The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohorts
2.2. Data Collection
2.3. Segmentations
2.4. Radiomics
2.5. Model Development
2.6. Model Evaluation
3. Results
3.1. Participants
3.2. Model Performance
3.2.1. Discrimination
3.2.2. Calibration
3.2.3. Clinical Usefulness
3.2.4. Radiology Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soeterik, T.F.W.; van Melick, H.H.E.; Dijksman, L.M.; Biesma, D.H.; Witjes, J.A.; van Basten, J.P.A. Multiparametric Magnetic Resonance Imaging Should Be Preferred Over Digital Rectal Examination for Prostate Cancer Local Staging and Disease Risk Classification. Urology 2021, 147, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Soeterik, T.F.W.; Van Melick, H.H.E.; Dijksman, L.M.; Stomps, S.; Witjes, J.A.; Van Basten, J.P.A. Nerve Sparing during Robot-Assisted Radical Prostatectomy Increases the Risk of Ipsilateral Positive Surgical Margins. J. Urol. 2020, 204, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Caglic, I.; Kovac, V.; Barrett, T. Multiparametric MRI—Local staging of prostate cancer and beyond. Radiol. Oncol. 2019, 53, 159–170. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.; Hamoen, E.H.J.; Witjes, J.A.; Barentsz, J.O.; Rovers, M.M. Accuracy of Magnetic Resonance Imaging for Local Staging of Prostate Cancer: A Diagnostic Meta-analysis. Eur. Urol. 2016, 70, 233–245. [Google Scholar] [CrossRef]
- Baco, E.; Rud, E.; Vlatkovic, L.; Svindland, A.; Eggesbø, H.B.; Hung, A.J.; Matsugasumi, T.; Bernhard, J.-C.; Gill, I.S.; Ukimura, O. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer. J. Urol. 2015, 193, 466–472. [Google Scholar] [CrossRef]
- Park, K.J.; Kim, M.H.; Kim, J.K. Extraprostatic tumor extension: Comparison of preoperative multiparametric MRI criteria and histopathologic correlation after radical prostatectomy. Radiology 2020, 296, 87–95. [Google Scholar] [CrossRef]
- Rud, E.; Diep, L.; Baco, E. A prospective study evaluating indirect MRI-signs for the prediction of extraprostatic disease in patients with prostate cancer: Tumor volume, tumor contact length and tumor apparent diffusion coefficient. World J. Urol. 2018, 36, 629–637. [Google Scholar] [CrossRef]
- Veerman, H.; Hoeks, C.M.A.; Sluijter, J.H.; van der Eijk, J.A.; Boellaard, T.N.; Roeleveld, T.A.; van der Sluis, T.M.; Nieuwenhuijzen, J.A.; Wit, E.; Rijkhorst, E.-J.; et al. 3D-Reconstructed Contact Surface Area and Tumour Volume on Magnetic Resonance Imaging Improve the Prediction of Extraprostatic Extension of Prostate Cancer. J. Digit. Imaging 2022, 36, 486–496. [Google Scholar] [CrossRef]
- He, D.; Wang, X.; Fu, C.; Wei, X.; Bao, J.; Ji, X.; Bai, H.; Xia, W.; Gao, X.; Huang, Y.; et al. MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins. Cancer Imaging 2021, 21, 46. [Google Scholar] [CrossRef]
- Bai, H.; Xia, W.; Ji, X.; Wei, X.; Bao, J.; Ji, X.; Bai, H.; Xia, W.; Gao, X.; Huang, Y.; et al. Multiparametric Magnetic Resonance Imaging-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer. J. Magn. Reson. Imaging 2021, 54, 1222–1230. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, G.; Zhao, L.; Mao, L.; Li, X.; Yan, W.; Xiao, Y.; Lei, J.; Sun, H.; Jin, Z. Radiomics Based on Multiparametric Magnetic Resonance Imaging to Predict Extraprostatic Extension of Prostate Cancer. Front. Oncol. 2020, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xie, H.; Wang, H.; Han, C.; Yang, J.; Lin, Z.; Li, Y.; He, Q.; Wang, R.; Cui, Y.; et al. MRI-Based Radiomics Signature for the Preoperative Prediction of Extracapsular Extension of Prostate Cancer. J. Magn. Reson. Imaging 2019, 50, 1914–1925. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, E.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16. [Google Scholar] [CrossRef]
- Moskowitz, C.S.; Pepe, M.S. Comparing the Predictive Values of Diagnostic Tests: Sample Size and Analysis for Paired Study Designs. Clin. Trials 2006, 3, 272–279. [Google Scholar] [CrossRef]
- Singh, K. Github—ML4LHS/Runway: Evaluation and Comparison of Prediction Models. Available online: https://github.com/ML4LHS/runway/ (accessed on 6 November 2023).
- Van Calster, B.; Wynants, L.; Verbeek, J.F.M.; Verbakel, J.Y.; Christodoulou, E.; Vickers, A.J.; Roobol, M.J.; Steyerberg, E.W. Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators. Eur. Urol. 2018, 74, 796–804. [Google Scholar] [CrossRef]
- Heetman, J.G.; Soeterik, T.F.W.; Wever, L.; Meyer, A.R.; Nuininga, J.E.; van Soest, R.J.; van Melick, H.H.E.; van Basten, J.-P.P.A.; van den Bergh, R.C.N. A side-specific nomogram for extraprostatic extension may reduce the positive surgical margin rate in radical prostatectomy. World J. Urol. 2022, 40, 2919–2924. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, B.; Zha, Z.; Zhao, H.; Jiang, Y.; Yuan, J. Positive surgical margin is associated with biochemical recurrence risk following radical prostatectomy: A meta-analysis from high-quality retrospective cohort studies. World J. Surg. Oncol. 2018, 16, 124. [Google Scholar] [CrossRef]
- Wibmer, A.G.; Kattan, M.W.; Alessandrino, F.; Baur, A.D.J.; Boesen, L.; Franco, F.B.; Bonekamp, D.; Campa, R.; Cash, H.; Catalá, V.; et al. International multi-site initiative to develop an mri-inclusive nomogram for side-specific prediction of extraprostatic extension of prostate cancer. Cancers 2021, 13, 2627. [Google Scholar] [CrossRef] [PubMed]
- Nyarangi-Dix, J.; Wiesenfarth, M.; Bonekamp, D.; Hitthaler, B.; Schütz, V.; Dieffenbacher, S.; Mueller-Wolf, M.; Roth, W.; Stenzinger, A.; Duensing, S.; et al. Combined Clinical Parameters and Multiparametric Magnetic Resonance Imaging for the Prediction of Extraprostatic Disease—A Risk Model for Patient-tailored Risk Stratification When Planning Radical Prostatectomy. Eur. Urol. Focus 2020, 6, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- ACR. PI-RADS® v2.1 PI-RADS® Prostate Imaging-Reporting and Data System; Version 2.1; American College of Radiology: Reston, VA, USA, 2019. [Google Scholar]
Overall Cohort (n = 794) | Training Cohort (n = 524) | Internal Test Cohort (n = 131) | External Test Cohort (n = 139) | |
---|---|---|---|---|
Age (yr), median (IQR) | 67 (63–71) | 67 (62–71) | 67 (64–71) | 67 (63–70) |
PSA (ng/mL), median (IQR) | 8.0 (5.8–12.1) | 8.3 (6.0–12.6) | 7.6 (5.4–12) | 7.8 (5.6–10.8) |
Biopsy ISUP grade group, n (%) | ||||
1 | 167 (21.0) | 111 (21.2) | 33 (25.2) | 23 (16.5) |
2 | 285 (35.9) | 175 (33.4) | 49 (37.4) | 61 (43.9) |
3 | 148 (18.6) | 99 (18.9) | 21 (16.0) | 28 (20.1) |
4 | 125 (15.7) | 91 (17.4) | 17 (13.0) | 17 (12.2) |
5 | 69 (8.7) | 48 (9.2) | 11 (8.4) | 10 (7.2) |
Biopsy type | ||||
Systematic | 279 (35.1) | 214 (40.8) | 47 (35.9) | 18 (12.9) |
Target | 515 (64.9) | 310 (59.2) | 84 (64.1) | 121 (87.1) |
Radiological T stage, n (%) | ||||
T2 | 487 (61.3) | 342 (65.3) | 78 (59.5) | 67 (48.2) |
T3 | 306 (38.5) | 181 (34.5) | 53 (40.5) | 72 (51.8) |
T4 | 1 (0.1) | 1 (0.2) | 0 (0) | 0 (0) |
Pathological T stage, n (%) | ||||
T2 | 420 (52.9) | 281 (53.6) | 70 (53.4) | 69 (49.6) |
T3 | 371 (46.7) | 241 (46.0) | 60 (45.8) | 70 (50.4) |
T4 | 3 (0.4) | 2 (0.4) | 1 (0.8) | 0 (0) |
Model | Metric | Internal Test Cohort | External Test Cohort |
---|---|---|---|
Extra Trees | AUC | 0.86 (0.80–0.92) | 0.88 (0.83–0.93) |
Accuracy | 0.81 (0.75–0.87) | 0.81 (0.75–0.86) | |
Sensitivity | 0.78 (0.66–0.87) | 0.79 (0.68–0.87) | |
Specificity | 0.83 (0.75–0.89) | 0.82 (0.74–0.88) | |
PPV | 0.73 (0.62–0.83) | 0.73 (0.62–0.81) | |
NPV | 0.87 (0.79–0.92) | 0.87 (0.79–0.92) | |
Random Forest | AUC | 0.86 (0.80–0.92) | 0.88 (0.83–0.93) |
Accuracy | 0.80 (0.73–0.85) | 0.83 (0.76–0.87) | |
Sensitivity | 0.72 (0.59–0.81) | 0.72 (0.60–0.81) | |
Specificity | 0.84 (0.76–0.90) | 0.89 (0.82–0.93) | |
PPV | 0.73 (0.60–0.83) | 0.80 (0.68–0.88) | |
NPV | 0.83 (0.75–0.89) | 0.84 (0.77–0.89) | |
Logistic Regression | AUC | 0.87 (0.81–0.93) | 0.91 (0.87–0.95) |
Accuracy | 0.80 (0.73–0.86) | 0.83 (0.76–0.87) | |
Sensitivity | 0.77 (0.65–0.86) | 0.65 (0.53–0.75) | |
Specificity | 0.82 (0.74–0.89) | 0.93 (0.87–0.97) | |
PPV | 0.72 (0.60–0.81) | 0.85 (0.73–0.92) | |
NPV | 0.86 (0.77–0.91) | 0.81 (0.74–0.87) |
Metric | Internal Test Cohort | External Test Cohort |
---|---|---|
Accuracy | 0.71 (0.64–0.77) | 0.67 (0.60–0.73) |
Sensitivity | 0.53 (0.41–0.65) | 0.65 (0.53–0.75) |
Specificity | 0.81 (0.73–0.88) | 0.69 (0.60–0.76) |
PPV | 0.63 (0.49–0.75) | 0.55 (0.45–0.66) |
NPV | 0.75 (0.66–0.82) | 0.76 (0.67–0.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Berg, I.; Soeterik, T.F.W.; van der Hoeven, E.J.R.J.; Claassen, B.; Brink, W.M.; Baas, D.J.H.; Sedelaar, J.P.M.; Heine, L.; Tol, J.; van der Voort van Zyp, J.R.N.; et al. The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer. Cancers 2023, 15, 5452. https://doi.org/10.3390/cancers15225452
van den Berg I, Soeterik TFW, van der Hoeven EJRJ, Claassen B, Brink WM, Baas DJH, Sedelaar JPM, Heine L, Tol J, van der Voort van Zyp JRN, et al. The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer. Cancers. 2023; 15(22):5452. https://doi.org/10.3390/cancers15225452
Chicago/Turabian Stylevan den Berg, Ingeborg, Timo F. W. Soeterik, Erik J. R. J. van der Hoeven, Bart Claassen, Wyger M. Brink, Diederik J. H. Baas, J. P. Michiel Sedelaar, Lizette Heine, Jim Tol, Jochem R. N. van der Voort van Zyp, and et al. 2023. "The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer" Cancers 15, no. 22: 5452. https://doi.org/10.3390/cancers15225452
APA Stylevan den Berg, I., Soeterik, T. F. W., van der Hoeven, E. J. R. J., Claassen, B., Brink, W. M., Baas, D. J. H., Sedelaar, J. P. M., Heine, L., Tol, J., van der Voort van Zyp, J. R. N., van den Berg, C. A. T., van den Bergh, R. C. N., van Basten, J. -P. A., & van Melick, H. H. E. (2023). The Development and External Validation of Artificial Intelligence-Driven MRI-Based Models to Improve Prediction of Lesion-Specific Extraprostatic Extension in Patients with Prostate Cancer. Cancers, 15(22), 5452. https://doi.org/10.3390/cancers15225452