa, V.L.; Ramalho-Carvalho, J.; Savva-Bordalo, J.; Rodrigues, A.; Ribeiro, F.R.; Silva, V.M.; Oliveira, J.; Henrique, R.; et al. Prognostic value of opioid binding protein/cell adhesion molecule-like promoter methylation in bladder carcinoma. Eur. J. Cancer 2011, 47, 1106–1114. [Google Scholar] [CrossRef]
- Lian, B.; Li, H.; Liu, Y.; Chai, D.; Gao, Y.; Zhang, Y.; Zhou, J.; Li, J. Expression and promoter methylation status of OPCML and its functions in the inhibition of cell proliferation, migration, and invasion in breast cancer. Breast Cancer 2021, 28, 448–458. [Google Scholar] [CrossRef]
- Shao, Y.; Kong, J.; Xu, H.; Wu, X.; Cao, Y.; Li, W.; Han, J.; Li, D.; Xie, K.; Wu, J. OPCML Methylation and the Risk of Ovarian Cancer: A Meta and Bioinformatics Analysis. Front. Cell Dev. Biol. 2021, 9, 570898. [Google Scholar] [CrossRef]
- Luo, J.; Chen, J.W.; Zhou, J.; Han, K.; Li, S.; Duan, J.L.; Cao, C.H.; Lin, J.L.; Xie, D.; Wang, F.W. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ-mediated DNA repair. Cancer Sci. 2022, 113, 2008–2021. [Google Scholar] [CrossRef]
Gene Symbol | Gene Name | Fold Change | Function |
---|---|---|---|
Tbx20 | T-box transcription factor 20 | −5.1 | transcription regulator |
Pcbp3 | poly(rC) binding protein 3 | −3.1 | transcription regulator |
Pitx2 | paired like homeodomain 2 | −2.1 | transcription regulator |
Foxe3 | forkhead box E3 | −2 | transcription regulator |
Prrx2 | paired related homeobox 2 | −1.6 | transcription regulator |
Scara3 | scavenger receptor class A member 3 | −6.5 | transmembrane receptor |
Sema5a | semaphorin 5A | −2.2 | transmembrane receptor |
Robo2 | roundabout guidance receptor 2 | −1.5 | transmembrane receptor |
Cpxm1 | carboxypeptidase X, M14 family member 1 | −12.2 | peptidase |
Ctsz | cathepsin Z | −3 | peptidase |
Mmp23bB | matrix metallopeptidase 23B | −2.9 | peptidase |
Gpx7 | glutathione peroxidase 7 | −1.7 | enzyme |
Polg | DNA polymerase gamma, catalytic subunit | −1.7 | enzyme |
Mpst | mercaptopyruvate sulfurtransferase | −1.7 | enzyme |
Nmnat2 | nicotinamide nucleotide adenylyltransferase 2 | −1.6 | enzyme |
Cyp7b1 | cytochrome P450 family 7 subfamily B member 1 | −1.6 | enzyme |
Pde8a | phosphodiesterase 8A | −1.5 | enzyme |
Pclo | piccolo presynaptic cytomatrix protein | −3.1 | transporter |
Atp2a3 | ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3 | −1.6 | transporter |
Kcnd3 | potassium voltage-gated channel subfamily D member 3 | −9.1 | ion channel |
Kcnq5 | potassium voltage-gated channel subfamily Q member 5 | −3.5 | ion channel |
Cacna2d1 | calcium voltage-gated channel auxiliary subunit alpha2delta 1 | −2.9 | ion channel |
Kcne5 | potassium voltage-gated channel subfamily E regulatory subunit 5 | −2.3 | ion channel |
Cacna1bB | calcium voltage-gated channel subunit alpha1 B | −1.8 | ion channel |
Hcn1 | hyperpolarization activated cyclic nucleotide gated potassium channel 1 | −1.7 | ion channel |
Asic2 | acid sensing ion channel subunit 2 | −1.6 | ion channel |
Ptprm | protein tyrosine phosphatase receptor type M | −3.6 | phosphatase |
Npr2 | natriuretic peptide receptor 2 | −2.6 | G-protein coupled receptor |
Prkcb | protein kinase C beta | −1.9 | kinase |
Des | desmin | −40.9 | other |
Opcml | opioid binding protein/cell adhesion molecule like | −10 | other |
Clmp | CXADR like membrane protein | −4.1 | other |
Brinp2 | BMP/retinoic acid inducible neural specific 2 | −3.1 | other |
Stxbp6 | syntaxin binding protein 6 | −3.1 | other |
Fstl1 | follistatin like 1 | −2.7 | other |
Macroh2a2 | macroH2A.2 histone | −2.1 | other |
Sprn | shadow of prion protein | −1.9 | other |
Arhgef25 | Rho guanine nucleotide exchange factor 25 | −1.8 | other |
Mfap2 | microfibril associated protein 2 | −1.7 | other |
Coro1a | coronin 1A | −1.6 | other |
n | Expression | p-Value | ||
---|---|---|---|---|
Negative | Positive | |||
NBT | 11 | 0 | 11 | p < 0.001 |
(0%) | (100%) | |||
UCs | 160 | 137 | 23 | |
(86%) | (14%) | |||
T-stage | ||||
T1 | 50 | 44 | 6 | 0.56 |
(88%) | (12%) | |||
>T2 | 110 | 93 | 17 | |
(85%) | (15%) | |||
Gender | ||||
male | 125 | 107 | 18 | 0.98 |
(86%) | (14%) | |||
female | 35 | 30 | 5 | |
(86%) | (14%) | |||
Tumor grade | ||||
HG | 110 | 96 | 14 | 0.37 |
(87%) | (13%) | |||
LG | 50 | 41 | 9 | |
(82%) | (18%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, T.; Gi, M.; Yamashita, S.; Suzuki, S.; Fujioka, M.; Vachiraarunwong, A.; Guo, R.; Qiu, G.; Kakehashi, A.; Kato, M.; et al. DNA Methylation Aberrations in Dimethylarsinic Acid-Induced Bladder Carcinogenesis. Cancers 2023, 15, 5274. https://doi.org/10.3390/cancers15215274
Yamamoto T, Gi M, Yamashita S, Suzuki S, Fujioka M, Vachiraarunwong A, Guo R, Qiu G, Kakehashi A, Kato M, et al. DNA Methylation Aberrations in Dimethylarsinic Acid-Induced Bladder Carcinogenesis. Cancers. 2023; 15(21):5274. https://doi.org/10.3390/cancers15215274
Chicago/Turabian StyleYamamoto, Tomoki, Min Gi, Satoshi Yamashita, Shugo Suzuki, Masaki Fujioka, Arpamas Vachiraarunwong, Runjie Guo, Guiyu Qiu, Anna Kakehashi, Minoru Kato, and et al. 2023. "DNA Methylation Aberrations in Dimethylarsinic Acid-Induced Bladder Carcinogenesis" Cancers 15, no. 21: 5274. https://doi.org/10.3390/cancers15215274
APA StyleYamamoto, T., Gi, M., Yamashita, S., Suzuki, S., Fujioka, M., Vachiraarunwong, A., Guo, R., Qiu, G., Kakehashi, A., Kato, M., Uchida, J., & Wanibuchi, H. (2023). DNA Methylation Aberrations in Dimethylarsinic Acid-Induced Bladder Carcinogenesis. Cancers, 15(21), 5274. https://doi.org/10.3390/cancers15215274