The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. NSAIDs
2.1. Aspirin
2.2. Ibuprofen
2.3. Naproxen
2.4. Diclofenac
2.5. Indomethacin
2.6. Mefenamic Acid
2.7. Celecoxib
3. Adverse Effects of NSAIDs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.; Miller, K.; Jemal, A. Cancer statistics. 2020 CA Cancer J. Clin. Am. Cancer Soc. 2020, 70, 7–30. [Google Scholar]
- Virtanen, V.; Paunu, K.; Ahlskog, J.K.; Varnai, R.; Sipeky, C.; Sundvall, M. PARP inhibitors in prostate cancer–the preclinical rationale and current clinical development. Genes 2019, 10, 565. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Bsc, M.F.B.; Me, J.F.; Soerjomataram, M.I.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Giri, V.N.; Beebe-Dimmer, J.L. (Eds.) Familial Prostate Cancer. Seminars in Oncology; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- De Carlo, F.; Celestino, F.; Verri, C.; Masedu, F.; Liberati, E.; Di Stasi, S.M. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: Surgical, oncological, and functional outcomes: A systematic review. Urol. Int. 2014, 93, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.P.; Sher, D.J.; Konski, A.A. Systematic review of the cost effectiveness of radiation therapy for prostate cancer from 2003 to 2013. Appl. Health Econ. Health Policy 2014, 12, 391–408. [Google Scholar] [CrossRef]
- Mitsuzuka, K.; Arai, Y. Metabolic changes in patients with prostate cancer during androgen deprivation therapy. Int. J. Urol. 2018, 25, 45–53. [Google Scholar] [CrossRef]
- De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Grönberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 2007, 7, 256–269. [Google Scholar] [CrossRef]
- Nakai, Y.; Nonomura, N. Inflammation and prostate carcinogenesis. Int. J. Urol. 2013, 20, 150–160. [Google Scholar] [CrossRef]
- Taverna, G.; Pedretti, E.; Di Caro, G.; Borroni, E.M.; Marchesi, F.; Grizzi, F. Inflammation and prostate cancer: Friends or foe? Inflamm. Res. 2015, 64, 275–286. [Google Scholar] [CrossRef]
- Schillaci, O.; Scimeca, M.; Trivigno, D.; Chiaravalloti, A.; Facchetti, S.; Anemona, L.; Bonfiglio, R.; Santeusanio, G.; Tancredi, V.; Bonanno, E.; et al. Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine. Nucl. Med. Biol. 2019, 68, 66–79. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Koul, H.; Kumar, B.; Koul, S.; Deb, A.; Hwa, J.; Maroni, P.; van Bokhoven, A.; Lucia, M.; Kim, F.; Meacham, R. The role of inflammation and infection in prostate cancer: Importance in prevention, diagnosis and treatment. Drugs Today 2010, 46, 929–943. [Google Scholar] [CrossRef]
- Sfanos, K.S.; Yegnasubramanian, S.; Nelson, W.G.; De Marzo, A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 2018, 15, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Hayashi, T.; Matsushita, M.; Uemura, M.; Nonomura, N. Obesity, inflammation, and prostate cancer. J. Clin. Med. 2019, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Narita, S.; Nara, T.; Sato, H.; Koizumi, A.; Huang, M.; Inoue, T.; Habuchi, T. Research evidence on high-fat diet-induced prostate cancer development and progression. J. Clin. Med. 2019, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Kashfi, K. Anti-inflammatory agents as cancer therapeutics. Adv. Pharmacol. 2009, 57, 31–89. [Google Scholar]
- Zhang, Z.; Chen, F.; Shang, L. Advances in antitumor effects of NSAIDs. Cancer Manag. Res. 2018, 10, 4631. [Google Scholar] [CrossRef]
- Choe, K.S.; Cowan, J.E.; Chan, J.M.; Carroll, P.R.; D’Amico, A.V.; Liauw, S.L. Aspirin use and the risk of prostate cancer mortality in men treated with prostatectomy or radiotherapy. J. Clin. Oncol. 2012, 30, 3540. [Google Scholar] [CrossRef]
- Cardwell, C.R.; Flahavan, E.M.; Hughes, C.M.; Coleman, H.G.; O’sullivan, J.M.; Powe, D.G.; Murray, L.J. Low-dose aspirin and survival in men with prostate cancer: A study using the UK Clinical Practice Research Datalink. Cancer Causes Control. 2014, 25, 33–43. [Google Scholar] [CrossRef]
- Flahavan, E.; Bennett, K.; Sharp, L.; Barron, T. A cohort study investigating aspirin use and survival in men with prostate cancer. Ann. Oncol. 2014, 25, 154–159. [Google Scholar] [CrossRef]
- Ashok, V.; Dash, C.; Rohan, T.E.; Sprafka, J.M.; Terry, P.D. Selective cyclooxygenase-2 (COX-2) inhibitors and breast cancer risk. Breast 2011, 20, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs); StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Di Bella, S.; Luzzati, R.; Principe, L.; Zerbato, V.; Meroni, E.; Giuffrè, M.; Crocè, L.S.; Merlo, M.; Perotto, M.; Dolso, E.; et al. Aspirin and Infection: A Narrative Review. Biomedicines 2022, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Menter, D.G.; Bresalier, R.S. An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention. Annu. Rev. Pharmacol. Toxicol. 2022, 63, 165–186. [Google Scholar] [CrossRef]
- Malkowski, M.G. The Cyclooxygenases. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 1–18. [Google Scholar]
- Kirschenbaum, A.; Klausner, A.P.; Lee, R.; Unger, P.; Yao, S.; Liu, X.H.; Levine, A.C. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 2000, 56, 671–676. [Google Scholar] [CrossRef]
- Greenhough, A.; Smartt, H.J.; Moore, A.E.; Roberts, H.R.; Williams, A.C.; Paraskeva, C.; Kaidi, A. The COX-2/PGE 2 pathway: Key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009, 30, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Morita, I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat. 2002, 68, 165–175. [Google Scholar] [CrossRef]
- Lucotti, S.; Cerutti, C.; Soyer, M.; Gil-Bernabé, A.M.; Gomes, A.L.; Allen, P.D.; Smart, S.; Markelc, B.; Watson, K.; Armstrong, P.C.; et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A 2. J. Clin. Investig. 2019, 129, 1845–1862. [Google Scholar] [CrossRef]
- Fujita, H.; Koshida, K.; Keller, E.T.; Takahashi, Y.; Yoshimito, T.; Namiki, M.; Mizokami, A. Cyclooxygenase-2 promotes prostate cancer progression. Prostate 2002, 53, 232–240. [Google Scholar] [CrossRef]
- Bilani, N.; Bahmad, H.; Abou-Kheir, W. Prostate cancer and aspirin use: Synopsis of the proposed molecular mechanisms. Front. Pharmacol. 2017, 8, 145. [Google Scholar] [CrossRef]
- Rauzi, F.; Kirkby, N.S.; Edin, M.L.; Whiteford, J.; Zeldin, D.C.; Mitchell, J.A.; Warner, T.D. Aspirin inhibits the production of proangiogenic 15 (S)-HETE by platelet cyclooxygenase-1. FASEB J. 2016, 30, 4256–4266. [Google Scholar] [CrossRef]
- Kashiwagi, E.; Shiota, M.; Yokomizo, A.; Itsumi, M.; Inokuchi, J.; Uchiumi, T.; Naito, S. Prostaglandin receptor EP3 mediates growth inhibitory effect of aspirin through androgen receptor and contributes to castration resistance in prostate cancer cells. Endocr. Relat. Cancer 2013, 20, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Olivan, M.; Rigau, M.; Colás, E.; Garcia, M.; Montes, M.; Sequeiros, T.; Regis, L.; Celma, A.; Planas, J.; Placer, J.; et al. Simultaneous treatment with statins and aspirin reduces the risk of prostate cancer detection and tumorigenic properties in prostate cancer cell lines. BioMed Res. Int. 2015, 2015, 762178. [Google Scholar] [CrossRef]
- Shiff, S.J.; Koutsos, M.I.; Qiao, L.; Rigas, B. Nonsteroidal antiinflammatory drugs inhibit the proliferation of colon adenocarcinoma cells: Effects on cell cycle and apoptosis. Exp. Cell Res. 1996, 222, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 2012, 188, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Sutmuller, R.; Garritsen, A.; Adema, G.J. Regulatory T cells and toll-like receptors: Regulating the regulators. Ann. Rheum. Dis. 2007, 66 (Suppl. S3), iii91–iii95. [Google Scholar] [CrossRef]
- Hurwitz, L.M.; Kulac, I.; Gumuskaya, B.; Valle, J.A.B.D.; Benedetti, I.; Pan, F.; Liu, J.O.; Marrone, M.T.; Arnold, K.B.; Goodman, P.J.; et al. Use of Aspirin and Statins in Relation to Inflammation in Benign Prostate Tissue in the Placebo Arm of the Prostate Cancer Prevention TrialAspirin and Statin Use and Intraprostatic Inflammation. Cancer Prev. Res. 2020, 13, 853–862. [Google Scholar] [CrossRef]
- Sharma, S.; Yang, S.C.; Zhu, L.; Reckamp, K.; Gardner, B.; Baratelli, F.; Huang, M.; Batra, R.K.; Dubinett, S.M. Tumor cyclooxygenase-2/prostaglandin E2–dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005, 65, 5211–5220. [Google Scholar] [CrossRef]
- Hurwitz, L.M.; Joshu, C.E.; Barber, J.R.; Prizment, A.E.; Vitolins, M.Z.; Jones, M.R.; Folsom, A.R.; Han, M.; Platz, E.A. Aspirin and Non-Aspirin NSAID Use and Prostate Cancer Incidence, Mortality, and Case Fatality in the Atherosclerosis Risk in Communities StudyAspirin and Prostate Cancer Incidence and Mortality. Cancer Epidemiol. Biomark. Prev. 2019, 8, 563–569. [Google Scholar] [CrossRef]
- Downer, M.K.; Allard, C.B.; Preston, M.A.; Gaziano, J.M.; Stampfer, M.J.; Mucci, L.A.; Batista, J.L. Regular aspirin use and the risk of lethal prostate cancer in the physicians’ health study. Eur. Urol. 2017, 72, 821–827. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N. An overview of clinical pharmacology of ibuprofen. Oman Med. J. 2010, 25, 155. [Google Scholar] [CrossRef]
- Raegg, C.; Dormond, O. Suppression of tumor angiogenesis by nonsteroidal anti-inflammatory drugs: A new function for old drugs. Sci. World J. 2001, 1, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.; Djakiew, D.; Krygier, S.; Andrews, P. Superior effectiveness of ibuprofen compared with other NSAIDs for reducing the survival of human prostate cancer cells. Cancer Chemother. Pharmacol. 2002, 50, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Arisan, E.D.; Akar, R.O.; Rencuzogullari, O.; Yerlikaya, P.O.; Gurkan, A.C.; Akın, B.; Dener, E.; Kayhan, E.; Unsal, N.P. The molecular targets of diclofenac differs from ibuprofen to induce apoptosis and epithelial mesenchymal transition due to alternation on oxidative stress management p53 independently in PC3 prostate cancer cells. Prostate Int. 2019, 7, 156–165. [Google Scholar] [CrossRef]
- Wynne, S.; Djakiew, D. NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 induction via the p38 MAPK-p75NTR pathway. Mol. Cancer Res. 2010, 8, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Palayoor, S.; Youmell, M.; Calderwood, S.; Coleman, C.; Price, B. Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene 1999, 18, 7389–7394. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, V.; Steiner, M.; Shany, S. The combined treatment of 1, 25-dihydroxyvitamin D3 and a non-steroid anti-inflammatory drug is highly effective in suppressing prostate cancer cell line (LNCaP) growth. Anticancer. Res. 2005, 25, 3425–3429. [Google Scholar]
- Kim, M.H.; Chung, J. Synergistic cell death by EGCG and ibuprofen in DU-145 prostate cancer cell line. Anticancer. Res. 2007, 27, 3947–3956. [Google Scholar]
- Guma, A.; Akhtar, S.; Najafzadeh, M.; Isreb, M.; Baumgartner, A.; Anderson, D. Ex vivo/in vitro effects of aspirin and ibuprofen, bulk and nano forms, in peripheral lymphocytes of prostate cancer patients and healthy individuals. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2021, 861, 503306. [Google Scholar] [CrossRef]
- Shebl, F.M.; Sakoda, L.C.; Black, A.; Koshiol, J.; Andriole, G.L.; Grubb, R.; Church, T.R.; Chia, D.; Zhou, C.; Chu, L.W.; et al. Aspirin but not ibuprofen use is associated with reduced risk of prostate cancer: A PLCO study. Br. J. Cancer 2012, 107, 207–214. [Google Scholar] [CrossRef]
- Mahmud, S.M.; Franco, E.L.; Turner, D.; Platt, R.W.; Beck, P.; Skarsgard, D.; Tonita, J.; Sharpe, C.; Aprikian, A.G. Use of non-steroidal anti-inflammatory drugs and prostate cancer risk: A population-based nested case-control study. PLoS ONE 2011, 6, e16412. [Google Scholar] [CrossRef]
- Espinosa-Cano, E.; Huerta-Madronal, M.; Camara-Sanchez, P.; Seras-Franzoso, J.; Schwartz, S., Jr.; Abasolo, I.; San Román, J.; Aguilar, M.R. Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways. Mater. Sci. Eng. C 2021, 124, 112024. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Janakiram, N.B.; Madka, V.; Zhang, Y.; Singh, A.; Biddick, L.; Li, Q.; Lightfoot, S.; Steele, V.E.; Lubet, R.A.; et al. Intermittent Dosing Regimens of Aspirin and Naproxen Inhibit Azoxymethane-Induced Colon Adenoma Progression to Adenocarcinoma and Invasive CarcinomaAspirin and Naproxen Dosing Regimens for Prevention of CRC. Cancer Prev. Res. 2019, 12, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Suh, N.; Reddy, B.S.; DeCastro, A.; Paul, S.; Lee, H.J.; Smolarek, A.K.; So, J.Y.; Simi, B.; Wang, C.X.; Janakiram, N.B.; et al. Combination of Atorvastatin with Sulindac or Naproxen Profoundly Inhibits Colonic Adenocarcinomas by Suppressing the p65/β-Catenin/Cyclin D1 Signaling Pathway in RatsAtorvastatin, with Sulindac or Naproxen, Inhibits Colon Cancer. Cancer Prev. Res. 2011, 4, 1895–1902. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.E.; Lim, D.Y.; Huang, Z.; Chen, H.; Langfald, A.; Lubet, R.A.; Grubbs, C.J.; Dong, Z.; Bode, A.M. Naproxen Induces Cell-Cycle Arrest and Apoptosis in Human Urinary Bladder Cancer Cell Lines and Chemically Induced Cancers by Targeting PI3KNaproxen Targets PI3K to Prevent Urinary Bladder Cancer. Cancer Prev. Res. 2014, 7, 236–245. [Google Scholar] [CrossRef]
- Zrieki, A.; Farinotti, R.; Buyse, M. Cyclooxygenase inhibitors down regulate P-glycoprotein in human colorectal Caco-2 cell line. Pharm. Res. 2008, 25, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Yarla, N.S.; Madka, V.; Rao, C.V. Clinically relevant anti-inflammatory agents for chemoprevention of colorectal cancer: New perspectives. Int. J. Mol. Sci. 2018, 19, 2332. [Google Scholar] [CrossRef]
- Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y.M.; Velázquez-Martínez, C.A.; Boring, D.; Kashfi, K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: A general property and evidence of a tissue type-independent effect. Biochem. Pharmacol. 2012, 83, 715–722. [Google Scholar] [CrossRef]
- Quann, E.J.; Khwaja, F.; Zavitz, K.H.; Djakiew, D. The aryl propionic acid R-flurbiprofen selectively induces p75NTR-dependent decreased survival of prostate tumor cells. Cancer Res. 2007, 67, 3254–3262. [Google Scholar] [CrossRef]
- Adeniji, A.; Uddin, J.; Zang, T.; Tamae, D.; Wangtrakuldee, P.; Marnett, L.J.; Penning, T.M. Discovery of (R)-2-(6-methoxynaphthalen-2-yl) butanoic acid as a potent and selective aldo-keto reductase 1C3 inhibitor. J. Med. Chem. 2016, 59, 7431–7444. [Google Scholar] [CrossRef]
- Flanagan, J.U.; Yosaatmadja, Y.; Teague, R.M.; Chai, M.Z.; Turnbull, A.P.; Squire, C.J. Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3. PLoS ONE 2012, 7, e43965. [Google Scholar] [CrossRef]
- Yellepeddi, V.K.; Radhakrishnan, J.; Radhakrishnan, R. Penetration and pharmacokinetics of non-steroidal anti-inflammatory drugs in rat prostate tissue. Prostate 2018, 78, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.V.; Srinivas, S.; Feldman, D. Inhibition of prostaglandin synthesis and actions contributes to the beneficial effects of calcitriol in prostate cancer. Dermato-Endocrinology 2009, 1, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, S.; Feldman, D. A phase II trial of calcitriol and naproxen in recurrent prostate cancer. Anticancer. Res. 2009, 29, 3605–3610. [Google Scholar]
- Brasky, T.M.; Velicer, C.M.; Kristal, A.R.; Peters, U.; Potter, J.D.; White, E. Nonsteroidal Anti-Inflammatory Drugs and Prostate Cancer Risk in the VITamins and Lifestyle (VITAL) CohortNSAIDs and Prostate Cancer Risk in VITAL. Cancer Epidemiol. Biomark. Prev. 2010, 19, 3185–3188. [Google Scholar] [CrossRef] [PubMed]
- Pantziarka, P.; Sukhatme, V.; Bouche, G.; Meheus, L.; Sukhatme, V.P. Repurposing Drugs in Oncology (ReDO)—Diclofenac as an anti-cancer agent. Ecancermedicalscience 2016, 10, 610. [Google Scholar] [CrossRef]
- Barden, J.; Edwards, J.; Moore, R.; McQuay, H. Single dose oral diclofenac for postoperative pain. Cochrane Database Syst. Rev. 2004, CD004768. [Google Scholar] [CrossRef]
- Johnsen, J.I.; Lindskog, M.; Ponthan, F.; Pettersen, I.; Elfman, L.; Orrego, A.; Sveinbjörnsson, B.; Kogner, P. NSAIDs in neuroblastoma therapy. Cancer Lett. 2005, 228, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Lanas, A. Nonsteroidal antiinflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: A trip from peptic ulcer to colon cancer. Am. J. Med. Sci. 2009, 338, 96–106. [Google Scholar] [CrossRef]
- Valle, B.L.; D’Souza, T.; Becker, K.G.; Wood, W.H., III; Zhang, Y.; Wersto, R.P.; Morin, P.J. Non-steroidal anti-inflammatory drugs decrease E2F1 expression and inhibit cell growth in ovarian cancer cells. PLoS ONE 2013, 8, e61836. [Google Scholar] [CrossRef]
- Mayorek, N.; Naftali-Shani, N.; Grunewald, M. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity. PLoS ONE 2010, 5, e12715. [Google Scholar] [CrossRef]
- Lea, M.A.; Sura, M.; Desbordes, C. Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) gamma agonists and antagonists. Anticancer. Res. 2004, 24, 2765–2772. [Google Scholar]
- Adamson, D.J.; Frew, D.; Tatoud, R.; Wolf, C.R.; Palmer, C.N. Diclofenac antagonizes peroxisome proliferator-activated receptor-γ signaling. Mol. Pharmacol. 2002, 61, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Martínez, A.; Constâncio, V.; Lucio-Cazaña, F.J.; Fernández-Martínez, A.B. PROSTAGLANDIN E2 stimulates cancer-related phenotypes in prostate cancer PC3 cells through cyclooxygenase-2. J. Cell. Physiol. 2019, 234, 7548–7559. [Google Scholar] [CrossRef] [PubMed]
- Gottfried, E.; Lang, S.A.; Renner, K.; Bosserhoff, A.; Gronwald, W.; Rehli, M.; Einhell, S.; Gedig, I.; Singer, K.; Seilbeck, A.; et al. New aspects of an old drug–diclofenac targets MYC and glucose metabolism in tumor cells. PLoS ONE 2013, 8, e66987. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Anai, S.; Onishi, S.; Miyake, M.; Tanaka, N.; Hirayama, A.; Fujimoto, K.; Hirao, Y. Inhibition of COX-2 expression by topical diclofenac enhanced radiation sensitivity via enhancement of TRAIL in human prostate adenocarcinoma xenograft model. BMC Urol. 2013, 13, 1. [Google Scholar] [CrossRef]
- Gebril, S.M.; Ito, Y.; Shibata, M.; Maemura, K.; Abu-Dief, E.E.; Hussein, M.R.A.; Abdelaal, U.M.; Elsayed, H.M.; Otsuki, Y.; Higuchi, K. Indomethacin can induce cell death in rat gastric parietal cells through alteration of some apoptosis-and autophagy-associated molecules. Int. J. Exp. Pathol. 2020, 101, 230–247. [Google Scholar] [CrossRef]
- Sun, S.-Q.; Gu, X.; Gao, X.-S.; Li, Y.; Yu, H.; Xiong, W.; Yu, H.; Wang, W.; Li, Y.; Teng, Y.; et al. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation. Oncotarget 2020, 7, 48050, Erratum in Oncotarget 2020, 11, 1575. [Google Scholar] [CrossRef]
- Liu, C.; Lou, W.; Zhu, Y.; Yang, J.C.; Nadiminty, N.; Gaikwad, N.W.; Evans, C.P.; Gao, A.C. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res. 2015, 75, 1413–1422. [Google Scholar] [CrossRef]
- Hamid, A.R.A.H.; Pfeiffer, M.J.; Verhaegh, G.W.; Schaafsma, E.; Brandt, A.; Sweep, F.C.G.J.; Sedelaar, J.P.M.; Schalken, J.A. Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer. Mol. Med. 2012, 18, 1449–1455. [Google Scholar] [CrossRef]
- Liedtke, A.J.; Adeniji, A.O.; Chen, M.; Byrns, M.C.; Jin, Y.; Christianson, D.W.; Marnett, L.J.; Penning, T.M. Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. J. Med. Chem. 2013, 56, 2429–2446. [Google Scholar] [CrossRef]
- Cai, C.; Chen, S.; Ng, P.; Bubley, G.J.; Nelson, P.S.; Mostaghel, E.A.; Marck, B.; Matsumoto, A.M.; Simon, N.I.; Wang, H.; et al. Intratumoral De Novo Steroid Synthesis Activates Androgen Receptor in Castration-Resistant Prostate Cancer and Is Upregulated by Treatment with CYP17A1 InhibitorsProstate Cancer Resistance to CYP17A1 Inhibitors. Cancer Res. 2011, 71, 6503–6513. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, J.C.; Armstrong, C.M.; Lou, W.; Liu, L.; Qiu, X.; Zou, B.; Lombard, A.P.; D’Abronzo, L.S.; Evans, C.P.; et al. AKR1C3 Promotes AR-V7 Protein Stabilization and Confers Resistance to AR-Targeted Therapies in Advanced Prostate CancerAKR1C3 Regulates AR-V7 and Confers Resistance. Mol. Cancer Ther. 2019, 18, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Cimolai, N. The potential and promise of mefenamic acid. Expert Rev. Clin. Pharmacol. 2013, 6, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Armagan, G.; Turunc, E.; Kanit, L.; Yalcin, A. Neuroprotection by mefenamic acid against D-serine: Involvement of oxidative stress, inflammation and apoptosis. Free. Radic. Res. 2012, 46, 726–739. [Google Scholar] [CrossRef]
- Asanuma, M.; Nishibayashi-Asanuma, S.; Miyazaki, I.; Kohno, M.; Ogawa, N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem. 2001, 76, 1895–1904. [Google Scholar] [CrossRef]
- Patel, S.S.; Tripathi, R.; Chavda, V.K.; Savjani, J.K. Anticancer Potential of Mefenamic Acid Derivatives with Platelet-Derived Growth Factor Inhibitory Property. Anticancer Agents Med. Chem. 2020, 20, 998–1008. [Google Scholar] [CrossRef]
- Hosseinimehr, S.J.; Nobakht, R.; Ghasemi, A.; Pourfallah, T.A. Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes. Radiat. Oncol. J. 2015, 33, 256. [Google Scholar] [CrossRef]
- Seyyedi, R.; Amiri, F.T.; Farzipour, S.; Mihandoust, E.; Hosseinimehr, S.J. Mefenamic acid as a promising therapeutic medicine against colon cancer in tumor-bearing mice. Med. Oncol. 2022, 39, 18. [Google Scholar] [CrossRef]
- Čeponytė, U.; Paškevičiūtė, M.; Petrikaitė, V. Comparison of NSAIDs activity in COX-2 expressing and non-expressing 2D and 3D pancreatic cancer cell cultures. Cancer Manag. Res. 2018, 10, 1543. [Google Scholar] [CrossRef]
- Woo, D.H.; Han, I.-S.; Jung, G. Mefenamic acid-induced apoptosis in human liver cancer cell-lines through caspase-3 pathway. Life Sci. 2004, 75, 2439–2449. [Google Scholar] [CrossRef]
- Soriano-Hernández, A.D.; Galvan-Salazar, H.R.; Montes-Galindo, D.A.; Rodriguez-Hernandez, A.; Martinez-Martinez, R.; Guzman-Esquivel, J.; Valdez-Velazquez, L.L.; Baltazar-Rodriguez, L.M.; Espinoza-Gómez, F.; Rojas-Martinez, A.; et al. Antitumor effect of meclofenamic acid on human androgen-independent prostate cancer: A preclinical evaluation. Int. Urol. Nephrol. 2012, 44, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, V.; Tiburcio-Jimenez, D.; A Mendoza-Hernandez, M.; Delgado-Enciso, J.; De-Leon-Zaragoza, L.; Guzman-Esquivel, J.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; Lara-Esqueda, A.; Delgado-Enciso, O.G.; et al. Improve cognitive impairment using mefenamic acid non-steroidal anti-inflammatory therapy: Additional beneficial effect found in a controlled clinical trial for prostate cancer therapy. Am. J. Transl. Res. 2021, 13, 4535. [Google Scholar] [PubMed]
- Guzman-Esquivel, J.; Mendoza-Hernandez, M.A.; Tiburcio-Jimenez, D.; Avila-Zamora, O.N.; Delgado-Enciso, J.; De-Leon-Zaragoza, L.; Casarez-Price, J.C.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; Meza-Robles, C.; et al. Decreased biochemical progression in patients with castration-resistant prostate cancer using a novel mefenamic acid anti-inflammatory therapy: A randomized controlled trial. Oncol. Lett. 2020, 19, 4151–4160. [Google Scholar] [CrossRef]
- Buskbjerg, C.R.; Amidi, A.; Buus, S.; Gravholt, C.H.; Hadi Hosseini, S.; Zachariae, R. Androgen deprivation therapy and cognitive decline—Associations with brain connectomes, endocrine status, and risk genotypes. Prostate Cancer Prostatic Dis. 2022, 25, 208–218. [Google Scholar] [CrossRef]
- Quiñones, O.G.; Pierre, M.B. Cutaneous application of celecoxib for inflammatory and cancer diseases. Curr. Cancer Drug Targets 2019, 19, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Nowaszewska, B.K.; Celińska-Janowicz, K.; Miltyk, W. Celecoxib in cancer therapy and prevention–review. Curr. Drug Targets 2019, 20, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Benson, P.; Yudd, M.; Sims, D.; Chang, V.; Srinivas, S.; Kasimis, B. Renal effects of high-dose celecoxib in elderly men with stage D2 prostate carcinoma. Clin. Nephrol. 2012, 78, 376–381. [Google Scholar] [CrossRef]
- Atari-Hajipirloo, S.; Nikanfar, S.; Heydari, A.; Kheradmand, F. Imatinib and its combination with 2,5-dimethyl-celecoxibinduces apoptosis of human HT-29 colorectal cancer cells. Res. Pharm. Sci. 2017, 12, 67–73. [Google Scholar]
- Atari-Hajipirloo, S.; Nikanfar, S.; Heydari, A.; Noori, F.; Kheradmand, F. The effect of celecoxib and its combination with imatinib on human HT-29 colorectal cancer cells: Involvement of COX-2, Caspase-3, VEGF and NF-κB genes expression. Cell. Mol. Biol. 2016, 62, 68–74. [Google Scholar]
- Mohammadian, M.; Zeynali, S.; Azarbaijani, A.F.; Ansari, M.H.K.; Kheradmand, F. Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Res. Pharm. Sci. 2017, 12, 517. [Google Scholar]
- Nikanfar, S.; Atari-Hajipirloo, S.; Kheradmand, F.; Rashedi, J.; Heydari, A. Cytotoxic effect of 2, 5-dimethyl-celecoxib as a structural analog of celecoxib on human colorectal cancer (HT-29) cell line. Cell. Mol. Biol. 2018, 64, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Nikanfar, S.; ATARI-HAJIPIRLOO, S.; KHERADMAND, F.; HEYDARI, A. Imatinib Synergizes with 2, 5-Dimethylcelecoxib, a Close Derivative of Celecoxib, in HT-29 Colorectal Cancer Cells: Involvement of Vascular Endothelial Growth Factor. J. Res. Pharm. 2023, 27, 948–956. [Google Scholar]
- Zielinski, S.L. Despite positive studies, popularity of chemoprevention drugs increasing slowly. J. Natl. Cancer Inst. 2004, 96, 1410–1412. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 2000, 342, 1946–1952. [Google Scholar] [CrossRef]
- Henney, J.E. Celecoxib indicated for FAP. JAMA 2000, 283, 1131. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Manola, J.; Kaufman, D.S.; Oh, W.K.; Bubley, G.J.; Kantoff, P.W. Celecoxib versus placebo for men with prostate cancer and a rising serum prostate-specific antigen after radical prostatectomy and/or radiation therapy. J. Clin. Oncol. 2006, 24, 2723–2728. [Google Scholar] [CrossRef]
- Brizzolara, A.; Benelli, R.; Venè, R.; Barboro, P.; Poggi, A.; Tosetti, F.; Ferrari, N. The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer. Cancer Lett. 2017, 400, 9–17. [Google Scholar] [CrossRef]
- Kypta, R.M.; Waxman, J. Wnt/β-catenin signalling in prostate cancer. Nat. Rev. Urol. 2012, 9, 418–428. [Google Scholar] [CrossRef]
- Egashira, I.; Takahashi-Yanaga, F.; Nishida, R.; Arioka, M.; Igawa, K.; Tomooka, K.; Nakatsu, Y.; Tsuzuki, T.; Nakabeppu, Y.; Kitazono, T.; et al. Celecoxib and 2, 5-dimethylcelecoxib inhibit intestinal cancer growth by suppressing the Wnt/β-catenin signaling pathway. Cancer Sci. 2017, 108, 108–115. [Google Scholar] [CrossRef]
- Lin, J.Z.; Hameed, I.; Xu, Z.; Yu, Y.; Ren, Z.Y.; Zhu, J.G. Efficacy of gefitinib-celecoxib combination therapy in docetaxel-resistant prostate cancer. Oncol. Rep. 2018, 40, 2242–2250. [Google Scholar] [CrossRef]
- Dandekar, D.S.; Lopez, M.; Carey, R.I.; Lokeshwar, B.L. Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and-9 in prostate cancer cells. Int. J. Cancer 2005, 115, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Lin, K.-L.; Chou, C.-T.; Kuo, C.-C.; Cheng, J.-S.; Hsu, S.-S.; Chang, H.-T.; Tsai, J.-Y.; Liao, W.-C.; Lu, Y.-C.; et al. Effect of celecoxib on Ca2+ handling and viability in human prostate cancer cells (PC3). Drug Chem. Toxicol. 2012, 35, 456–462. [Google Scholar] [CrossRef]
- Johnson, A.J.; Hsu, A.-L.; Chen, C.-S. Apoptosis signaling pathways mediated by cyclooxygenase-2 inhibitors in prostate cancer cells. Adv. Enzym. Regul. 2001, 1, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Hsu, A.-L.; Lin, H.-P.; Song, X.; Chen, C.-S. The cyclo-oxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca2+-ATPases: A plausible link with its anti-tumour effect and cardiovascular risks. Biochem. J. 2002, 366, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.-L.; Ching, T.-T.; Wang, D.-S.; Song, X.; Rangnekar, V.M.; Chen, C.-S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J. Biol. Chem. 2000, 275, 11397–11403. [Google Scholar] [CrossRef]
- Zheng, X.; Cui, X.-X.; Avila, G.E.; Huang, M.-T.; Liu, Y.; Patel, J.; Kong, A.N.T.; Paulino, R.; Shih, W.J.; Lin, Y.; et al. Atorvastatin and celecoxib inhibit prostate PC-3 tumors in immunodeficient mice. Clin. Cancer Res. 2007, 13, 5480–5487. [Google Scholar] [CrossRef]
- Yerokun, T.; Winfield, L.L. LLW-3-6 and celecoxib impacts growth in prostate cancer cells and subcellular localization of COX-2. Anticancer. Res. 2014, 34, 4755–4759. [Google Scholar]
- Garcia, M.; Velez, R.; Romagosa, C.; Majem, B.; Pedrola, N.; Olivan, M.; Rigau, M.; Guiu, M.; Gomis, R.R.; Morote, J.; et al. Cyclooxygenase-2 inhibitor suppresses tumour progression of prostate cancer bone metastases in nude mice. BJU Int. 2014, 113, E164–E177. [Google Scholar] [CrossRef]
- Ko, C.J.; Lan, S.W.; Lu, Y.C.; Cheng, T.S.; Lai, P.F.; Tsai, C.H.; Hsu, T.W.; Lin, H.Y.; Shyu, H.Y.; Wu, S.R.; et al. Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene 2017, 36, 4597–4609. [Google Scholar] [CrossRef]
- Benelli, R.; Barboro, P.; Costa, D.; Astigiano, S.; Barbieri, O.; Capaia, M.; Poggi, A.; Ferrari, N. Multifocal signal modulation therapy by celecoxib: A strategy for managing castration-resistant prostate cancer. Int. J. Mol. Sci. 2019, 20, 6091. [Google Scholar] [CrossRef]
- Narayanan, N.K.; Narayanan, B.A.; Reddy, B.S. A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-κB, and steroid hormone receptors. Int. J. Oncol. 2005, 26, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Cui, X.X.; Gao, Z.; Zhao, Y.; Lin, Y.; Shih, W.J.; Huang, M.T.; Liu, Y.; Rabson, A.; Reddy, B.; et al. Atorvastatin and celecoxib in combination inhibits the progression of androgen-dependent LNCaP xenograft prostate tumors to androgen independence. Cancer Prev. Res. 2010, 3, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cui, X.-X.; Chen, S.; Goodin, S.; Liu, Y.; He, Y.; Li, D.; Wang, H.; Van Doren, J.; Dipaola, R.S.; et al. Combination of Lipitor and Celebrex inhibits prostate cancer VCaP cells in vitro and in vivo. Anticancer. Res. 2014, 34, 3357–3363. [Google Scholar]
- Katkoori, V.; Manne, K.; Vital-Reyes, V.; Rodríguez-Burford, C.; Shanmugam, C.; Sthanam, M.; Manne, U.; Chatla, C.; Abdulkadir, S.; Grizzle, W. Selective COX-2 inhibitor (celecoxib) decreases cellular growth in prostate cancer cell lines independent of p53. Biotech. Histochem. 2013, 88, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cui, X.-X.; Goodin, S.; Ding, N.; Van Doren, J.; Du, Z.; Huang, M.-T.; Liu, Y.; Cheng, X.; Dipaola, R.S.; et al. Inhibition of IL-6 expression in LNCaP prostate cancer cells by a combination of atorvastatin and celecoxib. Oncol. Rep. 2014, 31, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Sakoguchi-Okada, N.; Takahashi-Yanaga, F.; Fukada, K.; Shiraishi, F.; Taba, Y.; Miwa, Y.; Morimoto, S.; Iida, M.; Sasaguri, T. Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochem. Pharmacol. 2007, 73, 1318–1329. [Google Scholar] [CrossRef]
- Tian, J.; Guo, F.; Chen, Y.; Li, Y.; Yu, B.; Li, Y. Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Lett. 2019, 448, 1–10. [Google Scholar] [CrossRef]
- Hassani, S.; Maghsoudi, H.; Fattahi, F.; Malekinejad, F.; Hajmalek, N.; Sheikhnia, F.; Kheradmand, F.; Fahimirad, S.; Ghorbanpour, M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int. J. Biol. Macromol. 2023, 241, 124508. [Google Scholar] [CrossRef]
- Patel, M.I.; Subbaramaiah, K.; Du, B.; Chang, M.; Yang, P.; Newman, R.A.; Cordon-Cardo, C.; Thaler, H.T.; Dannenberg, A.J. Celecoxib inhibits prostate cancer growth: Evidence of a cyclooxygenase-2-independent mechanism. Clin. Cancer Res. 2005, 11, 1999–2007. [Google Scholar] [CrossRef]
- Hayashi, T.; Fujita, K.; Nojima, S.; Hayashi, Y.; Nakano, K.; Ishizuya, Y.; Wang, C.; Yamamoto, Y.; Kinouchi, T.; Matsuzaki, K.; et al. High-Fat Diet-Induced Inflammation Accelerates Prostate Cancer Growth via IL6 SignalingHFD-Induced Inflammation and Prostate Cancer Growth. Clin. Cancer Res. 2018, 24, 4309–4318. [Google Scholar] [CrossRef]
- Kido, L.A.; Montico, F.; Vendramini-Costa, D.B.; Pilli, R.A.; Cagnon, V.H.A. Goniothalamin and celecoxib effects during aging: Targeting pro-inflammatory mediators in chemoprevention of prostatic disorders. Prostate 2017, 77, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.K.; Nargi, D.; Horton, L.; Reddy, B.S.; Bosland, M.C.; Narayanan, B.A. Inflammatory processes of prostate tissue microenvironment drive rat prostate carcinogenesis: Preventive effects of celecoxib. Prostate 2009, 69, 133–141. [Google Scholar] [CrossRef]
- Silva, R.S.; Kido, L.A.; Montico, F.; Vendramini-Costa, D.B.; Pilli, R.A.; Cagnon, V.H.A. Steroidal hormone and morphological responses in the prostate anterior lobe in different cancer grades after Celecoxib and Goniothalamin treatments in TRAMP mice. Cell Biol. Int. 2018, 42, 1006–1020. [Google Scholar] [CrossRef]
- Kido, L.A.; Montico, F.; Sauce, R.; Macedo, A.B.; Minatel, E.; Costa, D.B.V.; de Carvalho, J.E.; Pilli, R.A.; Cagnon, V.H.A. Anti-inflammatory therapies in TRAMP mice: Delay in PCa progression. Endocr. -Relat. Cancer 2016, 23, 235–250. [Google Scholar] [CrossRef]
- Narayanan, B.A.; Narayanan, N.K.; Pittman, B.; Reddy, B.S. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin. Cancer Res. 2004, 10, 7727–7737. [Google Scholar] [CrossRef]
- Gupta, S.; Adhami, V.M.; Subbarayan, M.; MacLennan, G.T.; Lewin, J.S.; Hafeli, U.O.; Fu, P.; Mukhtar, H. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2004, 64, 3334–3343. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, B.A.; Narayanan, N.K.; Pttman, B.; Reddy, B.S. Adenocarcina of the mouse prostate growth inhibition by celecoxib: Downregulation of transcription factors involved in COX-2 inhibition. Prostate 2006, 66, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Mateus, P.A.M.; Kido, L.A.; Silva, R.S.; Cagnon, V.H.A.; Montico, F. Association of anti-inflammatory and antiangiogenic therapies negatively influences prostate cancer progression in TRAMP mice. Prostate 2019, 79, 515–535. [Google Scholar] [CrossRef]
- Adhami, V.M.; Malik, A.; Zaman, N.; Sarfaraz, S.; Siddiqui, I.A.; Syed, D.N.; Afaq, F.; Pasha, F.S.; Saleem, M.; Mukhtar, H. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin. Cancer Res. 2007, 13, 1611–1619. [Google Scholar] [CrossRef]
- Ho, V.W.; Hamilton, M.J.; Dang, N.-H.T.; Hsu, B.E.; Adomat, H.H.; Guns, E.S.; Weljie, A.; Samudio, I.; Bennewith, K.L.; Krystal, G. A low carbohydrate, high protein diet combined with celecoxib markedly reduces metastasis. Carcinogenesis 2014, 35, 2291–2299. [Google Scholar] [CrossRef]
- Abedinpour, P.; Baron, V.T.; Welsh, J.; Borgström, P. Regression of prostate tumors upon combination of hormone ablation therapy and celecoxib in vivo. Prostate 2011, 71, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, J.; Zhang, Q.; Li, W.; Zhang, S.; Xu, Y.; Wang, F.; Zhang, B.; Zhang, Y.; Gao, W.Q. Elimination of CD4lowHLA-G+ T cells overcomes castration-resistance in prostate cancer therapy. Cell Res. 2018, 28, 1103–1117. [Google Scholar] [CrossRef]
- Pruthi, R.S.; Derksen, J.E.; Moore, D.; Carson, C.C.; Grigson, G.; Watkins, C.; Wallen, E. Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. Clin. Cancer Res. 2006, 12, 2172–2177. [Google Scholar] [CrossRef] [PubMed]
- Pruthi, R.; Derksen, J.; Moore, D. A pilot study of use of the cyclooxygenase-2 inhibitor celecoxib in recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. BJU Int. 2004, 93, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Ganswindt, U.; Budach, W.; Jendrossek, V.; Becker, G.; Bamberg, M.; Belka, C. Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer–a phase I study. Radiat. Oncol. 2006, 1, 9. [Google Scholar] [CrossRef]
- Sooriakumaran, P.; Macanas-Pirard, P.; Bucca, G.; Henderson, A.; Langley, S.E.M.; Laing, R.W.; Smith, C.P.; E Laing, E.; Coley, H.M. A gene expression profiling approach assessing celecoxib in a randomized controlled trial in prostate cancer. Cancer Genom. Proteom. 2009, 6, 93–99. [Google Scholar]
- Flamiatos, J.F.; Beer, T.M.; Graff, J.N.; Eilers, K.M.; Tian, W.; Sekhon, H.S.; Garzotto, M. Cyclooxygenase-2 (COX-2) inhibition for prostate cancer chemoprevention: Double-blind randomised study of pre-prostatectomy celecoxib or placebo. BJU Int. 2017, 119, 709–716. [Google Scholar] [CrossRef]
- Kattan, J.; Bachour, M.; Farhat, F.; El Rassy, E.; Assi, T.; Ghosn, M. Phase II trial of weekly Docetaxel, Zoledronic acid, and Celecoxib for castration-resistant prostate cancer. Investig. New Drugs 2016, 34, 474–480. [Google Scholar] [CrossRef]
- Sooriakumaran, P.; Coley, H.M.; Fox, S.B.; Macanas-Pirard, P.; Lovell, D.P.; Henderson, A.; Eden, C.G.; Miller, P.D.; Langley, S.E.M.; Laing, R.W. A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer. Res. 2009, 29, 1483–1488. [Google Scholar]
- Etheridge, T.; Liou, J.; Downs, T.M.; Abel, E.J.; Richards, K.A.; Jarrard, D.F. The impact of celecoxib on outcomes in advanced prostate cancer patients undergoing androgen deprivation therapy. Am. J. Clin. Exp. Urol. 2018, 6, 123–132. [Google Scholar]
- Landre, T.; Des Guetz, G.; Chouahnia, K.; Fossey-Diaz, V.; Taleb, C.; Culine, S. Is there a benefit of addition docetaxel, abiraterone, celecoxib, or zoledronic acid in initial treatments for patients older than 70 years with hormone-sensitive advanced prostate cancer? A meta-analysis. Clin. Genitourin. Cancer 2019, 17, e806–e813. [Google Scholar] [CrossRef] [PubMed]
- Carles, J.; Font, A.; Mellado, B.; Domenech, M.; Gallardo, E.; González-Larriba, J.L.; Catalan, G.; Alfaro, J.; del Alba, A.G.; Nogué, M.; et al. Weekly administration of docetaxel in combination with estramustine and celecoxib in patients with advanced hormone-refractory prostate cancer: Final results from a phase II study. Br. J. Cancer 2007, 97, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Albouy, B.; Tourani, J.-M.; Allain, P.; Rolland, F.; Staerman, F.; Eschwege, P.; Pfister, C. Preliminary results of the Prostacox phase II trial in hormonal refractory prostate cancer. BJU Int. 2007, 100, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci. 2013, 16, 821–847. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.C.; Norman, A.J. Drug-induced gastrointestinal disorders. Medicine 2019, 47, 301–308. [Google Scholar] [CrossRef]
- Tai, F.W.D.; McAlindon, M.E. Non-steroidal anti-inflammatory drugs and the gastrointestinal tract. Clin. Med. 2021, 21, 131. [Google Scholar] [CrossRef]
- Masso Gonzalez, E.L.; Patrignani, P.; Tacconelli, S.; Rodríguez, L.A.G. Variability among nonsteroidal antiinflammatory drugs in risk of upper gastrointestinal bleeding. Arthritis Rheum. 2010, 62, 1592–1601. [Google Scholar] [CrossRef]
- Antonucci, R.; Cuzzolin, L.; Arceri, A.; Dessì, A.; Fanos, V. Changes in urinary PGE 2 after ibuprofen treatment in preterm infants with patent ductus arteriosus. Eur. J. Clin. Pharmacol. 2009, 65, 223–230. [Google Scholar] [CrossRef]
- Horbach, S.J.; Lopes, R.D.; Guaragna, J.C.D.C.; Martini, F.; Mehta, R.H.; Petracco, J.B.; Bodanese, L.C.; Adauto Filho, C.; Cirenza, C.; de Paola, A.A.; et al. Naproxen as prophylaxis against atrial fibrillation after cardiac surgery: The NAFARM randomized trial. Am. J. Med. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Varga, Z.; rafay ali Sabzwari, S.; Vargova, V.; Sabzwari, S.R.A. Cardiovascular risk of nonsteroidal anti-inflammatory drugs: An under-recognized public health issue. Cureus 2017, 9, e1144. [Google Scholar] [CrossRef]
- Fanelli, A.; Ghisi, D.; Aprile, P.L.; Lapi, F. Cardiovascular and cerebrovascular risk with nonsteroidal anti-inflammatory drugs and cyclooxygenase 2 inhibitors: Latest evidence and clinical implications. Ther. Adv. Drug Saf. 2017, 8, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Vonkeman, H.E.; van de Laar, M.A. (Eds.) Nonsteroidal Anti-Inflammatory Drugs: Adverse Effects and Their Prevention; Seminars in arthritis and rheumatism; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Lanas, A.; Hunt, R. Prevention of anti-inflammatory drug-induced gastrointestinal damage: Benefits and risks of therapeutic strategies. Ann. Med. 2006, 38, 415–428. [Google Scholar] [CrossRef] [PubMed]
Effects NSAIDs | Apoptosis | Cell Cycle Arrest | Anti-Metastatic | Anti-Cell Growth | Anti-Inflammatory | Anti-Angiogenic |
---|---|---|---|---|---|---|
ASP | Survivin, Bcl-2 | Cyclin D1 | TXA2, COX-1 | PG, Treg, COX-2 | ||
IBN | Caspase-3,9, p75NTR Bfl-1 | G1/S arrest | Nag-1, E-cadherin | |||
NAP | p75NTR | |||||
DCF | Bak, Bax, Puma, Caspase-3,9 Mcl-1, Bcl-x | Thymidine incorporation to DNA G2/M arrest | GLUT-1, MYC, LDHA, MCT-1 | |||
IND | P53, Caspase-3,7, Bcl-2 | Ki67, AKR1C3 | ||||
MFA | [Ca2+] intracellular, Caspase-3 PARP-1 | |||||
CXB | P21, P27, Bax. Survivin, Erk1/2, PARP-1, Bcl-2 | Cyclin D1, PCNA | COX-2 | VEGF, HIF-1, TGF-β |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghsoudi, H.; Sheikhnia, F.; Sitarek, P.; Hajmalek, N.; Hassani, S.; Rashidi, V.; Khodagholi, S.; Mir, S.M.; Malekinejad, F.; Kheradmand, F.; et al. The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer. Cancers 2023, 15, 5435. https://doi.org/10.3390/cancers15225435
Maghsoudi H, Sheikhnia F, Sitarek P, Hajmalek N, Hassani S, Rashidi V, Khodagholi S, Mir SM, Malekinejad F, Kheradmand F, et al. The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer. Cancers. 2023; 15(22):5435. https://doi.org/10.3390/cancers15225435
Chicago/Turabian StyleMaghsoudi, Hossein, Farhad Sheikhnia, Przemysław Sitarek, Nooshin Hajmalek, Sepideh Hassani, Vahid Rashidi, Sadaf Khodagholi, Seyed Mostafa Mir, Faezeh Malekinejad, Fatemeh Kheradmand, and et al. 2023. "The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer" Cancers 15, no. 22: 5435. https://doi.org/10.3390/cancers15225435
APA StyleMaghsoudi, H., Sheikhnia, F., Sitarek, P., Hajmalek, N., Hassani, S., Rashidi, V., Khodagholi, S., Mir, S. M., Malekinejad, F., Kheradmand, F., Ghorbanpour, M., Ghasemzadeh, N., & Kowalczyk, T. (2023). The Potential Preventive and Therapeutic Roles of NSAIDs in Prostate Cancer. Cancers, 15(22), 5435. https://doi.org/10.3390/cancers15225435