Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overexpressed Regucalcin Suppresses Cell Growth In Vitro
3. The Repressive Role of Regucalcin in Carcinogenesis In Vivo Models
4. The Role of Regucalcin in the Suppression of Human Cancer
4.1. Liver Cancer
4.2. Lung Cancer
4.3. Prostate Cancer
4.4. Breast Cancer
4.5. Pancreatic Cancer
4.6. Colorectal Cancer
4.7. Kidney Cancer
4.8. Cervical Adenocarcinoma
4.9. Melanoma
4.10. Osteosarcoma
4.11. Ovarian Cancer
5. The Suppressive Role of Extracellular Regucalcin in the Cancer Microenvironment
6. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasmussen, J. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 1970, 170, 404–412. [Google Scholar] [CrossRef]
- Cheung, W.Y. Calmodulin plays a pivotal role in cellular regulation. Science 1980, 202, 19–27. [Google Scholar] [CrossRef]
- Nishizuka, Y. Studies and perspectives of protein kinase C. Science 1986, 233, 305–312. [Google Scholar] [CrossRef]
- Elies, J.; Yanez, M.; Pereira, T.M.C.; Gil-Longo, J.; MacDougall, D.A.; Campos-Toimil, M. An update to calcium binding proteins. Adv. Exp. Med. Biol. 2020, 1131, 183–213. [Google Scholar] [PubMed]
- Yamaguchi, M. Role of regucalcin in maintaining cell homeostasis and function (Review). Int. J. Mol. Med. 2005, 15, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Danish, M.; Ahmad, R. Functional pleiotrophy of calcium binding protein regucalcin in signaling and disease. Cell. Signal. 2023, 102, 110533. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Yamamoto, T. Purification of calcium binding substance from soluble fraction of normal rat liver. Chem. Pharm. Bull. 1978, 26, 1915–1918. [Google Scholar] [CrossRef]
- Yamaguchi, M. Role of regucalcin in calcium signaling. Life Sci. 2000, 661, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, N.; Yamaguchi, M. Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett. 1993, 327, 251–255. [Google Scholar] [CrossRef]
- Thiselton, D.L.; McDowall, J.; Brandau, O.; Ramser, J.; d’Esposito, F.; Bhattacharga, S.S.; Ross, M.T.; Hardcastle, A.J.; Meindl, A. An integrated, functionally annotated gene map of the DXS8026-ELK1 internal on human Xp11.3-Xp11.23: Potential hotspot for neurogenetic disorders. Genomics 2002, 79, 560–572. [Google Scholar] [CrossRef]
- Yamaguchi, M. The transcriptional regulation of regucalcin gene expression. Mol. Cell. Biochem. 2011, 346, 147–171. [Google Scholar] [CrossRef]
- Misawa, H.; Yamaguchi, M. The gene of Ca2+-binding protein regucalcin is highly conserved in vertebrate species. Int. J. Mol. Med. 2000, 6, 191–196. [Google Scholar] [CrossRef]
- Fujita, T.; Shirasawa, T.; Uchida, K.; Maruyama, N. Isolation of cDNA clone encoding rat senescence marker protein-30 (SMP30) and its tissue distribution. Biochim. Biophys. Acta 1992, 1132, 297–305. [Google Scholar] [CrossRef]
- Fujita, T.; Uchida, K.; Maruyama, N. Purification of senescence marker protein-30 (SMP30) and its androgen independent decrease with age in the rat liver. Biochim. Biophys. Acta 1992, 1116, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Nejak-Bowen, K.N.; Zeng, G.; Tan, X.; Cieply, B.; Monga, S.P. β-Catenin regulates vitamin C biosynthesis and cell survival in murine liver. J. Biol. Chem. 2009, 284, 28115–28127. [Google Scholar] [CrossRef]
- Singh, T.; Banerjee, P.; Uditi Kumari, S.; Chopra, A.; Singh, N.; Qamar, I. Expression of regucalcin, a calcium-binding protein is regulated by hypoxia-inducible factor-1α. Life Sci. 2022, 292, 120278. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Hashimoto, K.; Jijiwa, M.; Murata, T. The inflammatory macrophages repress the growth of bone metastatic human prostate cancer cells via TNF-α and IL-6 signaling: Involvement of cell signaling regulator regucalcin. Cell. Signal. 2023, 107, 110663. [Google Scholar] [CrossRef]
- Rath, B.; Pandey, R.S.; Debata, P.R.; Maruyama, N.; Supakar, P.C. Molecular characterization of senescence marker protin-30 gene promoter: Identification of repressor element and functional nuclear factor binding site. BMC Mol. Biol. 2008, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M. Novel protein RGPR-p117: Its role as the regucalcin gene transcription factor. Mol. Cell. Biochem. 2009, 327, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ni, P.; Chen, C.; Yao, Y.; Zhao, X.; Qian, G.; Fan, X.; Ge, S. SP1 suppresses phorbol 12-myristate 13-acetate induced up-regulation of human regucalcin expression in liver cancer cells. Mol. Cell. Biochem. 2011, 355, 9–15. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Isogai, M. Tissue concentration of calcium-binding protein regucalcin in rats by enzyme-linked immunoadsorbent assay. Mol. Cell. Biochem. 1993, 122, 65–68. [Google Scholar] [PubMed]
- Yamaguchi, M. Role of regucalcin in cell nuclear regulation: Involvement as a transcriptional factor. Cell Tissue Res. 2013, 354, 331–342. [Google Scholar] [PubMed]
- Yamaguchi, M. Suppressive role of regucalcin in liver cell proliferation: Involvement in carcinogenesis. Cell Prolif. 2013, 46, 243–253. [Google Scholar]
- Yamaguchi, M. The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways. Apoptosis 2013, 18, 1145–1153. [Google Scholar]
- Yamaguchi, M. Regucalcin and metabolic disorder: Osteoporosis and hyperlipidemia are induced in regucalcin transgenic rats. Mol. Cell. Biochem. 2010, 341, 119–133. [Google Scholar] [PubMed]
- Yamaguchi, M.; Murata, T. Involvement of regucalcin in lipid metabolism and diabetes. Metabolism 2013, 62, 1045–1051. [Google Scholar] [PubMed]
- Yamaguchi, M. The potential role of regucalcin in kidney cell regulation: Involvement in metabolic disorder (Review). Int. J. Mol. Med. 2015, 36, 1191–1199. [Google Scholar]
- Chakraborti, S.; Bahnson, B.J. Crystal structure of human senescence marker protein 30: Insight linking structural, enzymatic, and physiological functions. Biochemistry 2010, 49, 3436–3444. [Google Scholar]
- Marques, R.; Maia, C.J.; Vaz, C.; Correia, S.; Socorro, S. The diverse roles of calcium-binding protein regucalcin in cell biology: From tissue expression and signaling to disease. Cell. Mol. Life Sci. 2014, 71, 93–111. [Google Scholar]
- Scot, S.H.; Bahnson, B.J. Senescence marker protein 30: Functional and structural insights to its unknown physiological function. Biomol. Concepts 2011, 2, 469–480. [Google Scholar]
- Cardoso, A.L.; Fernandes, A.; Aguilar-Pimentel, J.A.; de Angelis, M.H.; Guedes, J.R.; Brito, M.A.; Ortolano, S.; Pani, G.; Athanasopoulou, S.; Gonos, E.S. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res. Rev. 2018, 47, 214–277. [Google Scholar] [PubMed]
- Yamaguchi, M. Involvement of regucalcin as a suppressor protein in human carcinogenesis: Insight into the gene therapy. J. Cancer Res. Clin. Oncol. 2015, 141, 1333–1341. [Google Scholar] [PubMed]
- Vaz, C.V.; Correia, S.; Cardoso, H.J.; Figueira, M.I.; Marques, R.; Maia, C.J.; Socorro, S. The emerging role of regucalcin as a tumor suppressor: Facts and view. Curr. Mol. Med. 2016, 16, 607–619. [Google Scholar] [PubMed]
- Yamaguchi, M.; Osuka, S.; Weitzmann, M.N.; El-Rayes, B.F.; Shoji, M.; Murata, T. Prolonged survival in hepatocarcinoma patients with increased regucalcin. gene expression: HepG2 cell proliferation is suppressed by overexpression of regucalcin in vitro. Int. J. Oncol. 2016, 49, 1686–1694. [Google Scholar]
- Yamaguchi, M.; Osuka, S.; Weitzmann, M.N.; Shoji, M.; Murata, T. Prolonged survival in pancreatic cancer patients with increased regucalcin gene expression: Overexpression of regucalcin suppresses the proliferation in human pancreatic cancer MIA PaCa-2 cells in vitro. Int. J. Oncol. 2016, 48, 1955–1964. [Google Scholar] [PubMed]
- Yamaguchi, M.; Osuka, S.; Weitzmann, M.N.; El-Rayes, B.F.; Shoji, M.; Murata, T. Increased regucalcin gene expression extends survival in breast cancer patients: Overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro. Int. J. Oncol. 2016, 49, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Osuka, S.; Shoji, M.; Weitzmann, M.N.; Murata, T. Survival of lung cancer patients is prolonged with higher regucalcin gene expression: Suppressed proliferation of lung adenocarcinoma A549 cells in vitro. Mol. Cell. Biochem. 2017, 430, 37–46. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Osuka, S.; Murata, T. Prolonged survival of colorectal cancer patients is associated with higher regucalcin gene expression: Overexpressed regucalcin suppresses growth of human colorectal carcinoma cells in vitro. Int. J. Oncol. 2018, 53, 1313–1322. [Google Scholar]
- Yamaguchi, M.; Osuka, S.; Hankinson, O.; Murata, T. Prolonged survival of renal cancer patients are concomitant with a higher regucalcin gene expression in the tumor tissues: Overexpression of regucalcin depresses the growth of human renal cell carcinoma cells in vitro. Int. J. Oncol. 2019, 54, 188–198. [Google Scholar]
- Yamaguchi, M.; Osuka, S.; Murata, T.; Ramos, J.W. Progression-free survival of prostate cancer patients are prolonged with a higher regucalcin expression in the tumor tissues: Overexpressed regucalcin suppresses the growth and bone metastatic activity of PC-3 cells in vitro. Transl. Oncol. 2021, 14, 100955. [Google Scholar] [PubMed]
- Curran, T. Fos and June: Intermediary transcription factors. In The Hormonal Control of Gene Transcription; Cohen, P., Foulkes, J.G., Eds.; Elsevier: New York, NY, USA, 1991; pp. 295–308. [Google Scholar]
- Hulla, J.E.; Schneider, R.P. Structure of the rat p53 tumor suppressor gene. Nucleic Acids Res. 1993, 21, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Higgins, G.M.; Anderson, R.M. Experimental pathology of the liver. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 1931, 12, 186–202. [Google Scholar]
- Yamaguchi, M. The role of regucalcin in nuclear regulation of regeneratingiver. Biochem. Biophys. Res. Commun. 2000, 276, 1–6. [Google Scholar] [CrossRef]
- Makino, R.; Yamaguchi, M. Expression of calcium-binding protein regucalcin mRNA in hepatoma cells. Mol. Cell. Biochem. 1996, 155, 85–90. [Google Scholar] [CrossRef]
- Suzuki, S.; Asamoto, M.; Tsujimura, K.; Shirai, T. Specific differences in gene expression profile revealed by cDNA microarray analysis of glutathione S-transferase placental form (GST-P) immunohistochemically positive rat liver foci and surrounding tissue. Carcinogenesis 2004, 25, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Elchuri, S.; Naeemuddin, M.; Sharpe, O.; Robinson, W.H.; Huang, T.T. Identification of biomarkers associated with the development of hepatocellular carcinoma in CuZn superoxide dismutase deficient mice. Proteomics 2007, 7, 2121–2129. [Google Scholar] [CrossRef]
- Maia, C.; Santos, C.; Schmitt, F.; Socorro, S. Regucalcin is expressed in rat mamaary gland and prostate and down-regulated by 17beta-estradiol. Mol. Cell. Biochem. 2008, 311, 81–86. [Google Scholar] [CrossRef]
- Maia, C.; Santos, C.; Schmitt, F.; Socorro, S. Regucalcin is under-expressed in human breast and prostate cancers: Effect of sex steroid hormones. J. Cell. Biochem. 2009, 107, 667–676. [Google Scholar] [CrossRef]
- Vaz, C.V.; Marquest, R.; Maia, C.; Socorro, S. Aging-associated changes in oxidative stress, cell proliferation, and apoptosis are prevented in the prostate of transgenic rats overexpressing regucalcin. Transl. Res. 2015, 166, 693–705. [Google Scholar] [CrossRef]
- Marques, R.; Vaz, C.V.; Maia, C.J.; Gomes, M.; Gama, A.; Alves, G.; Santos, C.R.; Schmitt, F.; Socorro, S. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis. Exp. Cell Res. 2015, 330, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Misawa, H.; Yamaguchi, M. Transcript heterogeneity of the human gene for Ca2+-binding protein regucalcin. Int. J. Mol. Med. 2000, 5, 283–287. [Google Scholar] [CrossRef]
- Murata, T.; Yamaguchi, M. Alternatively spliced variants of the regucalcin gene in various human normal and tumor tissues. Int. J. Mol. Med. 2014, 34, 1141–1146. [Google Scholar] [CrossRef]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCA 2008. Int. J. Cancer 2012, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med. 2011, 365, 1118–1127. [Google Scholar] [CrossRef]
- Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: From genes to environment. Nat. Rev. Cancer 2006, 6, 674–687. [Google Scholar] [CrossRef]
- Dragani, T.A. Risk of HCC: Genetic heterogeneity and complex genetics. J. Hepatol. 2010, 52, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Yun, Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J. Biol. Chem. 1998, 273, 25510–25515. [Google Scholar] [CrossRef]
- Andrisani, O.M.; Barnabas, S. The transcriptional function of the hepatitis B virus X protein and its role in hepatocarcinogenesis (Review). Int. J. Oncol. 1999, 15, 373–379. [Google Scholar] [CrossRef]
- Benn, J.; Schneider, R.J. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc. Natl. Acad. Sci. USA 1994, 91, 10350–10354. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.Y.; Kim, C.M.; Park, Y.M.; Ryu, W.S. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology 2004, 39, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Mir, I.H.; Guha, S.; Behera, J.; Thirunavukkarasu, C. Targeting molecular signal transduction pathway in hepatocellular carcinoma and its implications for cancer therapy. Cell Biol. Int. 2021, 45, 2161–2177. [Google Scholar] [CrossRef]
- Okabe, H.; Kinoshita, H.; Imai, K.; Nakagawa, S.; Higashi, T.; Arima, K.; Uchiyama, H.; Ikegami, T.; Harimoto, N.; Itoh, S.; et al. Diverse basis of β-catenin activation in human hepatocellular carcinoma: Implications in biology and prognosis. PLoS ONE 2016, 11, e0152695. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Murata, T.; Ramos, J.W. The calcium channel agonist Bay K 8644 promotes the growth of human liver cancer HepG2 cells in vitro: Suppression with overexpressed regucalcin. Mol. Cell. Biochem. 2020, 472, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Zheng, S.; Ly, Z.; Zhuang, Y.; Lan, X.; Wang, F.; Lu, X.; Zhao, Y.; Zhou, S. Senescence marker protein 30 (SMP30) serves as a potential prognostic indicator in hepatocellular carcinoma. Sci. Rep. 2016, 6, 39376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.F.; Mo, F.R.; Bin, Y.H.; Hou, G.Q.; Xie, X.X.; Lug, G.R. Serum immunoreactivity of SMP30 and its tissues expression in hepatocellular carcinoma. Clin. Biochem. 2011, 44, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.C.; Huang, P.; Zhao, Y.X.; Liu, S.Y.; He, S.J.; Xie, X.X.; Luo, G.R.; Zhou, S.F. Soluble expression of recombinant human SMP30 for detecting serum SMP30 antibody levels in hepatocellular carcinoma patients. Asian Pac. J. Cancer Prev. 2013, 14, 2383–2386. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.X.; Xiang, B.D.; Long, J.M.; Qu, C.; Mo, Z.J.; Li, K.; Zhuang, Y.; Ly, Z.L.; Zhou, S.F. Diagnostic value of serum SMP30 and anti-SMP30 antibody in hepatocellular carcinoma. Lab. Med. 2018, 49, 203–210. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Isogai, M.; Shimada, N. Potential sensitivity of hepatic specific protein regucalcin as a marker of chronic liver injury. Mol. Cell. Biochem. 1997, 167, 187–190. [Google Scholar] [CrossRef]
- Wei, X.; Yu, H.; Zhao, P.; Xie, L.; Li, L.; Zhang, J. Serum regucalcin is a useful indicator of liver injury severity in patients with hepatitis B virus-related liver diseases. Braz. J. Med. Biol. Res. 2019, 52, e8845. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Pan, J.; Zhang, Y.; Qin, Q.; Chao, N.; Huang, T.; Chen, C.; Zhao, F.; Luo, G. GP96 and SMP30 protein priming of dendritic cell vaccination induces a more potent CTL response against hepatoma. J. Health Eng. 2022, 7, 2518847. [Google Scholar] [CrossRef]
- Roodman, C.D. Mechanism of bone metastasis. N. Engl. J. Med. 2004, 350, 1655–1664. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Qin, Q.; Chao, N.; Huang, T.; Chen, C.; Lu, X.; Huang, R.; Pan, J. Dendritic cells modified by tumor associated antigen SMP30 have enhanced antitumor effect against mouse hepatocarcinoma cells in vitro and in vivo. Am. J. Transl. Res. 2022, 14, 5785–5799. [Google Scholar]
- Nguyen, K.S.; Neal, J.W.; Wakelee, H. Review of the current targeted therapies for non-small-cell lung cancer. World J. Clin. Oncol. 2014, 5, 576–587. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.; Tian, M.; Piao, C.; Ruan, J.; Gao, L.; Qi, X.; Gao, G.; Su, X. The role of CHMP4C on proliferation in the human lung cancer A549 cells. J. Cancer Ther. 2015, 6, 1223–1228. [Google Scholar] [CrossRef]
- Phillips, R.J.; Mestas, J.; Gharaee-Kermani, M.; Burdick, M.D.; Sica, A.; Belperio, J.A.; Keane, M.P.; Strieter, R.M. EGF and hypoxia-induced expression of CXCR4 On non-small cell lung cancer cells are regulated by the PI3-kinase/PTEN/Akt/mTOR signaling pathway and activation of HIF-1α. J. Biol. Chem. 2005, 280, 22473–22481. [Google Scholar] [CrossRef]
- Gower, A.; Wang, Y.; Giaccone, G. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer. J. Mol. Med. 2014, 92, 697–707. [Google Scholar] [CrossRef] [PubMed]
- van der Waal, M.S.; Hengeveld, R.C.C.; van der Horst, A.; Lens, S.M.A. Cell division by the chromosomal passenger complex. Exp. Cell Res. 2009, 318, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 2009, 8, 547–566. [Google Scholar] [CrossRef]
- Yu, X.; Riley, T.; Levine, A.J. The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 2009, 276, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Popkie, A.P.; Zhu, W.-G.; Timmers, C.D.; Raval, A.; Tannehill-Gregg, S.; Morrison, C.D.; Auer, H.; Kratzke, R.A.; Niehans, G.; et al. Bone morphogenetic protein 3B silencing in non-small cell lung cancer. Oncogene 2004, 23, 3521–3529. [Google Scholar] [CrossRef] [PubMed]
- Nitschkowski, D.; Marwitz, S.; Kotanidou, S.; Reck, M.; Kugler, C.; Rabe, K.F.; Ammerpohl, O.; Goldmann, T. Live and let die: Epigenetic modifications of Survivin and Regucalcin in non-small cell lung cancer tissues contribute to malignancy. Clin. Epigenet. 2019, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Guo, K.; Xu, L.; Zhang, Y.; Duan, H.; Feng, Y.; Pan, M.; Lu, D.; Ren, X.; Ganti, A.K.; et al. Senescence marker protein 30 inhibits tumor growth by reducing HDAC4 expression in non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 4558–4573. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Cheng, W.; Mou, R.; Li, X.; Jia, Y. RGN as a prognostic biomarker with immune infiltration and ceRNA in lung squamous cell carcinoma. Sci. Rep. 2023, 13, 7553. [Google Scholar] [CrossRef] [PubMed]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestri, F. Metastatic bone disease: Pathogenesis and therapeutic options up-date on bone metastasis management. J. Bone Oncol. 2019, 15, 100205. [Google Scholar] [CrossRef]
- Zhang, X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 2019, 39, 76. [Google Scholar] [CrossRef]
- Probert, C.; Dottorini, T.; Speakman, A.; Hunt, S.; Nafee, T.; Fafee, T.; Wood, S.; Brown, J.E.; James, V. Communication of prostate cancer cells with bone cells via extracellular vesicle RND; a potential mechanism of metastasis. Oncogene 2019, 38, 1751–1763. [Google Scholar] [CrossRef]
- Sousa, S.; Clezardin, P. Bone-targeted therapies in cancer-induced bone diseases. Calcif. Tissue Int. 2018, 102, 227–250. [Google Scholar] [CrossRef]
- Randall, R.L. A promise to our patients with metastasis bone disease. Ann. Surg. Oncol. 2014, 21, 4049–4050. [Google Scholar] [CrossRef]
- Ardura, J.A.; Alvarez-Carrion, L.; Cutierrrez-Rojas, I.; Alonso, V. Role of calcium signaling in prostate cancer progression: Effects on cancer hallmarks and bone metastatic mechanisms. Cancers 2020, 12, 1071. [Google Scholar] [CrossRef]
- Quiroz-Munoz, M.; Izadmehr, S.; Arumugam, D.; Wong, B.; Kirschenhaum, A.; Levine, A.C. Mechanisms of osteoblastic bone metastasis in prostate cancer: Role of prostatic acid phosphatase. J. Endocr. Soc. 2019, 3, 655–664. [Google Scholar] [CrossRef]
- Malinowaski, B.; Wicinski, M.; Musiala, N.; Osowska, H.; Previous, S.M. Current, and future pharmacotherapy and diagnosis of prostate cancer-A comprehensive review. Diagnostics 2019, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Gravis, G. Systemic treatment for metastatic prostate cancer. Asian J. Urol. 2019, 6, 162–168. [Google Scholar] [CrossRef]
- Zustovich, F.; Barsantiu, R. Targeted α therapies for the treatment of bone metastases. Int. J. Mol. Sci. 2018, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Janiczek, M.; Szylberg, L.; Kasperska, A.; Kowalewski, A.; Parol, M.; Antosik, P.; Radecka, B.; Marszalek, A. Immunotherapy as a promising treatment for prostate cancer: A systemic review. J. Immunol. Res. 2017, 2017, 4861570. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Pei, X.; Xing, F.; Wu, S.Y.; Wu, K.; Tyagi, A.; Zhao, D.; Desphande, R.; Ruiz, M.G.; Singh, R.; et al. Regucalcin promotes dormancy of prostate cancer. Oncogene 2021, 40, 1012–1026. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T.; Ramos, J.W. Overexpression of regucalcin blocks the migration, invasion, and bone metastatic activity of human prostate cancer cells: Crosstalk between cancer cells and bone cells. Prostate 2022, 82, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Yoneda, T.; Guise, T.A. Factors regulating the growth of metastasis cancer in bone. Endocr. Relat. Cancer 1999, 6, 333–347. [Google Scholar] [CrossRef]
- Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 2, 584–593. [Google Scholar] [CrossRef]
- Akhtari, M.; Mansuri, J.; Newman, K.A.; Guise, T.M.; Seth, P. Biology of breast cancer bone metastasis. Cancer Biol. Ther. 2008, 7, 3–9. [Google Scholar] [CrossRef]
- Coleman, R.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 2001, 27, 165–176. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Sosnoski, D.M.; Mastro, A.M. Breast cancer metastasis to the bone: Mechanisms of bone loss. Breast Cancer Res. 2010, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Suarez, E.; Jacob, A.P.; Jones, J.; Miller, R.; Roudier-Meyer, M.P.; Enwert, R.; Branstetter, D.; Dougall, W.C. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010, 468, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Zhang, H.; Zeng, Q.; Dai, J.; Keller, E.T.; Giordano, T.; Gu, K.; Shah, V.; Pei, L.; Zarbo, R.J.; et al. NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat. Med. 2007, 13, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: A fatal attraction. Nat. Rev. Cancer 2011, 11, 411–425. [Google Scholar] [CrossRef]
- Baek, S.M.; Lee, S.W.; Kim, T.U.; Choi, S.K.; Yun, S.; Lee, W.J.; Han, S.H.; Hong, I.H.; Park, S.J.; Kim, T.H.; et al. Senescence marker protein 30 (SMP30): A novel pan-species diagnostic marker for the histopathological diagnosis of breast cancer in humans and animals. Int. J. Mol. Sci. 2021, 22, 2340. [Google Scholar] [CrossRef]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.M.; Kimmelman, A.C. The complex landscape of pancreatic cancer metabolism. Carcinogenesis 2014, 35, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Upadhyay, G.; Srivastava, R.K.; Shankar, S. Recent advances in pancreatic cancer: Biology, treatment, and prevention. Biochim. Biophys. Acta 2015, 1856, 13–27. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Yuan, Z. Pancreatic cancer stem cells. Am. J. Cancer Res. 2015, 5, 894–906. [Google Scholar]
- Oettle, H. Progress in the knowledge and treatment of advanced pancreatic cancer: From bench side to bedside. Cancer Treat. Rev. 2014, 40, 1039–1047. [Google Scholar] [CrossRef]
- Moniri, M.R.; Dai, L.-J.; Warnock, G.L. The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells. Cancer Gene Ther. 2014, 21, 12–23. [Google Scholar] [CrossRef]
- McCarroll, J.A.; Naim, S.; Sharbeen, G.; Russia, N.; Lee, J.; Kavallaris, M.; Goldstein, D.; Phillips, P.A. Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Front. Physiol. 2014, 5, 141. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.A.; di Magliano, M.P. K-ras as a key oncogene and therapeutic target in pancreatic cancer. Front. Physiol. 2014, 4, 407. [Google Scholar] [CrossRef]
- Almoguuera, C.; Shibata, D.; Forrester, K.; Martin, J.; Amheim, N.; Percho, M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988, 53, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Pylayyeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.G.; Stoeger, S.M. A typical colorectal neoplasm. Surg. Clin. N. Am. 2017, 97, 641–656. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures 2016; American Cancer Society: Atlanta, GA, USA, 2016. [Google Scholar]
- Siegel, R.I.; Miller, K.D.; Jemal, A. Cancer statics, 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Alnabulsi, A.; Murray, G.I. Integrative analysis of the colorectal cancer proteome: Potential clinical impact. Expert Rev. Proteom. 2016, 13, 917–927. [Google Scholar] [CrossRef]
- Alnabulsi, A.; Swan, R.; Cash, B.; Alnabulsi, A.; Murray, G.I. The differential expression of omega-3 and omega-6 fatty acid metabolizing enzymes in colorectal cancer and its prognostic significance. Br. J. Cancer 2017, 116, 1612–1620. [Google Scholar] [CrossRef]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Kattar, A.A.L.; Bou-Assi, T.; Jurius, R.; Damiani, P.; Leone, A.; et al. Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar]
- Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behaviour and prevention. Int. J. Mol. Sci. 2013, 14, 16365–16385. [Google Scholar] [CrossRef] [PubMed]
- Kudryavtseva, A.V.; Lipatova, A.V.; Zaretsky, A.R.; Moskalev, A.A.; Fedorova, M.S.; Rasskazova, A.S.; Shibukhova, G.A.; Snezhkina, A.V.; Kaprin, A.D.; Alekseev, B.Y.; et al. Important molecular genetic markers of colorectal cancer. Oncotarget 2016, 7, 53959–53983. [Google Scholar] [CrossRef]
- Jones, R.P.; Sutton, P.A.; Evans, J.P.; Clifford, R.; McAvoy, A.; Lewis, J.; Rousseau, A.; Mountford, R.; McWhirter, D.; Malik, H.Z. Specific mutations in KRAS codon 12 is associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br. J. Cancer 2017, 116, 923–929. [Google Scholar] [CrossRef]
- Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 2003, 3, 11–22. [Google Scholar] [CrossRef]
- Shroff, E.H.; Eberlin, L.S.; Dang, V.M.; Gouw, A.M.; Gabay, M.; Adam, S.J.; Bellovin, D.I.; Tran, P.T.; Philbrick, W.M.; Garcia-Ocana, A.; et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl. Acad. Sci. USA 2015, 112, 6539–6544. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Juengel, E.; Afschar, M.; Makarevic, J.; Rutz, J.; Tsaur, I.; Mani, J.; Nelson, K.; Haferkamp, A.; Roman, A. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism. Int. J. Mol. Med. 2016, 37, 843–850. [Google Scholar] [CrossRef] [PubMed]
- He, Y.H.; Chen, C.; Shi, Z. The biological roles and clinical implications of microRNAs in clear cell renal cell carcinoma. J. Cell. Physiol. 2018, 233, 4458–4465. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S. Paraneoplastic cough and renal cell carcinoma. Can. Respir. J. 2016, 2016, 5938536. [Google Scholar] [CrossRef]
- Flanigan, R.C.; Camphell, S.C.; Clark, J.I.; Picken, M.M. Metastatic renal cell carcinoma. Curr. Treat. Opin. Oncol. 2003, 4, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Montorsi, F. Renal cancer. Lancet 2016, 387, 894–906. [Google Scholar] [CrossRef]
- Thakur, A.; Jain, S.K. Kidney cancer: Current progress in treatment. World J. Oncol. 2011, 2, 158–165. [Google Scholar]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar]
- Zhang, Y.; Yuan, Y.; Liang, P.; Guo, X.; Ying, Y.; Shu, X.-S.; Gao, M., Jr.; Cheng, Y. OSR1 is a novel epigenetic silenced tumor suppressor regulating invasion and proliferation in renal cell carcinoma. Oncotarget 2017, 8, 30008–30018. [Google Scholar] [CrossRef]
- Rini, B.I.; Atkins, M.B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009, 10, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I. New strategies in kidney cancer: Therapeutic advances through understanding the molecular basis of response and resistance. Clin. Cancer Res. 2010, 16, 1348–1354. [Google Scholar] [CrossRef]
- Chen, X.Z.; Zhu, R.; Zheng, J.; Chen, C.; Huang, C.; Ma, J.; Xu, C.; Zhai, W.; Zheng, J. Cryptotanshinone inhibits proliferation yet induces apoptosis by suppressing STAT3 signals in renal cell carcinoma. Oncotarget 2017, 8, 50023–50033. [Google Scholar] [CrossRef] [PubMed]
- Denny, L. Cervical cancer: Prevention and treatment. Dis. Med. 2012, 14, 1250131. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Totrre, L.A.; Jemal, A. Global cancer statics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Smith, H.O.; Tiffany, M.F.; Qualls, C.R.; Key, C.R. The rising incidence of adenocarcinoma relative to squamous cell carcinoma of the uterine cervix in the United States-a 24-year population-based study. Gynecol. Oncol. 2000, 78, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Garlic, V.; Herzog, T.J.; Lewin, S.N.; Neugut, A.I.; Burke, W.M.; Lu, Y.S.; Hershman, D.L.; Wright, J.D. Prognostic significance of adenocarcinoma histology in women with cervical cancer. Gynecol. Oncol. 2012, 125, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Kigawa, J.; Nishimura, R.; Yamaguchi, S.; Kuzuya, K.; Nakanishi, T.; Suzuki, M.; Kita, T.; Iwasaka, T.; Terakawa, N. Ovarian metastasis in carcinoma of the uterine cervix. Gynecol. Oncol. 2006, 101, 234–237. [Google Scholar] [CrossRef]
- Huang, Y.T.; Wang, C.C.; Tsai, C.S.; Lai, C.H.; Chang, T.C.; Chou, H.H.; Hsueh, S.; Chen, C.K.; Lee, S.P.; Hong, J.H. Long-term outcome and prognosis factors for adenocarcinoma/adenosquamous carcinoma of the cervix after definitive radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Katanyoo, K.; Tangjitgamol, S.; Chongthankorn, M.; Tantivatana, T.; Manusirivithaya, S.; Ronggsriyam, K.; Cholpaisal, A. Treatment outcome of concurrent weekly carboplatin with radiation therapy in locally advanced cervical cancer patients. Glynecol. Oncol. 2011, 123, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Yee, G.P.; de Souza, P.; Khachigian, L.M. Current and potential treatment for cervical cancer. Drug. Targets 2013, 13, 205–220. [Google Scholar]
- Li, X.; Huang, Y.; Guo, S.; Xie, M.; Bin, X.; Shi, M.; Chen, A.; Chen, S.; Wu, F.; Hu, Q.; et al. Exogenous regucalcin negatively regulates the progression of cervical adenocarcinoma. Oncol. Lett. 2019, 18, 609–616. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Wang, P.; Song, W.; Yao, Q.; Hu, Q.; Zhou, S. A mechanism of regucalcin knock-down in the promotion of proliferation and movement of human cervical cancer HeLa cells. Transl. Cancer Res. 2019, 8, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.S.; Markovic, S.N. Novel therapeutics for the treatment of metastatic melanoma. Future Oncol. 2009, 5, 543–557. [Google Scholar] [CrossRef]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S. AJCC melanoma staging and classification. J. Clin. Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef]
- Redpath, M.; van Kempen, L.; Robert, C.; Spatz, A. Molecular Testing in Cutaneous Melanoma Molecular Testing in Cancer; Springer: New York, NY, USA, 2014; pp. 363–374. [Google Scholar]
- Bystrom, S.; Fredolini, C.; Edqvisit, P.H.; Nyaiesh, E.N.; Drobin, K.; Uhlen, M.; Bergqvist, M.; Ponten, F.; Jochen, M.; Schwenk, J.M. Affinity proteomics exploration of melanoma identifies proteins in serum with assocuations. Curr. Opin. Oncol. 2017, 30, 252–259. [Google Scholar]
- Strauss, S.J.; Whelan, J.S. Current question in bone sarcomas. Curr. Opin. Oncol. 2018, 30, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Wedekind, M.F.; Wagner, L.M.; Cripe, T.P. Immunotherapy for osteosarcoma: Where do we go from here? Pediatr. Blood Cancer 2018, 65, e27227. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Troisi, R.J.; Savage, S.A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer 2009, 125, 229–234. [Google Scholar] [CrossRef]
- Whelan, J.; McTiernan, A.; Cooper, N.; Wong, Y.K.; Francis, M.; Vernon, S.; Strauss, S.J. Incidence and survival of malignant bone sarcomas in England 1979–2007. Int. J. Cancer 2012, 131, E508–E517. [Google Scholar] [CrossRef] [PubMed]
- Leu, K.M.; Ostruszka, L.J.; Shewach, D.; Zalupski, M.; Sondak, V.; Biermann, J.S.; Lee, J.S.J.; Couwlier, C.; Palazzolo, K.; Baker, L.H. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. J. Clin. Oncol. 2004, 22, 1706–1712. [Google Scholar] [CrossRef]
- Luetke, A.; Meyers, P.A.; Lewis, I.; Juergens, H. Osteosarcoma treatment-where do we stand? A state of the art review. Cancer Treat. Rev. 2014, 40, 523–532. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Overexpression of regucalcin suppresses the growth of human osteosarcoma cells in vitro: Repressive effect of extracellular regucalcin. Cancer Investig. 2020, 38, 37–51. [Google Scholar] [CrossRef]
- Charollais, R.H.; Buquet, C.; Mester, J. Butyrate blocks the accumulation of cdc2 mRNA in the late G1 phase but inhibits both early and late G1 progression in chemically transformed mouse fibroblasts BP-A31. J. Cell. Physiol. 1990, 145, 46–52. [Google Scholar] [CrossRef]
- Meijer, L.; Borgne, A.; Mulner, O.; Chong, J.P.; Blow, J.J.; Inagaki, N.; Inagaki, M.; Deleros, J.G.; Moulinoux, J.P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 1997, 243, 527–536. [Google Scholar] [CrossRef]
- Singh, S.V.; Herman-Antosiewice, A.; Singh, A.V.; Lew, K.L.; Strivastava, S.K.; Kamath, R.; Brown, K.D.; Zhang, L.; Baskaran, R. Sulforaphan-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J. Biol. Chem. 2004, 279, 25813–25822. [Google Scholar] [CrossRef] [PubMed]
- Palangat, M.; Grass, J.A.; Langelier, M.F.; Coulombe, B.; Landick, R. The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation. Mol. Cell. Biol. 2011, 31, 3312–3325. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.C.; Chen, Y.C. Novel therapeutic targets for pancreatic cancer. World J. Gastroenterol. 2014, 20, 10825–10844. [Google Scholar] [CrossRef]
- Altamura, C.; Greco, M.R.; Carrratu, M.R.; Cardone, R.A.; Desaphy, J.-F. Emerging roles for ion channels in ovarian cancer: Pathomechanisms and pharmacological treatment. Cancers 2021, 13, 668. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin. 2019, 69, 280–304. [Google Scholar] [CrossRef]
- Guo, S.W. Endometriosis and ovarian cancer: Potential benefits and harmas of screening and risk-reducing surgery. Fertil. Steril. 2015, 104, 813–830. [Google Scholar] [CrossRef]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obs. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Gaia-Oltean, A.I.; Braicu, C.; Gulei, D.; Ciortea, R.; Mihu, D.; Roman, H.; Irimie, A.; Berindan-Neagoe, I. Ovarian endometriosis, a precursor of ovarian cancer: Histological aspects, gene expression and microRNA alterations (Review). Exp. Ther. Med. 2021, 21, 243–255. [Google Scholar] [CrossRef]
- Alshamrani, A.A. Roles of microRNAs in ovarian cancer tumorigenesis: Two decades later, what have we learned? Front. Oncol. 2020, 10, 1064. [Google Scholar] [CrossRef]
- Shih, I.M.; Wang, Y.; Wang, T.L. The origin of ovarian cancer species and precancerous landscape. Am. J. Pathol. 2021, 191, 26–39. [Google Scholar] [CrossRef]
- Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Domcke, S.; Sinha, R.; Levine, D.A.; Sandra, C.; Schultz, N. Evaluating cell lines as tumor models by comparison of genomic profiles. Nat. Commun. 2013, 4, 2126. [Google Scholar] [CrossRef]
- Michalak, M.; Lach, M.S.; Antoszczak, M.; Huczynski, A.; Suchorska, W.M. Overcoming resistant to platinum-based drugs in ovarian cancer by adryamycin and its derivatives—An in vitro study. Molecules 2020, 25, 537. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T.; Ramos, J.W. The overexpressed regucalcin represses the growth via regulating diverse pathways linked to EGF signaling in human ovarian cancer SK-OV-3 cells: Involvement of extracellular regucalcin. Life Sci. 2023, 314, 121328. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Mori, S.; Kato, S. Calcium-binding protein regucalcin is an activator (Ca2+-Mg2+)-adenosine triphosphatase in the plasma membranes of rat liver. Chem. Pharm. Bull. 1988, 36, 3532–3539. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Suppressive effects of exogenous regucalcin on cell proliferation in human pancreatic cancer MiaPaCa-2 cells in vitro. Int. J. Mol. Med. 2015, 35, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Murata, T. Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro. Oncol. Rep. 2018, 39, 2924–2930. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Murata, T. Exogenous regucalcin suppresses cell proliferation human breast cancer MDA-MB-231-bone metastatic cells in vitro. Mol. Med. Rep. 2015, 12, 7801–7805. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Murata, T.; Ramos, J.W. Extracellular regucalcin suppresses the growth, migration, invasion and adhesion of metastatic human prostate cancer cells. Oncology 2022, 100, 300–412. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, M. Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers 2023, 15, 5489. https://doi.org/10.3390/cancers15225489
Yamaguchi M. Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers. 2023; 15(22):5489. https://doi.org/10.3390/cancers15225489
Chicago/Turabian StyleYamaguchi, Masayoshi. 2023. "Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy" Cancers 15, no. 22: 5489. https://doi.org/10.3390/cancers15225489
APA StyleYamaguchi, M. (2023). Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers, 15(22), 5489. https://doi.org/10.3390/cancers15225489