Constructing a T-Cell Receptor-Related Gene Signature for Prognostic Stratification and Therapeutic Guidance in Head and Neck Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Public Data Source
2.2. TCRRG Risk Signature: Construction and Validation
2.3. Nomogram Model Construction
2.4. Pathway and Function Enrichment Analysis
2.5. Immune Cell Infiltration Analysis
2.6. Mutation Landscape of High- and Low-Risk Groups
2.7. Prediction of Immunotherapy Efficacy
2.8. Statistical Analyses
3. Results
3.1. Construction and Validation of TCRRG-Based Risk Signature
3.2. The Predictive Accuracy of TCRRG-Based Risk Signature
3.3. TCRRG-Based Risk Signature Is an Independent Prognostic Factor for HNSCC
3.4. Nomogram Model Construction and Prediction
3.5. Genomic Alterations in Low- and High-Risk HNSCC Groups and Their Impact on Survival Rates
3.6. Functional Enrichment Analysis of the DEGs between High- and Low-Risk Groups
3.7. Correlation of Risk Score with Immune Cell Subpopulations and Potential for Immunotherapy Responsiveness
3.8. Correlation of Risk Score with T-cell Functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APCs | Antigen-presenting cells |
AUCs | Areas under the curve |
CAF | Cancer-associated fibroblast |
CPS | Combined Positive Score |
CRACs | Calcium release-activated calcium channels |
CTLA-4 | Cytotoxic T lymphocyte antigen-4 |
DEGs | Differentially expressed genes |
GO | Gene Ontology |
HNSCC | Head and neck squamous cell carcinoma |
ICIs | Immune checkpoint inhibitors |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LASSO | Least absolute shrinkage and selection operator |
LNM | Lymph node metastasis |
OS | Overall survival |
PD-1 | Programmed cell death 1 |
PD-L1 | Programmed death ligand 1 |
ROC | Receiver operating characteristic |
ssGSEA | Single sample Gene Set Enrichment Analysis |
TCGA | The Cancer Genome Atlas |
TCRRGs | T-cell receptor-related genes |
TCRs | T-cell receptors |
TIDE | Tumor Immune Dysfunction and Exclusion |
References
- Zhao, X.; Chen, H.; Qiu, Y.; Cui, L. FAM64A promotes HNSCC tumorigenesis by mediating transcriptional autoregulation of FOXM1. Int. J. Oral Sci. 2022, 14, 25. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Cui, L.; Lin, Y.; Gao, B.; Li, J.; Zhao, X.; Zhu, X.; Hu, S.; Lin, L. Development and Validation of a Robust Immune Prognostic Signature for Head and Neck Squamous Cell Carcinoma. Front. Oncol. 2020, 10, 1502. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.D.; Burtness, B.; Le, Q.T.; Ferris, R.L. The changing therapeutic landscape of head and neck cancer. Nat. Rev. Clin. Oncol. 2019, 16, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.K.; Zhen, G.; Agrawal, N. The role of tumor DNA as a diagnostic tool for head and neck squamous cell carcinoma. Semin. Cancer Biol. 2019, 55, 1–7. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, L. A robust six-miRNA prognostic signature for head and neck squamous cell carcinoma. J. Cell Physiol. 2020, 235, 8799–8811. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Si, S.; Li, X.; Sun, W.; Cui, L. Identification and validation of an alternative splicing-based prognostic signature for head and neck squamous cell carcinoma. J. Cancer 2020, 11, 4571–4580. [Google Scholar] [CrossRef]
- Cui, L.; Chen, H.; Zhao, X. The Prognostic Significance of Immune-Related Metabolic Enzyme MTHFD2 in Head and Neck Squamous Cell Carcinoma. Diagnostics 2020, 10, 689. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Cui, L. Development of a five-protein signature for predicting the prognosis of head and neck squamous cell carcinoma. Aging 2020, 12, 19740–19755. [Google Scholar] [CrossRef]
- Carlisle, J.W.; Steuer, C.E.; Owonikoko, T.K.; Saba, N.F. An update on the immune landscape in lung and head and neck cancers. CA Cancer J. Clin. 2020, 70, 505–517. [Google Scholar] [CrossRef]
- Kraehenbuehl, L.; Weng, C.H.; Eghbali, S.; Wolchok, J.D.; Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 2022, 19, 37–50. [Google Scholar] [CrossRef]
- Chu, X.; Tian, W.; Wang, Z.; Zhang, J.; Zhou, R. Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol. Cancer 2023, 22, 93. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.; Sendur, M.A.N.; Rodriguez-Abreu, D.; Park, K.; Lee, D.H.; Cicin, I.; Yumuk, P.F.; Orlandi, F.J.; Leal, T.A.; Molinier, O.; et al. Pembrolizumab Plus Ipilimumab or Placebo for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50%: Randomized, Double-Blind Phase III KEYNOTE-598 Study. J. Clin. Oncol. 2021, 39, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Liu, G.; Dai, B.; Si, Y.; Yang, Q.; Wazir, J.; Birnbaumer, L.; Yang, Y. Reinvigorating exhausted CD8(+) cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med. Res. Rev. 2021, 41, 156–201. [Google Scholar] [CrossRef]
- Triantafyllou, E.; Gudd, C.L.; Mawhin, M.A.; Husbyn, H.C.; Trovato, F.M.; Siggins, M.K.; O’Connor, T.; Kudo, H.; Mukherjee, S.K.; Wendon, J.A.; et al. PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury. J. Clin. Investig. 2021, 131, e140196. [Google Scholar] [CrossRef] [PubMed]
- Foy, J.P.; Karabajakian, A.; Ortiz-Cuaran, S.; Boussageon, M.; Michon, L.; Bouaoud, J.; Fekiri, D.; Robert, M.; Baffert, K.A.; Herve, G.; et al. Immunologically active phenotype by gene expression profiling is associated with clinical benefit from PD-1/PD-L1 inhibitors in real-world head and neck and lung cancer patients. Eur. J. Cancer 2022, 174, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Huang, Q.; Xie, Y.; Wu, X.; Ma, H.; Zhang, Y.; Xia, Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J. Hematol. Oncol. 2022, 15, 24. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Kingwell, K. T cell receptor therapeutics hit the immuno-oncology stage. Nat. Rev. Drug Discov. 2022, 21, 321–323. [Google Scholar] [CrossRef]
- Dash, P.; Fiore-Gartland, A.J.; Hertz, T.; Wang, G.C.; Sharma, S.; Souquette, A.; Crawford, J.C.; Clemens, E.B.; Nguyen, T.H.O.; Kedzierska, K.; et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 2017, 547, 89–93. [Google Scholar] [CrossRef]
- Molling, J.W.; Langius, J.A.; Langendijk, J.A.; Leemans, C.R.; Bontkes, H.J.; van der Vliet, H.J.; von Blomberg, B.M.; Scheper, R.J.; van den Eertwegh, A.J. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J. Clin. Oncol. 2007, 25, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Klebanoff, C.A.; Rosenberg, S.A.; Restifo, N.P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 2016, 22, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Xue, Z.; Wang, L. Transcriptional regulation of the immune checkpoints PD-1 and CTLA-4. Cell Mol. Immunol. 2022, 19, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; Bakowski, D.; Mirams, G.R.; Parekh, A.B. Selective recruitment of different Ca(2+)-dependent transcription factors by STIM1-Orai1 channel clusters. Nat. Commun. 2019, 10, 2516. [Google Scholar] [CrossRef] [PubMed]
- Behrens, A.; Sabapathy, K.; Graef, I.; Cleary, M.; Crabtree, G.R.; Wagner, E.F. Jun N-terminal kinase 2 modulates thymocyte apoptosis and T cell activation through c-Jun and nuclear factor of activated T cell (NF-AT). Proc. Natl. Acad. Sci. USA 2001, 98, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- Heinen, T.; Xie, C.; Keshavarz, M.; Stappert, D.; Künzel, S.; Tautz, D. Evolution of a New Testis-Specific Functional Promoter Within the Highly Conserved Map2k7 Gene of the Mouse. Front. Genet. 2021, 12, 812139. [Google Scholar] [CrossRef]
- Rincón, M.; Whitmarsh, A.; Yang, D.D.; Weiss, L.; Dérijard, B.; Jayaraj, P.; Davis, R.J.; Flavell, R.A. The JNK pathway regulates the In vivo deletion of immature CD4+CD8+ thymocytes. J. Exp. Med. 1998, 188, 1817–1830. [Google Scholar] [CrossRef]
- Fischer, A.M.; Katayama, C.D.; Pagès, G.; Pouysségur, J.; Hedrick, S.M. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 2005, 23, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Pagès, G.; Guérin, S.; Grall, D.; Bonino, F.; Smith, A.; Anjuere, F.; Auberger, P.; Pouysségur, J. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999, 286, 1374–1377. [Google Scholar] [CrossRef]
- Bendix, I.; Pfueller, C.F.; Leuenberger, T.; Glezeva, N.; Siffrin, V.; Müller, Y.; Prozorovski, T.; Hansen, W.; Schulze Topphoff, U.; Loddenkemper, C.; et al. MAPK3 deficiency drives autoimmunity via DC arming. Eur. J. Immunol. 2010, 40, 1486–1495. [Google Scholar] [CrossRef]
- Hammouda, M.B.; Ford, A.E.; Liu, Y.; Zhang, J.Y. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020, 9, 857. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Liu, Y.C.; Penninger, J.; Karin, M. Immunity by ubiquitylation: A reversible process of modification. Nat. Rev. Immunol. 2005, 5, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.D.; Srikanth, S.; Yee, M.K.; Mock, D.C.; Lawson, G.W.; Gwack, Y. ORAI1 deficiency impairs activated T cell death and enhances T cell survival. J. Immunol. 2011, 187, 3620–3630. [Google Scholar] [CrossRef] [PubMed]
- Feske, S.; Gwack, Y.; Prakriya, M.; Srikanth, S.; Puppel, S.H.; Tanasa, B.; Hogan, P.G.; Lewis, R.S.; Daly, M.; Rao, A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006, 441, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Luik, R.M.; Wu, M.M.; Buchanan, J.; Lewis, R.S. The elementary unit of store-operated Ca2+ entry: Local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 2006, 174, 815–825. [Google Scholar] [CrossRef]
- Wu, M.M.; Buchanan, J.; Luik, R.M.; Lewis, R.S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 2006, 174, 803–813. [Google Scholar] [CrossRef]
- Bromley, S.K.; Iaboni, A.; Davis, S.J.; Whitty, A.; Green, J.M.; Shaw, A.S.; Weiss, A.; Dustin, M.L. The immunological synapse and CD28-CD80 interactions. Nat. Immunol. 2001, 2, 1159–1166. [Google Scholar] [CrossRef]
- Huppa, J.B.; Gleimer, M.; Sumen, C.; Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 2003, 4, 749–755. [Google Scholar] [CrossRef]
- Lioudyno, M.I.; Kozak, J.A.; Penna, A.; Safrina, O.; Zhang, S.L.; Sen, D.; Roos, J.; Stauderman, K.A.; Cahalan, M.D. Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc. Natl. Acad. Sci. USA 2008, 105, 2011–2016. [Google Scholar] [CrossRef]
- Au-Yeung, B.B.; Shah, N.H.; Shen, L.; Weiss, A. ZAP-70 in Signaling, Biology, and Disease. Annu. Rev. Immunol. 2018, 36, 127–156. [Google Scholar] [CrossRef] [PubMed]
- Katz, Z.B.; Novotná, L.; Blount, A.; Lillemeier, B.F. A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat. Immunol. 2017, 18, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Girolami, I.; Pantanowitz, L.; Barberis, M.; Paolino, G.; Brunelli, M.; Vigliar, E.; Munari, E.; Satturwar, S.; Troncone, G.; Eccher, A. Challenges facing pathologists evaluating PD-L1 in head & neck squamous cell carcinoma. J. Oral Pathol. Med. 2021, 50, 864–873. [Google Scholar] [CrossRef]
- Marletta, S.; Fusco, N.; Munari, E.; Luchini, C.; Cimadamore, A.; Brunelli, M.; Querzoli, G.; Martini, M.; Vigliar, E.; Colombari, R.; et al. Atlas of PD-L1 for Pathologists: Indications, Scores, Diagnostic Platforms and Reporting Systems. J. Pers. Med. 2022, 12, 1073. [Google Scholar] [CrossRef] [PubMed]
- Paolino, G.; Pantanowitz, L.; Barresi, V.; Pagni, F.; Munari, E.; Moretta, L.; Brunelli, M.; Bariani, E.; Vigliar, E.; Pisapia, P.; et al. PD-L1 evaluation in head and neck squamous cell carcinoma: Insights regarding specimens, heterogeneity and therapy. Pathol. Res. Pract. 2021, 226, 153605. [Google Scholar] [CrossRef] [PubMed]
Gene | HR | HR.95L | HR.95H | p Value |
---|---|---|---|---|
CSF2 | 1.148047 | 1.01135 | 1.30322 | 0.032806 |
INPP5D | 0.77208 | 0.596419 | 0.999477 | 0.049537 |
MAP2K1 | 1.626797 | 1.074057 | 2.463993 | 0.021605 |
MAP2K7 | 0.511056 | 0.319551 | 0.81733 | 0.00508 |
MAPK3 | 0.600922 | 0.383093 | 0.942607 | 0.026603 |
MAPK9 | 1.698728 | 1.06908 | 2.699215 | 0.024917 |
ORAI1 | 0.62139 | 0.440776 | 0.876014 | 0.006619 |
PIK3R3 | 0.763542 | 0.598236 | 0.974525 | 0.030215 |
PSMA1 | 1.675832 | 1.143652 | 2.455654 | 0.008085 |
PSMA7 | 1.657035 | 1.104644 | 2.485658 | 0.014647 |
PSMD10 | 1.566579 | 1.012122 | 2.424776 | 0.044007 |
PSMD2 | 1.478009 | 1.037221 | 2.106119 | 0.030602 |
PSMD7 | 1.741479 | 1.083136 | 2.799971 | 0.022046 |
SKP1 | 2.035235 | 1.27314 | 3.253516 | 0.002989 |
UBB | 1.360397 | 1.011212 | 1.830161 | 0.041989 |
UBE2D2 | 2.191311 | 1.202443 | 3.99341 | 0.010406 |
ZAP70 | 0.731255 | 0.552287 | 0.968217 | 0.028852 |
Gene | Coefficient |
---|---|
MAP2K7 | −0.72216 |
MAPK3 | −0.484 |
MAPK9 | 0.58118 |
ORAI1 | −0.38196 |
PSMA1 | 0.477007 |
UBB | 0.48365 |
ZAP70 | −0.46462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Mai, Z.; Zheng, J.; Lin, P.; Lin, Y.; Cui, L.; Zhao, X. Constructing a T-Cell Receptor-Related Gene Signature for Prognostic Stratification and Therapeutic Guidance in Head and Neck Squamous Cell Carcinoma. Cancers 2023, 15, 5495. https://doi.org/10.3390/cancers15235495
Lu Y, Mai Z, Zheng J, Lin P, Lin Y, Cui L, Zhao X. Constructing a T-Cell Receptor-Related Gene Signature for Prognostic Stratification and Therapeutic Guidance in Head and Neck Squamous Cell Carcinoma. Cancers. 2023; 15(23):5495. https://doi.org/10.3390/cancers15235495
Chicago/Turabian StyleLu, Ye, Zizhao Mai, Jiarong Zheng, Pei Lin, Yunfan Lin, Li Cui, and Xinyuan Zhao. 2023. "Constructing a T-Cell Receptor-Related Gene Signature for Prognostic Stratification and Therapeutic Guidance in Head and Neck Squamous Cell Carcinoma" Cancers 15, no. 23: 5495. https://doi.org/10.3390/cancers15235495
APA StyleLu, Y., Mai, Z., Zheng, J., Lin, P., Lin, Y., Cui, L., & Zhao, X. (2023). Constructing a T-Cell Receptor-Related Gene Signature for Prognostic Stratification and Therapeutic Guidance in Head and Neck Squamous Cell Carcinoma. Cancers, 15(23), 5495. https://doi.org/10.3390/cancers15235495