Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research
Abstract
:Simple Summary
Abstract
1. Introduction
2. WHO CNS5 Characteristics of Glioma
- IDH-mutant astrocytoma (which may be grade 2, 3 or 4);
- IDH-mutant and 1p/19-codeleted oligodendroglioma (which may be grade 2 or 3);
- IDH wild-type glioblastoma (which is grade 4).
3. Molecular Changes That Trigger Epilepsy Associated with Glioma
3.1. Disruption of the mTOR Pathway Is Common in the Development of Gliomas and Epilepsy
3.2. Activation of the Transcription Factor HIF-1 in Gliomas and Epilepsy
3.3. Ion Channels
4. Blood–Brain Barrier Disorders Lead to Seizures
5. The Pericellular Environment in Glioblastoma Modifies Neuronal Function to Influence the Presentation of Seizures
6. The Location of the Tumour in the Brain Dictates the Timing and Manifestation of Epilepsy
7. Metastasis to the Brain of Various Tumours Can Lead to Epilepsy
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in Adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Le, V.-T.; Nguyen, A.M.; Pham, T.A.; Nguyen, P.L. Tumor-Related Epilepsy and Post-Surgical Outcomes: Tertiary Hospital Experience in Vietnam. Sci. Rep. 2023, 13, 10859. [Google Scholar] [CrossRef]
- Sokolov, E.; Dietrich, J.; Cole, A.J. The Complexities Underlying Epilepsy in People with Glioblastoma. Lancet Neurol. 2023, 22, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.A.; Bishop, A.J.; Chang, M.; Beal, K.; Chan, T.A. Valproic Acid Use During Radiation Therapy for Glioblastoma Associated with Improved Survival. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 504–509. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Min, K.L.; Chang, M.J. Effect of Anti-Epileptic Drugs on the Survival of Patients with Glioblastoma Multiforme: A Retrospective, Single-Center Study. PLoS ONE 2019, 14, e0225599. [Google Scholar] [CrossRef] [PubMed]
- Haggiagi, A.; Avila, E.K. Seizure Response to Temozolomide Chemotherapy in Patients with WHO Grade II Oligodendroglioma: A Single-Institution Descriptive Study. Neurooncol. Pract. 2019, 6, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Navarria, P.; Pessina, F.; Clerici, E.; Bellu, L.; Franzese, C.; Franzini, A.; Simonelli, M.; Bello, L.; Santoro, A.; Politi, L.S.; et al. Re-Irradiation for Recurrent High Grade Glioma (HGG) Patients: Results of a Single Arm Prospective Phase 2 Study. Radiother. Oncol. 2022, 167, 89–96. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Central Nervous System Tumours: WHO Classification of Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021; Volume 6. [Google Scholar]
- Yang, Y.; Mao, Q.; Wang, X.; Liu, Y.; Mao, Y.; Zhou, Q.; Luo, J. An Analysis of 170 Glioma Patients and Systematic Review to Investigate the Association between IDH-1 Mutations and Preoperative Glioma-Related Epilepsy. J. Clin. Neurosci. 2016, 31, 56–62. [Google Scholar] [CrossRef]
- Shen, S.; Bai, Y.; Zhang, B.; Liu, T.; Yu, X.; Feng, S. Correlation of Preoperative Seizures with a Wide Range of Tumor Molecular Markers in Gliomas: An Analysis of 442 Glioma Patients from China. Epilepsy Res. 2020, 166, 106430. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Wu, Z.; Wang, Y.; Ling, M.; Fan, X. IDH1 Mutation Is Associated with a Higher Preoperative Seizure Incidence in Low-Grade Glioma: A Systematic Review and Meta-Analysis. Seizure 2018, 55, 76–82. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro. Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, M.; Benit, C.; Duran-Pena, A.; Vecht, C.J. Seizures in Oligodendroglial Tumors. CNS Oncol. 2015, 4, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Feyissa, A.M.; Worrell, G.A.; Tatum, W.O.; Chaichana, K.L.; Jentoft, M.E.; Guerrero Cazares, H.; Ertekin-Taner, N.; Rosenfeld, S.S.; ReFaey, K.; Quinones-Hinojosa, A. Potential Influence of IDH1 Mutation and MGMT Gene Promoter Methylation on Glioma-Related Preoperative Seizures and Postoperative Seizure Control. Seizure 2019, 69, 283–289. [Google Scholar] [CrossRef]
- Fang, S.; Li, L.; Weng, S.; Guo, Y.; Fan, X.; Jiang, T.; Wang, Y. Altering Patterns of Sensorimotor Network in Patients with Different Pathological Diagnoses and Glioma-related Epilepsy under the Latest Glioma Classification of the Central Nervous System. CNS Neurosci. Ther. 2023, 29, 1368–1378. [Google Scholar] [CrossRef]
- van Opijnen, M.P.; Tesileanu, C.M.S.; Dirven, L.; van der Meer, P.B.; Wijnenga, M.M.J.; Vincent, A.J.P.E.; Broekman, M.L.D.; Dubbink, H.J.; Kros, J.M.; van Duinen, S.G.; et al. IDH1/2 Wildtype Gliomas Grade 2 and 3 with Molecular Glioblastoma-like Profile Have a Distinct Course of Epilepsy Compared to IDH1/2 Wildtype Glioblastomas. Neuro. Oncol. 2023, 25, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.J.; Aldape, K.; Colman, H.; Holland, E.C.; Louis, D.N.; Jenkins, R.B.; Kleinschmidt-DeMasters, B.K.; Perry, A.; Reifenberger, G.; Stupp, R.; et al. CIMPACT-NOW Update 3: Recommended Diagnostic Criteria for “Diffuse Astrocytic Glioma, IDH-Wildtype, with Molecular Features of Glioblastoma, WHO Grade IV”. Acta Neuropathol. 2018, 136, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Liang, T.; Zhang, C.; Cai, J.; Zhang, W.; Chen, B.; Qiu, X.; Yao, K.; Li, G.; Wang, H.; et al. Clinicopathological Factors Predictive of Postoperative Seizures in Patients with Gliomas. Seizure 2016, 35, 93–99. [Google Scholar] [CrossRef]
- Vasudevaraja, V.; Rodriguez, J.H.; Pelorosso, C.; Zhu, K.; Buccoliero, A.M.; Onozato, M.; Mohamed, H.; Serrano, J.; Tredwin, L.; Garonzi, M.; et al. Somatic Focal Copy Number Gains of Noncoding Regions of Receptor Tyrosine Kinase Genes in Treatment-Resistant Epilepsy. J. Neuropathol. Exp. Neurol. 2021, 80, 160–168. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, H.; Chen, H.; Gan, H.; Zhang, M.; Palahati, A.; Duan, Y.; Zhai, X. Identification of Epidermal Growth Factor Receptor as an Immune-Related Biomarker in Epilepsy Using Multi-Transcriptome Data. Transl. Pediatr. 2023, 12, 681–694. [Google Scholar] [CrossRef]
- Robson, J.P.; Wagner, B.; Glitzner, E.; Heppner, F.L.; Steinkellner, T.; Khan, D.; Petritsch, C.; Pollak, D.D.; Sitte, H.H.; Sibilia, M. Impaired Neural Stem Cell Expansion and Hypersensitivity to Epileptic Seizures in Mice Lacking the EGFR in the Brain. FEBS J. 2018, 285, 3175–3196. [Google Scholar] [CrossRef]
- Liu, J.; Sternberg, A.R.; Ghiasvand, S.; Berdichevsky, Y. Epilepsy-on-a-Chip System for Antiepileptic Drug Discovery. IEEE Trans. Biomed. Eng. 2019, 66, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Stichel, D.; Ebrahimi, A.; Reuss, D.; Schrimpf, D.; Ono, T.; Shirahata, M.; Reifenberger, G.; Weller, M.; Hänggi, D.; Wick, W.; et al. Distribution of EGFR Amplification, Combined Chromosome 7 Gain and Chromosome 10 Loss, and TERT Promoter Mutation in Brain Tumors and Their Potential for the Reclassification of IDHwt Astrocytoma to Glioblastoma. Acta Neuropathol. 2018, 136, 793–803. [Google Scholar] [CrossRef]
- Crespo, I.; Vital, A.L.; Nieto, A.B.; Rebelo, O.; Tão, H.; Lopes, M.C.; Oliveira, C.R.; French, P.J.; Orfao, A.; Tabernero, M.D. Detailed Characterization of Alterations of Chromosomes 7, 9, and 10 in Glioblastomas as Assessed by Single-Nucleotide Polymorphism Arrays. J. Mol. Diagn. 2011, 13, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Powter, B.; Jeffreys, S.A.; Sareen, H.; Cooper, A.; Brungs, D.; Po, J.; Roberts, T.; Koh, E.-S.; Scott, K.F.; Sajinovic, M.; et al. Human TERT Promoter Mutations as a Prognostic Biomarker in Glioma. J. Cancer Res. Clin. Oncol. 2021, 147, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Chen, X.; Liu, J.-S.; Liu, Z.-Y.; Yang, J.-Z.; Wang, Z.-F.; Li, Z.-Q. TERT Mutations-Associated Alterations in Clinical Characteristics, Immune Environment and Therapy Response in Glioblastomas. Discover. Oncol. 2023, 14, 148. [Google Scholar] [CrossRef] [PubMed]
- Toledo, M.; Sarria-Estrada, S.; Quintana, M.; Maldonado, X.; Martinez-Ricarte, F.; Rodon, J.; Auger, C.; Aizpurua, M.; Salas-Puig, J.; Santamarina, E.; et al. Epileptic Features and Survival in Glioblastomas Presenting with Seizures. Epilepsy Res. 2017, 130, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.-P.; Zheng, X.-L.; Zhang, N.; Lin, X.-M.; Li, K.-J.; Xia, X.-F.; Zou, C.-L.; Zhang, W.-Y. A Novel Nomogram for Predicting the Risk of Epilepsy Occurrence after Operative in Gliomas Patients without Preoperative Epilepsy History. Epilepsy Res. 2021, 174, 106641. [Google Scholar] [CrossRef]
- Engel, T.; Tanaka, K.; Jimenez-Mateos, E.M.; Caballero-Caballero, A.; Prehn, J.H.M.; Henshall, D.C. Loss of P53 Results in Protracted Electrographic Seizures and Development of an Aggravated Epileptic Phenotype Following Status Epilepticus. Cell Death Dis. 2010, 1, e79. [Google Scholar] [CrossRef]
- Fontana, L.; Tabano, S.; Bonaparte, E.; Marfia, G.; Pesenti, C.; Falcone, R.; Augello, C.; Carlessi, N.; Silipigni, R.; Guerneri, S.; et al. MGMT-Methylated Alleles Are Distributed Heterogeneously Within Glioma Samples Irrespective of IDH Status and Chromosome 10q Deletion. J. Neuropathol. Exp. Neurol. 2016, 75, 791–800. [Google Scholar] [CrossRef]
- Sullivan, T.; Robert, L.; Teebagy, P.; Morgan, S.; Beatty, E.; Cicuto, B.; Nowd, P.; Rieger-Christ, K.; Bryan, D. Spatiotemporal MicroRNA Profile in Peripheral Nerve Regeneration: MiR-138 Targets Vimentin and Inhibits Schwann Cell Migration and Proliferation. Neural. Regen. Res. 2018, 13, 1253. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, S.; Chen, Y.; Ma, W.; Lu, S.; He, L.; Chen, J.; Chen, X.; Zhang, X.; Shi, Y.; et al. Vimentin Promotes Glioma Progression and Maintains Glioma Cell Resistance to Oxidative Phosphorylation Inhibition. Cell. Oncol. 2023. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sheng, L.; Pan, D.; Jiang, S.; Ding, L.; Ma, X.; Liu, Y.; Jia, D. Single-Cell Transcriptomic Analysis Revealed a Critical Role of SPP1/CD44-Mediated Crosstalk Between Macrophages and Cancer Cells in Glioma. Front. Cell. Dev. Biol. 2021, 9, 779319. [Google Scholar] [CrossRef] [PubMed]
- Felix, M.; Friedel, D.; Jayavelu, A.K.; Filipski, K.; Reinhardt, A.; Warnken, U.; Stichel, D.; Schrimpf, D.; Korshunov, A.; Wang, Y.; et al. HIP1R and Vimentin Immunohistochemistry Predict 1p/19q Status in IDH-Mutant Glioma. Neuro. Oncol. 2022, 24, 2121–2132. [Google Scholar] [CrossRef]
- Kim, S.-I.; Lee, K.; Bae, J.; Lee, S.; Yun, H.; Park, C.-K.; Choi, S.H.; Maquiling, C.A.; Park, S.-H.; Won, J.-K. Revisiting Vimentin: A Negative Surrogate Marker of Molecularly Defined Oligodendroglioma in Adult Type Diffuse Glioma. Brain Tumor Pathol. 2021, 38, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Min, F.; Zhang, S.; Zhang, H.; Zeng, T. EGR1-Driven METTL3 Activation Curtails VIM-Mediated Neuron Injury in Epilepsy. Neurochem. Res. 2023, 48, 3349–3362. [Google Scholar] [CrossRef] [PubMed]
- Preusser, M.; Hoischen, A.; Novak, K.; Czech, T.; Prayer, D.; Hainfellner, J.A.; Baumgartner, C.; Woermann, F.G.; Tuxhorn, I.E.; Pannek, H.W.; et al. Angiocentric Glioma. Am. J. Surg. Pathol. 2007, 31, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Koul, D. PTEN Signaling Pathways in Glioblastoma. Cancer Biol. Ther. 2008, 7, 1321–1325. [Google Scholar] [CrossRef]
- Choi, S.W.; Lee, Y.; Shin, K.; Koo, H.; Kim, D.; Sa, J.K.; Cho, H.J.; Shin, H.; Lee, S.J.; Kim, H.; et al. Mutation-Specific Non-Canonical Pathway of PTEN as a Distinct Therapeutic Target for Glioblastoma. Cell Death Dis. 2021, 12, 374. [Google Scholar] [CrossRef]
- Williams, M.R.; DeSpenza, T.; Li, M.; Gulledge, A.T.; Luikart, B.W. Hyperactivity of Newborn Pten Knock-out Neurons Results from Increased Excitatory Synaptic Drive. J. Neurosci. 2015, 35, 943–959. [Google Scholar] [CrossRef]
- Kalachikov, S.; Evgrafov, O.; Ross, B.; Winawer, M.; Barker-Cummings, C.; Boneschi, F.M.; Choi, C.; Morozov, P.; Das, K.; Teplitskaya, E.; et al. Mutations in LGI1 Cause Autosomal-Dominant Partial Epilepsy with Auditory Features. Nat. Genet. 2002, 30, 335–341. [Google Scholar] [CrossRef]
- Kinboshi, M.; Shimizu, S.; Tokudome, K.; Mashimo, T.; Serikawa, T.; Ito, H.; Takahashi, R.; Ikeda, A.; Ohno, Y. Imbalance of Glutamatergic and GABAergic Neurotransmission in Audiogenic Seizure-Susceptible Leucine-Rich Glioma-Inactivated 1 (Lgi1)-Mutant Rats. Heliyon 2023, 9, e17984. [Google Scholar] [CrossRef] [PubMed]
- Kinboshi, M.; Ikeda, A.; Ohno, Y. Role of Astrocytic Inwardly Rectifying Potassium (Kir) 4.1 Channels in Epileptogenesis. Front. Neurol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Besleaga, R.; Montesinos-Rongen, M.; Perez-Tur, J.; Siebert, R.; Deckert, M. Expression of the LGI1 Gene Product in Astrocytic Gliomas: Downregulation with Malignant Progression. Virchows. Archiv. 2003, 443, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Zhang, C.; Polavaram, N.; Liu, F.; Wu, G.; Schroeder, M.A.; Lau, J.S.; Mukhopadhyay, D.; Jiang, S.-W.; O’Neill, B.P.; et al. The Role of Factor Inhibiting HIF (FIH-1) in Inhibiting HIF-1 Transcriptional Activity in Glioblastoma Multiforme. PLoS ONE 2014, 9, e86102. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P. The Development and Therapeutic Potential of Protein Kinase Inhibitors. Curr. Opin. Chem. Biol. 1999, 3, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, H.; Dilling, M.B.; Liu, L.N.; Danks, M.K.; Shikata, T.; Sekulic, A.; Abraham, R.T.; Lawrence, J.C.; Houghton, P.J. Studies on the Mechanism of Resistance to Rapamycin in Human Cancer Cells. Mol. Pharmacol. 1998, 54, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Riis, O.; Stensvold, A.; Stene-Johansen, H.; Westad, F.; Mehmod, R. Novel Insights into MTOR Signalling Pathways: A Paradigm for Targeted Tumor Therapy. Cancer Adv. 2023, 6, e2023017. [Google Scholar] [CrossRef]
- Hashemi, M.; Etemad, S.; Rezaei, S.; Ziaolhagh, S.; Rajabi, R.; Rahmanian, P.; Abdi, S.; Koohpar, Z.K.; Rafiei, R.; Raei, B.; et al. Progress in Targeting PTEN/PI3K/Akt Axis in Glioblastoma Therapy: Revisiting Molecular Interactions. Biomed. Pharmacother. 2023, 158, 114204. [Google Scholar] [CrossRef]
- Citraro, R.; Leo, A.; Constanti, A.; Russo, E.; De Sarro, G. MTOR Pathway Inhibition as a New Therapeutic Strategy in Epilepsy and Epileptogenesis. Pharmacol. Res. 2016, 107, 333–343. [Google Scholar] [CrossRef]
- Meng, X.-F.; Yu, J.-T.; Song, J.-H.; Chi, S.; Tan, L. Role of the MTOR Signaling Pathway in Epilepsy. J. Neurol. Sci. 2013, 332, 4–15. [Google Scholar] [CrossRef]
- Śmiałek, D.; Kotulska, K.; Duda, A.; Jóźwiak, S. Effect of MTOR Inhibitors in Epilepsy Treatment in Children with Tuberous Sclerosis Complex Under 2 Years of Age. Neurol. Ther. 2023, 12, 931–946. [Google Scholar] [CrossRef]
- Cardamone, M.; Flanagan, D.; Mowat, D.; Kennedy, S.E.; Chopra, M.; Lawson, J.A. Mammalian Target of Rapamycin Inhibitors for Intractable Epilepsy and Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex. J. Pediatr. 2014, 164, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.E.; Orlova, K.A.; Parker, W.H.; Birnbaum, J.F.; Krymskaya, V.P.; Goncharov, D.A.; Baybis, M.; Helfferich, J.; Okochi, K.; Strauss, K.A.; et al. Rapamycin Prevents Seizures After Depletion of STRADA in a Rare Neurodevelopmental Disorder. Sci. Transl. Med. 2013, 5, 182ra53. [Google Scholar] [CrossRef] [PubMed]
- Hadzsiev, K.; Hegyi, M.; Fogarasi, A.; Bodó-Baltavári, T.; Zsigmond, A.; Maász, A.; Szabó, A.; Till, Á. Observation of a Possible Successful Treatment of DEPDC5-Related Epilepsy with MTOR Inhibitor. Neuropediatrics 2023, 54, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Uliel-Sibony, S.; Dunham, C.; Sarnat, H.; Flores-Sarnat, L.; Brunga, L.; Davidson, S.; Lo, W.; Shlien, A.; Connolly, M.; et al. MTOR Inhibitors as a New Therapeutic Strategy in Treatment Resistant Epilepsy in Hemimegalencephaly: A Case Report. J. Child. Neurol. 2019, 34, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Xiang, W.; Yanhui, L.; Ruofei, L.; Jiewen, L.; Shu, J.; Qing, M. Activation of the MTOR Signaling Pathway in Peritumoral Tissues Can Cause Glioma-Associated Seizures. Neurol. Sci. 2017, 38, 61–66. [Google Scholar] [CrossRef]
- Mortazavi, A.; Fayed, I.; Bachani, M.; Dowdy, T.; Jahanipour, J.; Khan, A.; Owotade, J.; Walbridge, S.; Inati, S.K.; Steiner, J.; et al. IDH-Mutated Gliomas Promote Epileptogenesis through D-2-hydroxyglutarate-dependent MTOR Hyperactivation. Neuro. Oncol. 2022, 24, 1423–1435. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1: Mediator of Physiological and Pathophysiological Responses to Hypoxia. J. Appl. Physiol. 2000, 88, 1474–1480. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.-J.; Fu, X.-L.; Guang, R.; To, S.-S.T. Advances in the Targeting of HIF-1α and Future Therapeutic Strategies for Glioblastoma Multiforme. Oncol. Rep. 2017, 37, 657–670. [Google Scholar] [CrossRef]
- Mercante, B.; Nuvoli, S.; Sotgiu, M.A.; Manca, A.; Todesco, S.; Melis, F.; Spanu, A.; Deriu, F. SPECT Imaging of Cerebral Blood Flow Changes Induced by Acute Trigeminal Nerve Stimulation in Drug-Resistant Epilepsy: A Pilot Study. Clin. Neurophysiol. 2021, 132, 1274–1282. [Google Scholar] [CrossRef]
- Jensen, F.E.; Wang, C. Hypoxia-Induced Hyperexcitability in Vivo and in Vitro in the Immature Hippocampus. Epilepsy Res. 1996, 26, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, R.M.; Koh, S.; Rio, C.; Wang, C.; Lamperti, E.D.; Sharma, D.; Corfas, G.; Jensen, F.E. Decreased Glutamate Receptor 2 Expression and Enhanced Epileptogenesis in Immature Rat Hippocampus after Perinatal Hypoxia-Induced Seizures. J. Neurosci. 2001, 21, 8154–8163. [Google Scholar] [CrossRef] [PubMed]
- Rubaj, A.; Zgodziński, W.; Sieklucka-Dziuba, M. The Epileptogenic Effect of Seizures Induced by Hypoxia. Pharmacol. Biochem. Behav. 2003, 74, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fan, Q. Relationship between Chronic Hypoxia and Seizure Susceptibility. CNS Neurosci. Ther. 2022, 28, 1689–1705. [Google Scholar] [CrossRef]
- Feast, A.; Martinian, L.; Liu, J.; Catarino, C.B.; Thom, M.; Sisodiya, S.M. Investigation of Hypoxia-Inducible Factor-1α in Hippocampal Sclerosis: A Postmortem Study. Epilepsia 2012, 53, 1349–1359. [Google Scholar] [CrossRef]
- Gualtieri, F.; Marinelli, C.; Longo, D.; Pugnaghi, M.; Nichelli, P.F.; Meletti, S.; Biagini, G. Hypoxia Markers Are Expressed in Interneurons Exposed to Recurrent Seizures. Neuromolecular. Med. 2013, 15, 133–146. [Google Scholar] [CrossRef]
- Wang, G.; Xie, G.; Han, L.; Wang, D.; Du, F.; Kong, X.; Su, G. Involvement of Hypoxia-Inducible Factor-1 Alpha in the Upregulation of P-Glycoprotein in Refractory Epilepsy. NeuroReport 2019, 30, 1191–1196. [Google Scholar] [CrossRef]
- Berendsen, S.; Spliet, W.G.M.; Geurts, M.; Van Hecke, W.; Seute, T.; Snijders, T.J.; Bours, V.; Bell, E.H.; Chakravarti, A.; Robe, P.A. Epilepsy Associates with Decreased HIF-1α/STAT5b Signaling in Glioblastoma. Cancers 2019, 11, 41. [Google Scholar] [CrossRef]
- Chen, T.-S.; Lai, M.-C.; Huang, H.-Y.I.; Wu, S.-N.; Huang, C.-W. Immunity, Ion Channels and Epilepsy. Int. J. Mol. Sci. 2022, 23, 6446. [Google Scholar] [CrossRef]
- Molenaar, R.J. Ion Channels in Glioblastoma. ISRN Neurol. 2011, 2011, 1–7. [Google Scholar] [CrossRef]
- Woo, J.; Han, Y.-E.; Koh, W.; Won, J.; Park, M.G.; An, H.; Lee, C.J. Pharmacological Dissection of Intrinsic Optical Signal Reveals a Functional Coupling between Synaptic Activity and Astrocytic Volume Transient. Exp. Neurobiol. 2019, 28, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Takayasu, T.; Kurisu, K.; Esquenazi, Y.; Ballester, L.Y. Ion Channels and Their Role in the Pathophysiology of Gliomas. Mol. Cancer Ther. 2020, 19, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Moore, Y.E.; Deeb, T.Z.; Chadchankar, H.; Brandon, N.J.; Moss, S.J. Potentiating KCC2 Activity Is Sufficient to Limit the Onset and Severity of Seizures. Proc. Natl. Acad. Sci. USA 2018, 115, 10166–10171. [Google Scholar] [CrossRef]
- Griffin, M.; Khan, R.; Basu, S.; Smith, S. Ion Channels as Therapeutic Targets in High Grade Gliomas. Cancers 2020, 12, 3068. [Google Scholar] [CrossRef]
- Sarkaria, J.N.; Hu, L.S.; Parney, I.F.; Pafundi, D.H.; Brinkmann, D.H.; Laack, N.N.; Giannini, C.; Burns, T.C.; Kizilbash, S.H.; Laramy, J.K.; et al. Is the Blood–Brain Barrier Really Disrupted in All Glioblastomas? A Critical Assessment of Existing Clinical Data. Neuro. Oncol. 2018, 20, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Watkins, S.; Robel, S.; Kimbrough, I.F.; Robert, S.M.; Ellis-Davies, G.; Sontheimer, H. Disruption of Astrocyte–Vascular Coupling and the Blood–Brain Barrier by Invading Glioma Cells. Nat. Commun. 2014, 5, 4196. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S.; Binder, D.K.; Bloch, O.; Auguste, K.; Papadopoulos, M.C. Three Distinct Roles of Aquaporin-4 in Brain Function Revealed by Knockout Mice. Biochim. Biophys. Acta 2006, 1758, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Behnam, M.; Motamedzadeh, A.; Aalinezhad, M.; Dadgostar, E.; Rashidi Noshabad, F.Z.; Pourfridoni, M.; Raei, M.; Mirzaei, H.; Aschner, M.; Tamtaji, O.R. The Role of Aquaporin 4 in Brain Tumors: Implications for Pathophysiology, Diagnosis and Therapy. Mol. Biol. Rep. 2022, 49, 10609–10615. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Xiong, N.; Xu, H.; Chai, S.; Wang, H.; Wang, J.; Zhao, H.; Jiang, X.; Fu, P.; et al. Remodelling and Treatment of the Blood-Brain Barrier in Glioma. Cancer Manag. Res. 2021, 13, 4217–4232. [Google Scholar] [CrossRef]
- van Vliet, E.A.; da Costa Araujo, S.; Redeker, S.; van Schaik, R.; Aronica, E.; Gorter, J.A. Blood-Brain Barrier Leakage May Lead to Progression of Temporal Lobe Epilepsy. Brain 2007, 130, 521–534. [Google Scholar] [CrossRef]
- Ivens, S.; Kaufer, D.; Flores, L.P.; Bechmann, I.; Zumsteg, D.; Tomkins, O.; Seiffert, E.; Heinemann, U.; Friedman, A. TGF-β Receptor-Mediated Albumin Uptake into Astrocytes Is Involved in Neocortical Epileptogenesis. Brain 2007, 130, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, U.; Kaufer, D.; Friedman, A. Blood-brain Barrier Dysfunction, TGFβ Signaling, and Astrocyte Dysfunction in Epilepsy. Glia 2012, 60, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.F.; Pansani, A.P.; Carmanhães, E.R.F.; Tange, P.; Meireles, J.V.; Ochikubo, M.; Chagas, J.R.; da Silva, A.V.; Monteiro de Castro, G.; Le Sueur-Maluf, L. The Blood-Brain Barrier Breakdown During Acute Phase of the Pilocarpine Model of Epilepsy Is Dynamic and Time-Dependent. Front. Neurol. 2019, 10, 382. [Google Scholar] [CrossRef]
- Petersen, M.A.; Ryu, J.K.; Akassoglou, K. Fibrinogen in Neurological Diseases: Mechanisms, Imaging and Therapeutics. Nat. Rev. Neurosci. 2018, 19, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Ruusuvuori, E.; Kirilkin, I.; Pandya, N.; Kaila, K. Spontaneous Network Events Driven by Depolarizing GABA Action in Neonatal Hippocampal Slices Are Not Attributable to Deficient Mitochondrial Energy Metabolism. J. Neurosci. 2010, 30, 15638–15642. [Google Scholar] [CrossRef]
- Chesler, M.; Kaila, K. Modulation of PH by Neuronal Activity. Trends Neurosci. 1992, 15, 396–402. [Google Scholar] [CrossRef]
- van Vliet, E.A.; Aronica, E.; Gorter, J.A. Blood–Brain Barrier Dysfunction, Seizures and Epilepsy. Semin. Cell. Dev. Biol. 2015, 38, 26–34. [Google Scholar] [CrossRef]
- Buckingham, S.C.; Campbell, S.L.; Haas, B.R.; Montana, V.; Robel, S.; Ogunrinu, T.; Sontheimer, H. Glutamate Release by Primary Brain Tumors Induces Epileptic Activity. Nat. Med. 2011, 17, 1269–1274. [Google Scholar] [CrossRef]
- Corsi, L.; Mescola, A.; Alessandrini, A. Glutamate Receptors and Glioblastoma Multiforme: An Old “Route” for New Perspectives. Int. J. Mol. Sci. 2019, 20, 1796. [Google Scholar] [CrossRef]
- Marcus, H.J.; Carpenter, K.L.H.; Price, S.J.; Hutchinson, P.J. In Vivo Assessment of High-Grade Glioma Biochemistry Using Microdialysis: A Study of Energy-Related Molecules, Growth Factors and Cytokines. J. Neurooncol. 2010, 97, 11–23. [Google Scholar] [CrossRef]
- Yuen, T.I.; Morokoff, A.P.; Bjorksten, A.; D’Abaco, G.; Paradiso, L.; Finch, S.; Wong, D.; Reid, C.A.; Powell, K.L.; Drummond, K.J.; et al. Glutamate Is Associated with a Higher Risk of Seizures in Patients with Gliomas. Neurology 2012, 79, 883–889. [Google Scholar] [CrossRef]
- Takano, T.; Lin, J.H.-C.; Arcuino, G.; Gao, Q.; Yang, J.; Nedergaard, M. Glutamate Release Promotes Growth of Malignant Gliomas. Nat. Med. 2001, 7, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, J.D.; Dykes-Hoberg, M.; Pardo, C.A.; Bristol, L.A.; Jin, L.; Kuncl, R.W.; Kanai, Y.; Hediger, M.A.; Wang, Y.; Schielke, J.P.; et al. Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate. Neuron 1996, 16, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, B.S. The Role of Glutamate in Epilepsy and Other CNS Disorders. Neurology 1994, 44, S14–S23. [Google Scholar] [PubMed]
- Alyu, F.; Dikmen, M. Inflammatory Aspects of Epileptogenesis: Contribution of Molecular Inflammatory Mechanisms. Acta Neuropsychiatr. 2017, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Viviani, B.; Bartesaghi, S.; Gardoni, F.; Vezzani, A.; Behrens, M.M.; Bartfai, T.; Binaglia, M.; Corsini, E.; Di Luca, M.; Galli, C.L.; et al. Interleukin-1β Enhances NMDA Receptor-Mediated Intracellular Calcium Increase through Activation of the Src Family of Kinases. J. Neurosci. 2003, 23, 8692–8700. [Google Scholar] [CrossRef]
- Vezzani, A.; Bartfai, T.; Bianchi, M.; Rossetti, C.; French, J. Therapeutic Potential of New Antiinflammatory Drugs. Epilepsia 2011, 52, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Haglund, M.M.; Berger, M.S.; Kunkel, D.D.; Franck, J.E.; Ghatan, S.; Ojemann, G.A. Changes in Gamma-Aminobutyric Acid and Somatostatin in Epileptic Cortex Associated with Low-Grade Gliomas. J. Neurosurg. 1992, 77, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.L.; Robel, S.; Cuddapah, V.A.; Robert, S.; Buckingham, S.C.; Kahle, K.T.; Sontheimer, H. GABAergic Disinhibition and Impaired KCC2 Cotransporter Activity Underlie Tumor-Associated Epilepsy. Glia 2015, 63, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Blanchart, A.; Fernando, R.; Häring, M.; Assaife-Lopes, N.; Romanov, R.A.; Andäng, M.; Harkany, T.; Ernfors, P. Endogenous GABAA Receptor Activity Suppresses Glioma Growth. Oncogene 2017, 36, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Smits, A.; Jin, Z.; Elsir, T.; Pedder, H.; Nistér, M.; Alafuzoff, I.; Dimberg, A.; Edqvist, P.-H.; Pontén, F.; Aronica, E.; et al. GABA-A Channel Subunit Expression in Human Glioma Correlates with Tumor Histology and Clinical Outcome. PLoS ONE 2012, 7, e37041. [Google Scholar] [CrossRef] [PubMed]
- van Breemen, M.S.; Wilms, E.B.; Vecht, C.J. Epilepsy in Patients with Brain Tumours: Epidemiology, Mechanisms, and Management. Lancet Neurol. 2007, 6, 421–430. [Google Scholar] [CrossRef]
- Prakash, O.; Lukiw, W.J.; Peruzzi, F.; Reiss, K.; Musto, A.E. Gliomas and Seizures. Med. Hypotheses 2012, 79, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Ollila, L.; Roivainen, R. Glioma Features and Seizure Control during Long-Term Follow-Up. Epilepsy Behav. Rep. 2023, 21, 100586. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, J.; Zhang, S.; Fu, X. Epilepsy in Adults with Supratentorial Glioblastoma: Incidence and Influence Factors and Prophylaxis in 184 Patients. PLoS ONE 2016, 11, e0158206. [Google Scholar] [CrossRef] [PubMed]
- Stritzelberger, J.; Gesmann, A.; Fuhrmann, I.; Brandner, S.; Welte, T.M.; Balk, S.; Eisenhut, F.; Dörfler, A.; Coras, R.; Adler, W.; et al. Time-dependent Risk Factors for Epileptic Seizures in Glioblastoma Patients: A Retrospective Analysis of 520 Cases. Epilepsia 2023, 64, 1853–1861. [Google Scholar] [CrossRef]
- Lu, V.M.; Jue, T.R.; Phan, K.; McDonald, K.L. Quantifying the Prognostic Significance in Glioblastoma of Seizure History at Initial Presentation: A Systematic Review and Meta-Analysis. Clin. Neurol. Neurosurg. 2018, 164, 75–80. [Google Scholar] [CrossRef]
- Xue, H.; Sveinsson, O.; Bartek, J.; Förander, P.; Skyrman, S.; Kihlström, L.; Shafiei, R.; Mathiesen, T.; Tomson, T. Long-Term Control and Predictors of Seizures in Intracranial Meningioma Surgery: A Population-Based Study. Acta Neurochir. 2018, 160, 589–596. [Google Scholar] [CrossRef]
- Santos-Pinheiro, F.; Park, M.; Liu, D.; Kwong, L.N.; Cruz, S.; Levine, N.B.; O’Brien, B.J.; Chen, M. Seizure Burden Pre- and Postresection of Low-Grade Gliomas as a Predictor of Tumor Progression in Low-Grade Gliomas. Neurooncol. Pract. 2019, 6, 209–217. [Google Scholar] [CrossRef]
- Toledo, M.; Sarria-Estrada, S.; Quintana, M.; Maldonado, X.; Martinez-Ricarte, F.; Rodon, J.; Auger, C.; Salas-Puig, J.; Santamarina, E.; Martinez-Saez, E. Prognostic Implications of Epilepsy in Glioblastomas. Clin. Neurol. Neurosurg. 2015, 139, 166–171. [Google Scholar] [CrossRef]
- Henker, C.; Kriesen, T.; Scherer, M.; Glass, Ä.; von Deimling, A.; Bendszus, M.; Weber, M.-A.; Herold-Mende, C.; Unterberg, A.; Piek, J. Association Between Tumor Compartment Volumes, the Incidence of Pretreatment Seizures, and Statin-Mediated Protective Effects in Glioblastoma. Neurosurgery 2019, 85, E722–E729. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, T.; You, G.; Peng, X.; Chen, C.; You, Y.; Yao, K.; Wu, C.; Ma, J.; Sha, Z.; et al. Localizing Seizure-Susceptible Brain Regions Associated with Low-Grade Gliomas Using Voxel-Based Lesion-Symptom Mapping. Neuro. Oncol. 2015, 17, 282–288. [Google Scholar] [CrossRef]
- Chang, E.F.; Potts, M.B.; Keles, G.E.; Lamborn, K.R.; Chang, S.M.; Barbaro, N.M.; Berger, M.S. Seizure Characteristics and Control Following Resection in 332 Patients with Low-Grade Gliomas. J. Neurosurg. 2008, 108, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, W.; Liu, Z.; Liang, Y.; Liu, X.; Li, Y.; Tang, Z.; Jiang, T.; Tian, J. Predicting the Type of Tumor-Related Epilepsy in Patients with Low-Grade Gliomas: A Radiomics Study. Front. Oncol. 2020, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.; et al. Electrical and Synaptic Integration of Glioma into Neural Circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, L.; Peng, S.; Fang, Y.; Tang, R.; Liu, J. Correlation between Glioma Location and Preoperative Seizures: A Systematic Review and Meta-Analysis. Neurosurg. Rev. 2019, 42, 603–618. [Google Scholar] [CrossRef]
- Brodovskaya, A.; Shiono, S.; Kapur, J. Activation of the Basal Ganglia and Indirect Pathway Neurons during Frontal Lobe Seizures. Brain 2021, 144, 2074–2091. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chen, H.; Wang, Z.; Lan, Q. Relationship between Tumour Location and Preoperative Seizure Incidence in Patients with Gliomas: A Systematic Review and Meta-analysis. Epileptic Disord. 2015, 17, 397–408. [Google Scholar] [CrossRef]
- Yuan, T.; Ying, J.; Zuo, Z.; Gui, S.; Gao, Z.; Li, G.; Zhang, Y.; Li, C. Structural Plasticity of the Bilateral Hippocampus in Glioma Patients. Aging 2020, 12, 10259–10274. [Google Scholar] [CrossRef]
- Bruxel, E.M.; Bruno, D.C.F.; do Canto, A.M.; Geraldis, J.C.; Godoi, A.B.; Martin, M.; Lopes-Cendes, I. Multi-Omics in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis: Clues into the Underlying Mechanisms Leading to Disease. Seizure 2021, 90, 34–50. [Google Scholar] [CrossRef]
- Ruban, D.; Byrne, R.W.; Kanner, A.; Smith, M.; Cochran, E.J.; Roh, D.; Whisler, W.W. Chronic Epilepsy Associated with Temporal Tumors: Long-Term Surgical Outcome. Neurosurg. Focus 2009, 27, E6. [Google Scholar] [CrossRef]
- Ghareeb, F.; Duffau, H. Intractable Epilepsy in Paralimbic World Health Organization Grade II Gliomas: Should the Hippocampus Be Resected When Not Invaded by the Tumor? J. Neurosurg. 2012, 116, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Marku, M.; Rasmussen, B.K.; Belmonte, F.; Andersen, E.A.W.; Johansen, C.; Bidstrup, P.E. Postoperative Epilepsy and Survival in Glioma Patients: A Nationwide Population-Based Cohort Study from 2009 to 2018. J. Neurooncol. 2022, 157, 71–80. [Google Scholar] [CrossRef]
- Yilmazer-Hanke, D.; O’Loughlin, E.; McDermott, K. Contribution of Amygdala Pathology to Comorbid Emotional Disturbances in Temporal Lobe Epilepsy. J. Neurosci. Res. 2016, 94, 486–503. [Google Scholar] [CrossRef]
- Carnevale, J.A.; Goldberg, J.L.; Schwartz, T. Seizure in Patient with Neurofibromatosis and Amygdala Low-Grade Glioma. World Neurosurg. 2022, 157, 54–55. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.J.; Kim, D.-S.; Lee, S.-K.; Kang, H.-C.; Kim, S.H. Long-Term Epilepsy-Associated Tumor in the Amygdala of a 16-Year-Old Boy: Report of a Rare Case Having Intranuclear Filaments. Brain Tumor Pathol. 2017, 34, 172–178. [Google Scholar] [CrossRef]
- Tandon, N.; Esquenazi, Y. Resection Strategies in Tumoral Epilepsy: Is a Lesionectomy Enough? Epilepsia 2013, 54, 72–78. [Google Scholar] [CrossRef]
- Andrews, J.P.; Wozny, T.A.; Yue, J.K.; Wang, D.D. Improved Psychotic Symptoms Following Resection of Amygdalar Low-Grade Glioma: Illustrative Case. J. Neurosurg. Case Lessons 2022, 4. [Google Scholar] [CrossRef] [PubMed]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain Metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Gondi, V.; Ahluwalia, M.S.; Brastianos, P.K.; Mehta, M.P. Recent Advances in Managing Brain Metastasis. F1000Res 2018, 7, 1772. [Google Scholar] [CrossRef] [PubMed]
- Lamba, N.; Catalano, P.J.; Cagney, D.N.; Haas-Kogan, D.A.; Bubrick, E.J.; Wen, P.Y.; Aizer, A.A. Seizures Among Patients with Brain Metastases. Neurology 2021, 96, e1237–e1250. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, F.; Lareida, A.; Terziev, R.; Grossenbacher, B.; Neidert, M.C.; Roth, P.; Poryazova, R.; Imbach, L.L.; Le Rhun, E.; Weller, M. Risk Factors for the Development of Epilepsy in Patients with Brain Metastases. Neuro. Oncol. 2020, 22, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Maschio, M.; Maialetti, A.; Giannarelli, D.; Koudriavtseva, T.; Galiè, E.; Fabi, A. Impact of Epilepsy and Its Treatment on Brain Metastasis from Solid Tumors: A Retrospective Study. Front. Neurol. 2022, 13, CASE22362. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Judkins, J.; Thomas, C.; Wu, M.; Khoury, L.; Benjamin, C.G.; Pacione, D.; Golfinos, J.G.; Kumthekar, P.; Ghamsari, F.; et al. Mutant IDH1 and Seizures in Patients with Glioma. Neurology 2017, 88, 1805–1813. [Google Scholar] [CrossRef]
- Wu, A.S.; Trinh, V.T.; Suki, D.; Graham, S.; Forman, A.; Weinberg, J.S.; McCutcheon, I.E.; Prabhu, S.S.; Heimberger, A.B.; Sawaya, R.; et al. A Prospective Randomized Trial of Perioperative Seizure Prophylaxis in Patients with Intraparenchymal Brain Tumors. J. Neurosurg. 2013, 118, 873–883. [Google Scholar] [CrossRef]
- Ahmadipour, Y.; Rauschenbach, L.; Santos, A.; Darkwah Oppong, M.; Lazaridis, L.; Quesada, C.M.; Junker, A.; Pierscianek, D.; Dammann, P.; Wrede, K.H.; et al. Preoperative and Early Postoperative Seizures in Patients with Glioblastoma—Two Sides of the Same Coin? Neurooncol. Adv. 2021, 3, vdaa158. [Google Scholar] [CrossRef]
- Rades, D.; Witteler, J.; Trillenberg, P.; Olbrich, D.; Schild, S.E.; Tvilsted, S.; Kjaer, T.W. Increasing Seizure Activity During Radiation Treatment for High-Grade Gliomas—Final Results of a Prospective Interventional Study. In Vivo 2022, 36, 2308–2313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saviuk, M.; Sleptsova, E.; Redkin, T.; Turubanova, V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers 2023, 15, 5539. https://doi.org/10.3390/cancers15235539
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers. 2023; 15(23):5539. https://doi.org/10.3390/cancers15235539
Chicago/Turabian StyleSaviuk, Mariia, Ekaterina Sleptsova, Tikhon Redkin, and Victoria Turubanova. 2023. "Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research" Cancers 15, no. 23: 5539. https://doi.org/10.3390/cancers15235539
APA StyleSaviuk, M., Sleptsova, E., Redkin, T., & Turubanova, V. (2023). Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers, 15(23), 5539. https://doi.org/10.3390/cancers15235539