Therapeutic Efficacy and Safety of Lenvatinib after Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment Regimens
2.3. Efficacy Assessment
2.4. Statistics
3. Results
3.1. Patients’ Background Characteristics and Outcomes from the Beginning of Atezolizumab Plus Bevacizumab
3.2. Patients’ Clinical Data and Outcomes after Progression of Atezolizumab Plus Bevacizumab
3.3. Antitumor Response to Lenvatinib Administration Following Atezolizumab Plus Bevacizumab
3.4. Prognostic Factors for OS and PFS of Lenvatinib
3.5. Treatment-Related Toxicities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Debruyne, E.N.; Delanghe, J.R. Diagnosing and monitoring hepatocellular carcinoma with alpha-fetoprotein: New aspects and applications. Clin. Chim. Acta 2008, 395, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Liebman, H.A.; Furie, B.C.; Tong, M.J.; Blanchard, R.A.; Lo, K.J.; Lee, S.D.; Coleman, M.S.; Furie, B. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N. Engl. J. Med. 1984, 310, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Ünal, E.; İdilman, İ.S.; Akata, D.; Özmen, M.N.; Karçaaltıncaba, M. Microvascular invasion in hepatocellular carcinoma. Diagn. Interv. Radiol. 2016, 22, 125–132. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gordan, J.D.; Kennedy, E.B.; Abou-Alfa, G.K.; Beg, M.S.; Brower, S.T.; Gade, T.P.; Goff, L.; Gupta, S.; Guy, J.; Harris, W.P.; et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO Guideline. J. Clin. Oncol. 2020, 38, 4317–4345. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Martinelli, E. Updated treatment recommendations for hepatocellular carcinoma (HCC) from the ESMO Clinical Practice Guidelines. Ann. Oncol. 2021, 32, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Villanueva, A.; Marrero, J.A.; Schwartz, M.; Meyer, T.; Galle, P.R.; Lencioni, R.; Greten, T.F.; Kudo, M.; Mandrekar, S.J.; et al. Trial design and endpoints in hepatocellular carcinoma: AASLD Consensus Conference. Hepatology 2021, 73 (Suppl. S1), 158–191. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, M.B.; Riaz, I.B.; Naqvi, S.A.A.; Almquist, D.R.; Mina, S.; Almasri, J.; Shah, S.; Almader-Douglas, D.; Uson Junior, P.L.S.; Mahipal, A.; et al. Systemic therapy and sequencing options in advanced hepatocellular carcinoma: A systematic review and network meta-analysis. JAMA Oncol. 2020, 6, e204930. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, X.; Lin, J.; Bai, Y.; Long, J.; Yang, X.; Seery, S.; Zhao, H. Comparing the efficacy and safety of second-line therapies for advanced hepatocellular carcinoma: A network meta-analysis of phase III trials. Therap. Adv. Gastroenterol. 2020, 13, 1756284820932483. [Google Scholar] [CrossRef]
- Vogel, A.; Frenette, C.; Sung, M.; Daniele, B.; Baron, A.; Chan, S.L.; Blanc, J.F.; Tamai, T.; Ren, M.; Lim, H.J.; et al. Baseline Liver Function and Subsequent Outcomes in the Phase 3 REFLECT Study of Patients with Unresectable Hepatocellular Carcinoma. Liver Cancer 2021, 10, 510–521. [Google Scholar] [CrossRef]
- Yao, D.F.; Wu, X.H.; Zhu, Y.; Shi, G.S.; Dong, Z.Z.; Yao, D.B.; Wu, W.; Qiu, L.W.; Meng, X.Y. Quantitative analysis of vascular endothelial growth factor, microvascular density and their clinicopathologic features in human hepatocellular carcinoma. Hepatobiliary Pancreat. Dis. Int. 2005, 4, 220–226. [Google Scholar]
- Morais, C. Sunitinib resistance in renal cell carcinoma. J. Kidney Cancer VHL 2014, 1, 1–11. [Google Scholar] [CrossRef]
- Teng, M.W.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 2015, 75, 2139–2145. [Google Scholar] [CrossRef]
- Huinen, Z.R.; Huijbers, E.J.M.; van Beijnum, J.R.; Nowak-Sliwinska, P.; Griffioen, A.W. Anti-angiogenic agents- overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 2021, 18, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Chen, J.X.; Sun, Z.J. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Commun. 2021, 41, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Limited Impact of Anti-PD-1/PD-L1 Monotherapy for Hepatocellular Carcinoma. Liver Cancer 2020, 9, 629–639. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Nishikawa, H. Roles of regulatory T cells in cancer immunity. Int. Immunol. 2016, 28, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin. Cancer Res. 2008, 14, 5459–5465. [Google Scholar] [CrossRef]
- Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int. J. Cancer 2008, 122, 664–671. [Google Scholar] [CrossRef]
- Boss, D.S.; Glen, H.; Beijnen, J.H.; Keesen, M.; Morrison, R.; Tait, B.; Copalu, W.; Mazur, A.; Wanders, J.; O’Brien, J.P.; et al. A phase I study of E7080, a multitargeted tyrosine kinase inhibitor, in patients with advanced solid tumours. Br. J. Cancer 2012, 106, 1598–1604. [Google Scholar] [CrossRef]
- Osa, A.; Uenami, T.; Koyama, S.; Fujimoto, K.; Okuzaki, D.; Takimoto, T.; Hirata, H.; Yano, Y.; Yokota, S.; Kinehara, Y.; et al. Clinical implications of monitoring nivolumab immunokinetics in non-small cell lung cancer patients. JCI Insight 2018, 3, e59125. [Google Scholar] [CrossRef]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective genotyping of hepatocellular carcinoma: Clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 2019, 25, 2116–2126. [Google Scholar] [CrossRef]
- Yamauchi, M.; Ono, A.; Ishikawa, A.; Kodama, K.; Uchikawa, S.; Hatooka, H.; Zhang, P.; Teraoka, Y.; Morio, K.; Fujino, H.; et al. Tumor fibroblast growth factor receptor 4 level predicts the efficacy of lenvatinib in patients with advanced hepatocellular carcinoma. Clin. Transl. Gastroenterol. 2020, 11, e00179. [Google Scholar] [CrossRef]
- Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Iwata, M.; Funahashi, Y. Antitumor activity of lenvatinib (e7080): An angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res. 2014, 2014, 638747. [Google Scholar] [CrossRef] [PubMed]
- Johira, Y.; Kawaoka, T.; Kosaka, M.; Shirane, Y.; Miura, R.; Murakami, S.; Yano, S.; Amioka, K.; Naruto, K.; Ando, Y.; et al. Pathological complete response to lenvatinib after failure of atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. Liver Cancer 2022, 11, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Kawaoka, T.; Johira, Y.; Miura, R.; Kosaka, M.; Shirane, Y.; Murakami, S.; Amioka, K.; Naruto, K.; Ando, Y.; et al. Advanced hepatocellular carcinoma with response to lenvatinib after atezolizumab plus bevacizumab. Medicine 2021, 100, e27576. [Google Scholar] [CrossRef]
- Lu, L.C.; Hsu, C.; Shao, Y.Y.; Chao, Y.; Yen, C.J.; Shih, I.L.; Hung, Y.P.; Chang, C.J.; Shen, Y.C.; Guo, J.C.; et al. Differential organ-specific tumor response to immune checkpoint inhibitors in hepatocellular carcinoma. Liver Cancer 2019, 8, 480–490. [Google Scholar] [CrossRef]
- Müller, P.; Rothschild, S.I.; Arnold, W.; Hirschmann, P.; Horvath, L.; Bubendorf, L.; Savic, S.; Zippelius, A. Metastatic spread in patients with non-small cell lung cancer is associated with a reduced density of tumor-infiltrating T cells. Cancer Immunol. Immunother. 2016, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Kawaoka, T.; Kosaka, M.; Shirane, Y.; Johira, Y.; Miura, R.; Murakami, S.; Yano, S.; Amioka, K.; Naruto, K.; et al. Early tumor response and safety of atezolizumab plus bevacizumab for patients with unresectable hepatocellular carcinoma in real-world practice. Cancers 2021, 13, 3958. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Zavadskiy, S.P.; Sologova, S.S.; Mokhosoev, I.M.; Terentiev, A.A. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev. Mol. Diagn. 2021, 21, 1147–1164. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.H.; Ha, S.Y.; Lee, D.; Sankar, K.; Koltsova, E.K.; Abou-Alfa, G.K.; Yang, J.D. Predictive Biomarkers for Immune-Checkpoint Inhibitor Treatment Response in Patients with Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 7640. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Chan, S.L.; Kudo, M.; Lau, G.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Dao, T.V.; Toni, E.N.D.; et al. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J. Clin. Oncol. 2022, 40 (Suppl. S4), 379. [Google Scholar] [CrossRef]
- Pal, S.K.; Albiges, L.; Tomczak, P.; Suárez, C.; Voss, M.H.; de Velasco, G.; Chahoud, J.; Mochalova, A.; Procopio, G.; Mahammedi, H.; et al. Atezolizumab plus cabozantinib versus cabozantinib monotherapy for patients with renal cell carcinoma after progression with previous immune checkpoint inhibitor treatment (CONTACT-03): A multicentre, randomised, open-label, phase 3 trial. Lancet 2023, 402, 185–195. [Google Scholar] [CrossRef]
All (n = 137) | |
---|---|
Age, range, y | 75 (47–92) |
Sex (male/female), n | 107/30 |
Performance status (0/1/2), n | 113/18/6 |
Etiology (HBV/HCV/HBV+HCV/NBNC), n | 15/48/2/72 |
Child–Pugh score (5/6), n | 84/53 |
Relative tumor volume (<50%/≥50%), n | 130/7 |
Size of main tumor, range, mm | 28 (0–220) |
Microvascular invasion (absent/present), n | 112/25 |
Extrahepatic metastasis (absent/present), n | 93/44 |
HCC stage (II/III/IVa/IVb), n | 33/50/22/32 |
BCLC stage (A/B/C), n | 8/63/66 |
Serum alpha-fetoprotein, range, ng/mL | 18.1 (1.2–63642) |
Serum des-gamma-carboxy prothrombin, range, mAU/mL | 236 (11–197680) |
Observation period, range, months | 11.7 (1–28) |
n = 50 | |
---|---|
Sex (male/female), n | 41/9 |
Performance status (0/1/2), n | 32/12/5 |
Etiology (HBV/HCV/NBNC), n | 7/19/24 |
Child–Pugh grade (A/B/C), n | 34/14/2 |
Relative tumor volume (<50%/≥50%), n | 45/5 |
Size of main tumor, range, mm | 33 (0–170) |
Microvascular invasion (absent/present), n | 35/15 |
Extrahepatic metastasis (absent/present), n | 27/23 |
HCC stage (II/III/IVa/IVb), n | 6/16/9/19 |
BCLC stage (A/B/C), n | 3/15/32 |
Serum alpha-fetoprotein, range, ng/mL | 105.3 (0.8–64620) |
Serum des-gamma-carboxy prothrombin, range, mAU/mL | 2842.5 (22–247805) |
Systemic therapy after atezolizumab plus bevacizumab | 25 (LEN 24, RAM 1) |
n = 24 | |
---|---|
Sex (male/female), n | 20/4/ |
Performance status (0/1/2), n | 19/4/1 |
Etiology (HBV/HCV/NBNC), n | 5/11/8 |
Child–Pugh grade (A/B/C), n | 34/14/2 |
Relative tumor volume (<50%/≥50%), n | 22/2 |
Size of main tumor, range, mm | 30 (0–120) |
Microvascular invasion (absent/present), n | 16/8 |
Extrahepatic metastasis (absent/present), n | 13/11 |
HCC stage (II/III/IVa/IVb), n | 2/9/3/10 |
BCLC stage (A/B/C), n | 8/16 |
Serum alpha-fetoprotein, range, ng/mL | 140.5 (1.5–64620) |
Serum des-gamma-carboxy prothrombin, range, mAU/mL | 2614 (25–214866) |
Time to LEN administration after Atez+Bev, days | 17 (4–63) |
%(n) | RECISTs 1.1 | mRECISTs |
---|---|---|
CR | 0.0 (0) | 4.2 (1) |
PR | 33.3 (8) | 50.0 (12) |
SD | 41.7 (10) | 25.0 (6) |
PD | 20.8 (5) | 16.6 (4) |
N.E | 4.2 (1) | 4.2 (1) |
ORR | 33.3 (8) | 54.2 (13) |
DCR | 75.0 (18) | 79.2 (19) |
Variable | Univariate | Multivariate | |||
---|---|---|---|---|---|
p Value | HR | 95% CI | p Value | ||
Sex | Male | 0.13 | |||
Etiology | Viral infection | 0.72 | |||
Child–Pugh grade | A | 0.02 | 0.14 | 0.02–0.76 | 0.02 |
Microvascular invasion | Absent | 0.63 | |||
Extrahepatic metastasis | Absent | 0.37 | |||
Relative tumor volume | <50% | <0.01 | 0.03 | 0.003–0.35 | <0.01 |
Serum alpha-fetoprotein | <400 ng/mL | 0.40 | |||
TACE/TAI combination | yes | 0.13 |
Event %(n) | All Patients (n = 24) | |
---|---|---|
Any Grade | Grade 3 or 4 | |
Hypertension | 62.5 (15) | 16.7 (4) |
Fatigue | 58.3 (14) | 25.0 (6) |
Anorexia | 45.8 (11) | 12.5 (3) |
Diarrhea | 41.7 (10) | 4.2 (1) |
Proteinuria | 29.2 (7) | 20.8 (5) |
Hand–foot syndrome | 29.2 (7) | 0.0 (0) |
Hypothyroidism | 20.8 (5) | 0.0 (0) |
Renal dysfunction | 12.5 (3) | 4.2 (1) |
Increased AST or ALT | 8.3 (2) | 0.0 (0) |
Hoarseness | 8.3 (2) | 0.0 (0) |
Thrombocytopenia | 8.3 (2) | 4.2 (1) |
Interstitial pneumonia | 4.2 (1) | 0.0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, S.; Kawaoka, T.; Yamasaki, S.; Johira, Y.; Kosaka, M.; Shirane, Y.; Miura, R.; Amioka, K.; Naruto, K.; Yamaoka, K.; et al. Therapeutic Efficacy and Safety of Lenvatinib after Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma. Cancers 2023, 15, 5406. https://doi.org/10.3390/cancers15225406
Yano S, Kawaoka T, Yamasaki S, Johira Y, Kosaka M, Shirane Y, Miura R, Amioka K, Naruto K, Yamaoka K, et al. Therapeutic Efficacy and Safety of Lenvatinib after Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma. Cancers. 2023; 15(22):5406. https://doi.org/10.3390/cancers15225406
Chicago/Turabian StyleYano, Shigeki, Tomokazu Kawaoka, Shintaro Yamasaki, Yusuke Johira, Masanari Kosaka, Yuki Shirane, Ryoichi Miura, Kei Amioka, Kensuke Naruto, Kenji Yamaoka, and et al. 2023. "Therapeutic Efficacy and Safety of Lenvatinib after Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma" Cancers 15, no. 22: 5406. https://doi.org/10.3390/cancers15225406
APA StyleYano, S., Kawaoka, T., Yamasaki, S., Johira, Y., Kosaka, M., Shirane, Y., Miura, R., Amioka, K., Naruto, K., Yamaoka, K., Fujii, Y., Uchikawa, S., Fujino, H., Ono, A., Nakahara, T., Murakami, E., Miki, D., Tsuge, M., Teraoka, Y., ... Oka, S. (2023). Therapeutic Efficacy and Safety of Lenvatinib after Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma. Cancers, 15(22), 5406. https://doi.org/10.3390/cancers15225406