BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. BRAFV600E Mutation Analysis
2.3. Surgical Treatment and Follow-Up Assessment
2.4. Statistical Analysis
3. Results
3.1. Comparison of Clinicopathological Characteristics between Younger and Older Patients with BRAFV600E Positivity
3.2. Univariate and Multivariate Analyses of Risk Factors for Recurrence in Patients with BRAFV600E Positivity
3.3. Comparison of Clinicopathological Characteristics between Younger and Older Patients with BRAFV600E Negativity
3.4. Univariate and Multivariate Analyses of Risk Factors for Recurrence in Patients with BRAFV600E Negativity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nylén, C.; Mechera, R.; Maréchal-Ross, I.; Tsang, V.; Chou, A.; Gill, A.J.; Clifton-Bligh, R.J.; Robinson, B.G.; Sywak, M.S.; Sidhu, S.B. Molecular markers guiding thyroid cancer management. Cancers 2020, 12, 2164. [Google Scholar] [CrossRef]
- Yip, L. Molecular markers for thyroid cancer diagnosis, prognosis, and targeted therapy. J. Surg. Oncol. 2015, 111, 43–50. [Google Scholar] [CrossRef]
- D’Cruz, A.K.; Vaish, R.; Vaidya, A.; Nixon, I.J.; Williams, M.D.; Vander Poorten, V.; López, F.; Angelos, P.; Shaha, A.R.; Khafif, A. Molecular markers in well-differentiated thyroid cancer. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 1375–1384. [Google Scholar] [CrossRef]
- Kato, M.A.; Fahey, T.J. Molecular markers in thyroid cancer diagnostics. Surg. Clin. 2009, 89, 1139–1155. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.-K.; Kang, Y.-G.; Bae, J.-S.; Lim, D.-J.; Choi, Y.-J.; Lee, K.-Y. Unique patterns of tumor growth related with the risk of lymph node metastasis in papillary thyroid carcinoma. Mod. Pathol. 2010, 23, 1201–1208. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, D.-L.; Han, H.S.; Kim, W.S.; Kim, S.J.; Moon, W.J.; Oh, S.Y.; Hwang, T.S. Pyrosequencing analysis for detection of a BRAFV600E mutation in an FNAB specimen of thyroid nodules. Diagn. Mol. Pathol. 2008, 17, 118–125. [Google Scholar] [CrossRef]
- Kebebew, E.; Weng, J.; Bauer, J.; Ranvier, G.; Clark, O.H.; Duh, Q.-Y.; Shibru, D.; Bastian, B.; Griffin, A. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann. Surg. 2007, 246, 466. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, K.; Lin, X.; Zhao, L.; An, W.; Wang, C.; Liu, X. The association between BRAF V600E mutation and pathological features in PTC. Eur. Arch. Oto-Rhino-Laryngol. 2014, 271, 3041–3052. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.-L.; Wang, O.-C.; Zhang, X.-H.; Dai, X.-X.; Hu, X.-Q.; Qu, J.-M. The BRAF mutation is predictive of aggressive clinicopathological characteristics in papillary thyroid microcarcinoma. Ann. Surg. Oncol. 2010, 17, 3294–3300. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wang, F.; Shen, X.; Zhu, G.; Liu, R.; Viola, D.; Elisei, R.; Puxeddu, E.; Fugazzola, L.; Colombo, C. BRAF V600E status sharply differentiates lymph node metastasis-associated mortality risk in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2021, 106, 3228–3238. [Google Scholar] [CrossRef] [PubMed]
- Elisei, R.; Ugolini, C.; Viola, D.; Lupi, C.; Biagini, A.; Giannini, R.; Romei, C.; Miccoli, P.; Pinchera, A.; Basolo, F. BRAFV600E mutation and outcome of patients with papillary thyroid carcinoma: A 15-year median follow-up study. J. Clin. Endocrinol. Metab. 2008, 93, 3943–3949. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.K.; Jung, C.K.; Song, B.J.; Lim, D.J.; Chae, B.J.; Lee, N.S.; Park, W.C.; Kim, J.S.; Jung, S.S.; Bae, J.S. Is the BRAFV600E mutation useful as a predictor of preoperative risk in papillary thyroid cancer? Am. J. Surg. 2012, 203, 436–441. [Google Scholar] [CrossRef]
- Zhou, B.; Lu, X.; Hei, H.; Zhang, S.; Li, Y.; Fang, J.; Qin, J.; Ge, H. Single BRAFV600E mutation is not associated with aggressive biological behavior in adolescent and pediatric papillary thyroid carcinoma. Cancer Cytopathol. 2023, 131, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Zurnadzhy, L.; Bogdanova, T.; Rogounovitch, T.I.; Ito, M.; Tronko, M.; Yamashita, S.; Mitsutake, N.; Chernyshov, S.; Masiuk, S.; Saenko, V.A. The BRAFV600E mutation is not a risk factor for more aggressive tumor behavior in radiogenic and sporadic papillary thyroid carcinoma at a young age. Cancers 2021, 13, 6038. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Czarniecka, A.; Oczko-Wojciechowska, M.; Barczyński, M. BRAF V600E mutation in prognostication of papillary thyroid cancer (PTC) recurrence. Gland Surg. 2016, 5, 495. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Huang, D.; Hou, Y.; Wei, X.; Zhang, J.; Wang, J. Predictive factors for recurrence of papillary thyroid carcinoma in children and adolescents. Front. Oncol. 2022, 12, 833775. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Pan, H.; Jiang, C.; Liu, S.; Zhu, Z.; Fang, J.; Zheng, X.; Hong, S.; Wang, S. Young age increases the risk of lymph node positivity in papillary thyroid cancer patients: A SEER data-based study. Cancer Manag. Res. 2018, 10, 3867–3873. [Google Scholar] [CrossRef]
- Adam, M.A.; Thomas, S.; Hyslop, T.; Scheri, R.P.; Roman, S.A.; Sosa, J.A. Exploring the relationship between patient age and cancer-specific survival in papillary thyroid cancer: Rethinking current staging systems. J. Clin. Oncol. 2016, 34, 4415. [Google Scholar] [CrossRef] [PubMed]
- Ronga, G.; Filesi, M.; Montesano, T.; Di Nicola, A.; Pace, C.; Travascio, L.; Ventroni, G.; Antonaci, A.; Vestri, A. Lung metastases from differentiated thyroid carcinoma. Q. J. Nucl. Med. Mol. Imaging 2004, 48, 12–19. [Google Scholar] [PubMed]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C. AJCC Cancer Staging Manual; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1024. [Google Scholar]
- SEER Preliminary Cancer Incidence Rate Estimates for 2017, and Diagnosis Years 2000 to 2017. Available online: https://seer.cancer.gov/statistics/preliminary-estimates (accessed on 15 September 2019).
- Ries, L.; Melbert, D.; Krapcho, M.; Stinchcomb, D.; Howlader, N.; Horner, M.; Mariotto, A.; Miller, B.; Feuer, E.; Altekruse, S. SEER cancer statistics review, 1975–2005. Bethesda MD Natl. Cancer Inst. 2008, 2999, 907. [Google Scholar]
- Omry-Orbach, G. Risk stratification in differentiated thyroid cancer: An ongoing process. Rambam Maimonides Med. J. 2016, 7, e0003. [Google Scholar] [CrossRef]
- Li, H.; Han, R.; Meng, L.; Sun, Y.; Zhao, M.; Zhou, W.; Xie, J.; Yu, D.; Shen, L.; Zhou, Y. Nodal Metastases Associated with Fusion Oncogenes Are Age Dependent in Young Adult Patients with Thyroid Cancer. J. Clin. Endocrinol. Metab. 2023, dgad458. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, G.; Hafdi-Nejjari, Z.; Ferraro, A.; Decaussin-Petrucci, M.; Rousset, B.; Borson-Chazot, F.; Borbone, E.; Berger, N.; Fusco, A. Oncogenic alterations in papillary thyroid cancers of young patients. Thyroid 2012, 22, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Steward, D.L.; Robinson-Smith, T.M.; Haugen, B.R.; Klopper, J.P.; Zhu, Z.; Fagin, J.A.; Falciglia, M.; Weber, K.; Nikiforova, M.N. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J. Clin. Endocrinol. Metab. 2009, 94, 2092–2098. [Google Scholar] [CrossRef]
- Jeong, D.; Jeong, Y.; Lee, S.; Lee, H.; Lee, W.; Kim, H.; Park, D.; Park, S.; Mu, W.; Cho, H.-D. Detection of BRAFV600E mutations in papillary thyroid carcinomas by peptide nucleic acid clamp real-Time PCR: A comparison with direct sequencing. Korean J. Pathol. 2012, 46, 61. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, T.; Kim, K.; Bae, J.S.; Kim, J.S.; Jung, C.K. Highly prevalent BRAF V600E and low-frequency TERT promoter mutations underlie papillary thyroid carcinoma in Koreans. J. Pathol. Transl. Med. 2020, 54, 310–317. [Google Scholar] [CrossRef]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Xing, M. BRAF mutation in papillary thyroid cancer: Pathogenic role, molecular bases, and clinical implications. Endocr. Rev. 2007, 28, 742–762. [Google Scholar] [CrossRef]
- Jo, Y.S.; Li, S.; Song, J.H.; Kwon, K.H.; Lee, J.C.; Rha, S.Y.; Lee, H.J.; Sul, J.Y.; Kweon, G.R.; Ro, H.-K. Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2006, 91, 3667–3670. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.K.; Kim, G.J.; Kang, S.-W.; Lee, J.; Jeong, J.J.; Chung, W.Y.; Kim, D.; Nam, K.-H. TERT promoter and BRAF V600E mutations in papillary thyroid cancer: A single-institution experience in Korea. Cancers 2022, 14, 4928. [Google Scholar] [CrossRef]
- Huang, M.; Yan, C.; Xiao, J.; Wang, T.; Ling, R. Relevance and clinicopathologic relationship of BRAF V600E, TERT and NRAS mutations for papillary thyroid carcinoma patients in Northwest China. Diagn. Pathol. 2019, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Hwang, T.S.; Choi, Y.-L.; Kim, W.Y.; Han, H.S.; Lim, S.D.; Kim, W.-S.; Yoo, Y.B.; Kim, S.K. Molecular profiling of papillary thyroid carcinoma in Korea with a high prevalence of BRAFV600E mutation. Thyroid 2017, 27, 802–810. [Google Scholar] [CrossRef]
- Kimura, E.T.; Nikiforova, M.N.; Zhu, Z.; Knauf, J.A.; Nikiforov, Y.E.; Fagin, J.A. High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003, 63, 1454–1457. [Google Scholar] [PubMed]
- Soares, P.; Trovisco, V.; Rocha, A.S.; Lima, J.; Castro, P.; Preto, A.; Maximo, V.; Botelho, T.; Seruca, R.; Sobrinho-Simoes, M. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 2003, 22, 4578–4580. [Google Scholar] [CrossRef] [PubMed]
- Fugazzola, L.; Mannavola, D.; Cirello, V.; Vannucchi, G.; Muzza, M.; Vicentini, L.; Beck-Peccoz, P. BRAF mutations in an Italian cohort of thyroid cancers. Clin. Endocrinol. 2004, 61, 239–243. [Google Scholar] [CrossRef]
- Ito, Y.; Miyauchi, A.; Kihara, M.; Takamura, Y.; Kobayashi, K.; Miya, A. Relationship between prognosis of papillary thyroid carcinoma patient and age: A retrospective single-institution study. Endocr. J. 2012, 59, 399–405. [Google Scholar] [CrossRef]
- Kruijff, S.; Petersen, J.F.; Chen, P.; Aniss, A.M.; Clifton-Bligh, R.J.; Sidhu, S.B.; Delbridge, L.W.; Gill, A.J.; Learoyd, D.; Sywak, M.S. Patterns of structural recurrence in papillary thyroid cancer. World J. Surg. 2014, 38, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Trovisco, V.; Soares, P.; Preto, A.; de Castro, I.V.; Lima, J.; Castro, P.; Máximo, V.; Botelho, T.; Moreira, S.; Meireles, A.M. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch. 2005, 446, 589–595. [Google Scholar] [CrossRef]
- Lima, J.; Trovisco, V.T.; Soares, P.; Máximo, V.; Magalhães, J.O.; Salvatore, G.; Santoro, M.; Bogdanova, T.; Tronko, M.; Abrosimov, A. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J. Clin. Endocrinol. Metab. 2004, 89, 4267–4271. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Ciampi, R.; Salvatore, G.; Santoro, M.; Gandhi, M.; Knauf, J.A.; Thomas, G.A.; Jeremiah, S.; Bogdanova, T.I.; Tronko, M.D. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett. 2004, 209, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, A.; Namba, H.; Saenko, V.A.; Ashizawa, K.; Ohtsuru, A.; Ito, M.; Ishikawa, N.; Sugino, K.; Ito, K.; Jeremiah, S. Low frequency of BRAF T1796A mutations in childhood thyroid carcinomas. J. Clin. Endocrinol. Metab. 2004, 89, 4280–4284. [Google Scholar] [CrossRef] [PubMed]
Younger Group (n = 743) | Older Group (n = 1025) | p-Value | |
---|---|---|---|
Age (years) | 29.5 ± 61.9 (range, 13–34) | 61.9 ± 5.8 (range, 55–83) | <0.001 |
Female | 578 (77.8%) | 826 (80.6%) | 0.152 |
Extent of surgery | |||
Lobectomy | 317 (42.7%) | 282 (27.5%) | <0.001 |
TT and/or mRND | 426 (57.3%) | 743 (72.5%) | |
Aggressive variant | 47 (6.3%) | 60 (5.9%) | 0.681 |
Tumor size (cm) | 1.0 ± 0.8 (range, 0.2–6.5) | 1.0 ± 0.7 (range, 0.2–5.5) | 0.244 |
Multifocality | 222 (29.9%) | 470 (45.9%) | <0.001 |
Lymphatic invasion | 314 (42.3%) | 223 (21.8%) | <0.001 |
Vascular invasion | 20 (2.7%) | 21 (2.0%) | 0.375 |
Perineural invasion | 19 (2.6%) | 33 (3.2%) | 0.416 |
Harvested LNs | 15.4 ± 20.1 (range, 0–135) | 11.6 ± 14.5 (range, 0–168) | <0.001 |
Positive LNs | 3.9 ± 6.0 (range, 0–71) | 1.7 ± 3.5 (range, 0–41) | <0.001 |
LNR | 0.27 ± 0.28 (range, 0.0–1.0) | 0.13 ± 0.22 (range, 0.0–1.0) | <0.001 |
T category | 0.001 | ||
T1 | 658 (88.6%) | 894 (87.2%) | |
T2 | 48 (6.5%) | 38 (3.7%) | |
T3a | 5 (0.7%) | 6 (0.6%) | |
T3b | 31 (4.2%) | 85 (8.3%) | |
T4a | 1 (0.1%) | 2 (0.2%) | |
N category | <0.001 | ||
N0, Nx | 238 (32.0%) | 588 (57.4%) | |
N1a | 356 (47.9%) | 316 (30.8%) | |
N1b | 149 (20.1%) | 12 (11.8%) | |
TNM stage | <0.001 | ||
Stage I | 743 (100%) | 562 (54.8%) | |
Stage II | 461 (45.0%) | ||
Stage III | 2 (0.2%) | ||
RAI ablation | 342 (46.0%) | 469 (45.8%) | 0.909 |
RAI dose | 114.2 ± 30.5 (range, 80–250) | 116.8 ± 34.5 (range, 80–400) | 0.265 |
Recurrence | 44 (5.9%) | 1 (2.1%) | <0.001 |
Univariate | Multivariate | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age | ||||
Older group (≥55) | Ref | Ref | ||
Younger group (<35) | 2.870 (1.705–4.831) | <0.001 | 2.528 (1.443–4.430) | 0.001 |
Gender | ||||
Female | Ref | |||
Male | 1.245 (0.700–2.213) | 0.455 | ||
Aggressive variant | 1.002 (0.357–2.807) | 0.998 | ||
Tumor size | ||||
≤1 cm | Ref | Ref | ||
>1 cm | 1.875 (1.144–3.073) | 0.013 | 0.716 (0.376–1.367) | 0.312 |
Gross ETE | 1.875 (1.130–3.112) | 0.015 | 1.359 (0.769–2.402) | 0.291 |
Multifocality | 2.175 (1.322–3.578) | 0.002 | 2.241 (1.327–3.785) | 0.003 |
Lymphatic invasion | 3.272 (1.986–5.390) | <0.001 | 1.154 (0.644–2.071) | 0.630 |
Vascular invasion | 2.903 (1.004–8.399) | 0.049 | 1.277 (0.397–4.110) | 0.681 |
Perineural invasion | 2.886 (1.109–7.513) | 0.030 | 1.938 (0.671–5.600) | 0.222 |
LNR | ||||
<0.1 | Ref | Ref | ||
≥0.1 | 5.868 (3.050–11.290) | <0.001 | 1.700 (0.599–4.827) | 0.319 |
T category | ||||
T1 | Ref | 0.001 | Ref | 0.088 |
T2 | 4.213 (2.050–8.659) | <0.001 | 2.608 (1.221–5.570) | 0.013 |
T3a | 3.202 (0.402–25.530) | 0.272 | 2.010 (0.238–17.015) | 0.522 |
T3b | 2.372 (1.093–5.147) | 0.029 | 2.071 (0.920–4.662) | 0.078 |
T4a | 0.000 (0.000–) | 0.999 | 0.000 (0.000–) | 0.999 |
N category | ||||
N0, Nx | Ref | <0.001 | Ref | <0.001 |
N1a | 6.623 (2.928–14.980) | <0.001 | 4.594 (1.998–10.565) | <0.001 |
N1b | 10.895 (4.620–25.693) | <0.001 | 6.200 (2.516–15.278) | <0.001 |
TNM stage | ||||
Stage I | Ref | 0.880 | ||
Stage II | 1.151 (0.668–1.982) | 0.613 | ||
Stage III | 0.000 (0.000–) | 0.999 |
Younger Group (n = 178) | Older Group (n = 250) | p-Value | |
---|---|---|---|
Age (years) | 28.9 ± 4.3 (range, 12–34) | 62.2 ± 5.7 (range, 55–79) | <0.001 |
Female | 142 (79.8%) | 193 (77.2%) | 0.524 |
Extent of surgery | |||
Lobectomy | 75 (42.1%) | 76 (30.4%) | 0.012 |
TT and/or mRND | 103 (57.9%) | 174 (69.6%) | |
Aggressive variant | 17 (9.6%) | 7 (2.8%) | 0.003 |
Tumor size (cm) | 1.3 ± 1.0 (range, 0.1–6.0) | 1.0 ± 1.0 (range, 0.1–6.5) | 0.002 |
Multifocality | 53 (29.8%) | 101 (40.4%) | 0.024 |
Lymphatic invasion | 67 (37.6%) | 30 (12.0%) | <0.001 |
Vascular invasion | 23 (12.9%) | 3 (1.2%) | <0.001 |
Perineural invasion | 4 (2.2%) | 1 (2.9%) | 0.080 |
Harvested LNs | 21.0 ± 29.5 (range, 0–138) | 10.8 ± 11.8 (range, 0–61) | <0.001 |
Positive LNs | 5.3 ± 11.4 (range, 0–74) | 1.3 ± 3.5 (range, 0–29) | <0.001 |
LNR | 0.16 ± 0.23 (range, 0.0–1.0) | 0.08 ± 0.16 (range, 0.0–1.0) | <0.001 |
T category | 0.065 | ||
T1 | 143 (80.3%) | 217 (86.8%) | |
T2 | 25 (14.0%) | 18 (7.2%) | |
T3a | 5 (2.8%) | 4 (1.6%) | |
T3b | 4 (2.2%) | 11 (4.4%) | |
T4a | 1 (0.6%) | 0 (0.0%) | |
N category | <0.001 | ||
N0, Nx | 94 (52.8%) | 174 (69.6%) | |
N1a | 44 (24.7%) | 59 (23.6%) | |
N1b | 40 (22.5%) | 17 (6.8%) | |
TNM stage | <0.001 | ||
Stage I | 178 (100%) | 169 (67.6%) | |
Stage II | 81 (32.4%) | ||
RAI ablation | 78 (43.8%) | 89 (35.6%) | 0.086 |
RAI dose | 139.1 ± 65.3 (range, 100–400) | 11.2 ± 29.9 (range, 50–300) | <0.001 |
Recurrence | 12 (6.7%) | 8 (3.2%) | 0.087 |
Univariate | Multivariate | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age | ||||
Older group (≥55) | Ref | |||
Younger group (<35) | 2.187 (0.875–5.466) | 0.094 | ||
Gender | ||||
Female | Ref | |||
Male | 2.016 (0.780–5.209) | 0.148 | ||
Aggressive variant | 1.949 (0.425–8.938) | 0.390 | ||
Tumor size | ||||
≤1 cm | Ref | Ref | ||
>1 cm | 6.264 (2.057–19.076) | 0.001 | 4.878 (1.479–16.090) | 0.009 |
Gross ETE | 5.470 (2.054–14.568) | 0.001 | 3.302 (1.153–9.456) | 0.026 |
Multifocality | 1.833 (0.746–4.508) | 0.187 | ||
Lymphatic invasion | 4.576 (1.837–11.397) | 0.001 | 0.886 (0.271–2.895) | 0.841 |
Vascular invasion | 1.778 (0.390–8.112) | 0.458 | 0.524 (0.099–2.762) | 0.446 |
Perineural invasion | 5.316 (0.566–49.887) | 0.144 | ||
LNR | ||||
<0.1 | Ref | Ref | ||
≥0.1 | 7.552 (2.683–21.253) | <0.001 | 1.628 (0.314–8.448) | 0.562 |
N category | ||||
N0, Nx | Ref | 0.001 | Ref | 0.023 |
N1a | 9.498 (2.559–35.260) | 0.001 | 6.639 (1.715–25.701) | 0.006 |
N1b | 12.367 (3.093–49.445) | <0.001 | 4.032 (0.900–18.055) | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; An, S.; Kim, K.; Bae, J.S.; Kim, J.S. BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk. Cancers 2023, 15, 5395. https://doi.org/10.3390/cancers15225395
Park J, An S, Kim K, Bae JS, Kim JS. BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk. Cancers. 2023; 15(22):5395. https://doi.org/10.3390/cancers15225395
Chicago/Turabian StylePark, Joonseon, Solji An, Kwangsoon Kim, Ja Seong Bae, and Jeong Soo Kim. 2023. "BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk" Cancers 15, no. 22: 5395. https://doi.org/10.3390/cancers15225395
APA StylePark, J., An, S., Kim, K., Bae, J. S., & Kim, J. S. (2023). BRAFV600E Positivity-Dependent Effect of Age on Papillary Thyroid Cancer Recurrence Risk. Cancers, 15(22), 5395. https://doi.org/10.3390/cancers15225395