Breast Cancer Risk and Prevention: A Step Forward
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Conflicts of Interest
List of Contributions
- Akdeniz, B.C.; Mattingsdal, M.; Dominiqez-Valentin, M.; Frei, O.; Shadrin, A.; Puustusmaa, M.; Saar, R.; Sõber, S.; Moller, P.; Anderassen, O.A.; et al. A Breast Cancer Polygenic Risk Score Is Feasible for Risk Stratification in the Norwegian Population. Cancers 2023, 15, 4124.
- Verma, S.S.; Guare, L.; Ehsan, S.; Gastounioti, A.; Scales, G.; Ritchie, M.D.; Kontos, D.; McCarthy, A.M.; Penn Medicine Biobank. Genome-Wide Association Study of Breast Density among Women of African Ancestry. Cancers 2023, 15, 2776.
- Berga-Švītiņa, E.; Maksimenko, J.; Miklaševičs, E.; Fischer, K.; Vilne, B.; Mägi, R. Polygenic Risk Score Predicts Modified Risk in BRCA1 Pathogenic Variant c.4035del and c.5266dup Carriers in Breast Cancer Patients. Cancers 2023, 15, 2957.
- Ho, P.J.; Lim, E.H.; Ri, N.K.B.M.; Hartman, M.; Wong, F.Y.; Li, J. Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population? Cancers 2023, 15, 2559.
- Peng, Y.; Liu, F.; Qiao, Y.; Wang, P.; Du, H.; Si, C.; Wang, X.; Chen, K.; Song, F. Genetically Modified Circulating Levels of Advanced Glycation End-Products and Their Soluble Receptor (AGEs-RAGE Axis) with Risk and Mortality of Breast Cancer. Cancers 2022, 14, 6124.
- Pistiolis, L.; Khaki, D.; Kovács, A.; Bagge, R.O. The Effect of Melatonin Intake on Survival of Patients with Breast Cancer—A Population-Based Registry Study. Cancers 2022, 14, 5884.
- Song, S.; Lei, L.; Zhang, R.; Liu, H.; Du, J.; Li, N.; Chen, W.; Peng, J.; Ren, J. Circadian Disruption and Breast Cancer Risk: Evidence from a Case-Control Study in China. Cancers 2023, 15, 419. https://doi.org/10.3390/cancers15020419.
- Bellini, C.; Cucchiari, J.N.; Di Naro, F.; De Benedetto, D.; Bicchierai, G.; Franconeri, A.; Renda, I.; Bianchi, S.; Susini, T. Breast Lesions of Uncertain Malignant Potential (B3) and the Risk of Breast Cancer Development: A Long-Term Follow-Up Study. Cancers 2023, 15, 3521.
- Franchini, M.; Pieroni, S.; Denoth, F.; Urciuoli, M.S.; Colasante, E.; Salvatori, M.; Anastasi, G.; Frontignano, C.K.; Dogliotti, E.; Vidali, S.; et al. Promote Community Engagement in Participatory Research for Improving Breast Cancer Prevention: The P.I.N.K. Study Framework. Cancers 2022, 14, 5801. https://doi.org/10.3390/cancers14235801.
- Barańska, A.; Dolar-Szczasny, J.; Kanadys, W.; Kinik, W.; Ceglarska, D.; Religioni, U.; Rejdak, R. Oral Contraceptive Use and Breast Cancer Risk According to Molecular Subtypes Status: A Systematic Review and Meta-Analysis of Case-Control Studies. Cancers 2022, 14, 574.
- Rigaud, B.; Weaver, O.O.; Dennison, J.B.; Awais, M.; Anderson, B.M.; Chiang, T.-Y.D.; Yang, W.T.; Leung, J.W.T.; Hanash, S.M.; Brock, K.K. Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types. Cancers 2022, 14, 5003.
- Li, H.; Robinson, K.; Lan, L.; Baughan, N.; Chan, C.-W.; Embury, M.; Whitman, G.J.; El-Zein, R.; Bedrosian, I.; Giger, M.L. Temporal Machine Learning Analysis of Prior Mammograms for Breast Cancer Risk Prediction. Cancers 2023, 15, 2141.
- Lim, Y.X.; Lim, Z.L.; Ho, P.J.; Li, J. Breast Cancer in Asia: Incidence, Mortality, Early Detection, Mammography Programs, and Risk-Based Screening Initiatives. Cancers 2022, 14, 4218.
- Ding, L.; Greuter, M.J.W.; Truyen, I.; Goossens, M.; Van der Vegt, B.; De Schutter, H.; Van Hal, G.; de Bock, G.H. Effectiveness of Organized Mammography Screening for Different Breast Cancer Molecular Subtypes. Cancers 2022, 14, 4831.
- Ciabattoni, A.; Gregucci, F.; D’ermo, G.; Dolfi, A.; Cucciarelli, F.; Palumbo, I.; Borghesi, S.; Gava, A.; Cesaro, G.M.; Baldissera, A.; et al. Patterns of Care for Breast Radiotherapy in Italy: Breast IRRadiATA (Italian Repository of Radiotherapy dATA) Feasibility Study. Cancers 2022, 14, 3927.
- Nishimura, Y.; Acoba, J.D. Impact of Breast Cancer Awareness Month on Public Interest in the United States between 2012 and 2021: A Google Trends Analysis. Cancers 2022, 14, 2534.
- Medina, J.C.; Flix-Valle, A.; Rodriguez-Ortega, A.; Hernandez-Ribas, R.; Lieras de Frutos, M.; Ochoa-Arnedo, C. ICOnnecta’t: Development and Initial Results of a Stepped Psychosocial eHealth Ecosystem to Facilitate Risk Assessment and Prevention of Early Emotional Distress in Breast Cancer Survivors’ Journey. Cancers 2022, 14, 974.
References
- World Health Organization. Breast Cancer; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Barrios, C.H.; Reinert, T. Global Breast Cancer Research: Moving Forward. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Colditz, G.A.; Rosner, B. Cumulative risk of breast cancer to age 70 years according to risk factor status: Data from the Nurses’ Health Study. Am. J. Epidemiol. 2000, 152, 950–964. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Politopoulos, I. The genetics of breast cancer: Risk factors for disease. Appl. Clin. Genet. 2011, 4, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Bellini, C.; Nori Cucchiari, J.; Di Naro, F.; De Benedetto, D.; Bicchierai, G.; Franconeri, A.; Renda, I.; Bianchi, S.; Susini, T. Breast Lesions of Uncertain Malignant Potential (B3) and the Risk of Breast Cancer Development: A Long-Term Follow-Up Study. Cancers 2023, 15, 3521. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Pieroni, S.; Denoth, F.; Urciuoli, M.S.; Colasante, E.; Salvatori, M.; Anastasi, G.; Frontignano, C.K.; Dogliotti, E.; Vidali, S.; et al. Promote Community Engagement in Participatory Research for Improving Breast Cancer Prevention: The P.I.N.K. Study Framework. Cancers 2022, 14, 5801. [Google Scholar] [CrossRef] [PubMed]
- Bevers, T.B.; Niell, B.L.; Baker, J.L.; Bennett, D.L.; Bonaccio, E.; Camp, M.S.; Chikarmane, S.; Conant, E.F.; Eghtedari, M.; Flanagan, M.R.; et al. NCCN Guidelines® Insights: Breast Cancer Screening and Diagnosis, Version 1.2023. J. Natl. Compr. Cancer Netw. 2023, 21, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Singh, A.K.; Sultana, R.; Singh, P.P.; Khan, A.; Saxena, S. Breast Cancer: A Comparative Review for Breast Cancer Detection Using Machine Learning Techniques. Cell Biochem. Funct. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Harada-Shoji, N.; Suzuki, A.; Ishida, T.; Zheng, Y.F.; Narikawa-Shiono, Y.; Sato-Tadano, A.; Ohta, R.; Ohuchi, N. Evaluation of adjunctive ultrasonography for breast cancer detection among women aged 40-49 years with varying breast density undergoing screening mammography: A secondary analysis of a randomized clinical trial. JAMA Netw. Open 2021, 4, e2121505. [Google Scholar] [CrossRef] [PubMed]
- Ha, R.; Chang, P.; Karcich, J.; Mutasa, S.; Van Sant, E.P.; Liu, M.Z.; Jambawalikar, S. Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset. Acad. Radiol. 2019, 26, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, N.; Suzuki, A.; Sobue, T.; Kawai, M.; Yamamoto, S.; Zheng, Y.F.; Shiono, Y.N.; Saito, H.; Kuriyama, S.; Tohno, E.; et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): A randomised controlled trial. Lancet 2016, 387, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K. A Call for Improved Breast Cancer Screening Strategies, Not Only for Women with Dense Breasts. JAMA Netw. Open 2021, 4, e2121492. [Google Scholar] [CrossRef] [PubMed]
- Lehman, C.D.; Gatsonis, C.; Kuhl, C.K.; Hendrick, R.E.; Pisano, E.D.; Hanna, L.; Peacock, S.; Smazal, S.F.; Maki, D.D.; Julian, T.B.; et al. ACRIN Trial 6667 Investigators Group. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N. Engl. J. Med. 2007, 356, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.A.; Blume, J.D.; Cormack, J.B.; Mendelson, E.B.; Lehrer, D.; Böhm-Vélez, M.; Pisano, E.D.; Jong, R.A.; Evans, W.P.; Morton, M.J.; et al. ACRIN 6666 Investigators. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 2008, 299, 2151–2163. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.K.; Strobel, K.; Bieling, H.; Leutner, C.; Schild, H.H.; Schrading, S. Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology 2017, 283, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Black, W.C.; Nease, R.F., Jr.; Tosteson, A.N.A. Perceptions of breast cancer risk and screening effectiveness in women younger than 50 years of age. J. Natl. Cancer Inst. 1995, 87, 720–731. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidali, S.; Susini, T. Breast Cancer Risk and Prevention: A Step Forward. Cancers 2023, 15, 5559. https://doi.org/10.3390/cancers15235559
Vidali S, Susini T. Breast Cancer Risk and Prevention: A Step Forward. Cancers. 2023; 15(23):5559. https://doi.org/10.3390/cancers15235559
Chicago/Turabian StyleVidali, Sofia, and Tommaso Susini. 2023. "Breast Cancer Risk and Prevention: A Step Forward" Cancers 15, no. 23: 5559. https://doi.org/10.3390/cancers15235559
APA StyleVidali, S., & Susini, T. (2023). Breast Cancer Risk and Prevention: A Step Forward. Cancers, 15(23), 5559. https://doi.org/10.3390/cancers15235559