Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort and Multi Tumor Tissue Blocks
2.2. Gene Expression Analysis
2.3. Immunohistochemistry and Microscopic Evaluation
2.4. Statistics
3. Results
3.1. Patient and Tumor Characteristics
3.2. CMTM6 Status Predicts Response to RCT but Not to Anti-PD1 Treatment
3.3. Correlation of CMTM6 Status with Other Immune Biomarkers
3.4. Immunotherapy Response in r/m HNSCC Gene Signatures in Responders
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | chemotherapy |
CMTM6 | CKLF-like MARVEL transmembrane domain 6 |
CPS | combined positive score |
d | day |
HNSCC | head and neck squamous cell carcinoma |
HPV | human papillomavirus |
PD-L1 | programmed death-ligand 1 |
ICI | immune checkpoint inhibitors |
OS | overall survival |
PFS | progression-free survival |
py | pack years |
RCT | radio-chemotherapy |
RT | radiotherapy |
r/m | recurrent and/or metastatic |
TIGIT | T cell immunoglobulin and ITIM domain |
References
- Lorenzoni, V.; Chaturvedi, A.K.; Vignat, J.; Laversanne, M.; Bray, F.; Vaccarella, S. The Current Burden of Oropharyngeal Cancer: A Global Assessment Based on GLOBOCAN 2020. Cancer Epidemiol. Biomarkers Prev. 2022, 31, 2054–2062. [Google Scholar] [CrossRef]
- Deneuve, S.; Pérol, O.; Dantony, E.; Guizard, A.V.; Bossard, N.; Virard, F.; Fervers, B. Diverging Incidence Trends of Oral Tongue Cancer Compared to Other Head and Neck Cancers in Young Adults in France. Int. J. Cancer 2022, 150, 1301–1309. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, M.; Zhou, L.; Zheng, Y.; Li, N.; Tian, T.; Zhai, Z.; Yang, S.; Hao, Q.; Wu, Y.; et al. Global Burden of Larynx Cancer, 1990-2017: Estimates from the Global Burden of Disease 2017 Study. Aging 2020, 12, 2545–2583. [Google Scholar] [CrossRef]
- Leoncini, E.; Ricciardi, W.; Cadoni, G.; Arzani, D.; Petrelli, L.; Paludetti, G.; Brennan, P.; Luce, D.; Stucker, I.; Matsuo, K.; et al. Adult Height and Head and Neck Cancer: A Pooled Analysis within the INHANCE Consortium. Head Neck 2014, 36, 1391. [Google Scholar] [CrossRef]
- Facompre, N.D.; Rajagopalan, P.; Sahu, V.; Pearson, A.T.; Montone, K.T.; James, C.D.; Gleber-Netto, F.O.; Weinstein, G.S.; Jalaly, J.; Lin, A.; et al. Identifying Predictors of HPV-related Head and Neck Squamous Cell Carcinoma Progression and Survival through Patient-derived Models. Int. J. Cancer 2020, 147, 3236–3249. [Google Scholar] [CrossRef]
- Shinomiya, H.; Nibu, K. ichi Etiology, Diagnosis, Treatment, and Prevention of Human Papilloma Virus-Associated Oropharyngeal Squamous Cell Carcinoma. Int. J. Clin. Oncol. 2023, 28, 975–981. [Google Scholar] [CrossRef]
- Bates, J.E.; Steuer, C.E. HPV as a Carcinomic Driver in Head and Neck Cancer: A De-Escalated Future? Curr. Treat. Options Oncol. 2022, 23, 325–332. [Google Scholar] [CrossRef]
- Bragado, P.; Estrada, Y.; Sosa, M.S.; Avivar-Valderas, A.; Cannan, D.; Genden, E.; Teng, M.; Ranganathan, A.C.; Wen, H.-C.; Kapoor, A.; et al. Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties. PLoS ONE 2012, 7, e29974. [Google Scholar] [CrossRef]
- Eder, T.; Hess, A.K.; Konschak, R.; Stromberger, C.; Jöhrens, K.; Fleischer, V.; Hummel, M.; Balermpas, P.; von der Grün, J.; Linge, A.; et al. Interference of Tumour Mutational Burden with Outcome of Patients with Head and Neck Cancer Treated with Definitive Chemoradiation: A Multicentre Retrospective Study of the German Cancer Consortium Radiation Oncology Group. Eur. J. Cancer 2019, 116, 67–76. [Google Scholar] [CrossRef]
- Wienecke, A.; Kraywinkel, K. Epidemiology of Head and Neck Cancer in Germany. Onkologe 2019, 25, 190–200. [Google Scholar] [CrossRef]
- Grünwald, V.; Chirovsky, D.; Cheung, W.Y.; Bertolini, F.; Ahn, M.J.; Yang, M.H.; Castro, G.; Berrocal, A.; Sjoquist, K.; Kuyas, H.; et al. Global Treatment Patterns and Outcomes among Patients with Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results of the GLANCE H&N Study. Oral Oncol. 2020, 102, 104526. [Google Scholar] [CrossRef]
- Liu, Z.; Williams, M.; Stewart, J.; Glisson, B.S.; Fuller, C.; Roy-Chowdhuri, S. Evaluation of Programmed Death Ligand 1 Expression in Cytology to Determine Eligibility for Immune Checkpoint Inhibitor Therapy in Patients with Head and Neck Squamous Cell Carcinoma. Cancer Cytopathol. 2022, 130, 110–119. [Google Scholar] [CrossRef]
- Emancipator, K.; Huang, L.; Aurora-Garg, D.; Bal, T.; Cohen, E.E.W.; Harrington, K.; Soulières, D.; Le Tourneau, C.; Licitra, L.; Burtness, B.; et al. Comparing Programmed Death Ligand 1 Scores for Predicting Pembrolizumab Efficacy in Head and Neck Cancer. Mod. Pathol. 2020, 34, 532–541. [Google Scholar] [CrossRef]
- Sanchez-Canteli, M.; Granda-Díaz, R.; del Rio-Ibisate, N.; Allonca, E.; López-Alvarez, F.; Agorreta, J.; Garmendia, I.; Montuenga, L.M.; García-Pedrero, J.M.; Rodrigo, J.P. PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Better Prognosis in Patients with HPV-Negative Head and Neck Squamous Cell Carcinomas. Cancer Immunol. Immunother. 2020, 69, 2089–2100. [Google Scholar] [CrossRef]
- Peng, Q.H.; Wang, C.H.; Chen, H.M.; Zhang, R.X.; Pan, Z.Z.; Lu, Z.H.; Wang, G.Y.; Yue, X.; Huang, W.; Liu, R.Y. CMTM6 and PD-L1 Coexpression Is Associated with an Active Immune Microenvironment and a Favorable Prognosis in Colorectal Cancer. J. Immunother. Cancer 2021, 9, e001638. [Google Scholar] [CrossRef]
- Yin, B.; Ding, J.; Hu, H.; Yang, M.; Huang, B.; Dong, W.; Li, F.; Han, L. Overexpressed CMTM6 Improves Prognosis and Associated With Immune Infiltrates of Ovarian Cancer. Front. Mol. Biosci. 2022, 9, 769032. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, S.; Wang, X. Co-Expression of CMTM6 and PD-L1: A Novel Prognostic Indicator of Gastric Cancer. Cancer Cell Int. 2021, 21, 78. [Google Scholar] [CrossRef]
- Dai, M.; Lan, T.; Li, X.; Xiao, B. High Expression of CMTM6 Is a Risk Factor for Poor Prognosis of Gastrointestinal Tumors: A Meta-Analysis. Asian J. Surg. 2022, 46, 66–72. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Pu, H.; Guo, S.; Zhang, S.; Wang, Y. Prognostic Implications of Pan-Cancer CMTM6 Expression and Its Relationship with the Immune Microenvironment. Front. Oncol. 2021, 10, 585961. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Y.; Yang, J.; Pan, Q.; Zhao, J.; Song, M.; Yang, C.; Han, Y.; Tang, Y.; Wang, Q.; et al. CMTM6 Inhibits Tumor Growth and Reverses Chemoresistance by Preventing Ubiquitination of P21 in Hepatocellular Carcinoma. Cell Death Dis. 2022, 13, 251. [Google Scholar] [CrossRef]
- Mohapatra, P.; Shriwas, O.; Mohanty, S.; Ghosh, A.; Smita, S.; Kaushik, S.R.; Arya, R.; Rath, R.; Das Majumdar, S.K.; Muduly, D.K.; et al. CMTM6 Drives Cisplatin Resistance by Regulating Wnt Signaling through the ENO-1/AKT/GSK3β Axis. JCI Insight 2021, 6, e143643. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.; Mohanty, S.; Ansari, S.A.; Shriwas, O.; Ghosh, A.; Rath, R.; Das Majumdar, S.K.; Swain, R.K.; Raghav, S.K.; Dash, R. CMTM6 Attenuates Cisplatin-Induced Cell Death in OSCC by Regulating AKT/c-Myc-Driven Ribosome Biogenesis. FASEB J. 2022, 36, e22566. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Wang, S.S.; Zhang, M.; Jiang, J.; Fan, H.Y.; Wu, J.S.; Wang, H.F.; Liang, X.H.; Tang, Y. ling OSCC Cell-Secreted Exosomal CMTM6 Induced M2-like Macrophages Polarization via ERK1/2 Signaling Pathway. Cancer Immunol. Immunother. 2021, 70, 1015–1029. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.-L.; Afshari, K.; Guo, Z.-C. Inflammatory Response-Related Genes Predict Prognosis in Patients with HNSCC. Immunol. Lett. 2023, 259, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Chen, Y.; Pan, J.; Lu, Q.; Ji, P.; Lin, S.; Liu, C.; Lin, S.; Li, M.; Zong, J. Identification of an Individualized Therapy Prognostic Signature for Head and Neck Squamous Cell Carcinoma. BMC Genomics 2023, 24, 221. [Google Scholar] [CrossRef] [PubMed]
- Klapper, L.; Idel, C.; Kuppler, P.; Jagomast, T.; von Bernuth, A.; Bruchhage, K.L.; Rades, D.; Offermann, A.; Kirfel, J.; Perner, S.; et al. TRIM24 Expression as an Independent Biomarker for Prognosis and Tumor Recurrence in HNSCC. J. Pers. Med. 2022, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- von Bernuth, A.; Ribbat-Idel, J.; Klapper, L.; Jagomast, T.; Rades, D.; Leichtle, A.; Pries, R.; Bruchhage, K.L.; Perner, S.; Offermann, A.; et al. TRIM21 Expression as a Prognostic Biomarker for Progression-Free Survival in HNSCC. Int. J. Mol. Sci. 2023, 24, 5140. [Google Scholar] [CrossRef]
- Ribbat-Idel, J.; Perner, S.; Kuppler, P.; Klapper, L.; Krupar, R.; Watermann, C.; Paulsen, F.O.; Offermann, A.; Bruchhage, K.L.; Wollenberg, B.; et al. Immunologic “Cold” Squamous Cell Carcinomas of the Head and Neck Are Associated With an Unfavorable Prognosis. Front. Med. 2021, 8, 622330. [Google Scholar] [CrossRef]
- Schildhaus, H.U. Predictive Value of PD-L1 Diagnostics. Pathologe 2018, 39, 498–519. [Google Scholar] [CrossRef]
- Burr, M.L.; Sparbier, C.E.; Chan, Y.C.; Williamson, J.C.; Woods, K.; Beavis, P.A.; Lam, E.Y.N.; Henderson, M.A.; Bell, C.C.; Stolzenburg, S.; et al. CMTM6 Maintains the Expression of PD-L1 and Regulates Anti-Tumour Immunity. Nature 2017, 549, 101–105. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, W.; Rao, W.; Xu, S.; Meng, H.; Zhu, F.; Zhai, D.; Cui, M.; Xu, D.; et al. CMTM6, a Potential Immunotherapy Target. J. Cancer Res. Clin. Oncol. 2022, 148, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.C.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of Tumor Microenvironment in Cancer Progression and Therapeutic Strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Q.C.; Li, Y.C.; Yang, L.L.; Liu, J.F.; Li, H.; Xiao, Y.; Bu, L.L.; Zhang, W.F.; Sun, Z.J. Targeting CMTM6 Suppresses Stem Cell-Like Properties and Enhances Antitumor Immunity in Head and Neck Squamous Cell Carcinoma. Cancer Immunol. Res. 2020, 8, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Zugazagoitia, J.; Liu, Y.; Toki, M.; McGuire, J.; Ahmed, F.S.; Henick, B.S.; Gupta, R.; Gettinger, S.N.; Herbst, R.S.; Schalper, K.A.; et al. Quantitative Assessment of CMTM6 in the Tumor Microenvironment and Association with Response to PD-1 Pathway Blockade in Advanced-Stage Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2019, 14, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab Alone or with Chemotherapy versus Cetuximab with Chemotherapy for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-048): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Saba, N.F.; Blumenschein, G.; Guigay, J.; Licitra, L.; Fayette, J.; Harrington, K.J.; Kiyota, N.; Gillison, M.L.; Ferris, R.L.; Jayaprakash, V.; et al. Nivolumab versus Investigator’s Choice in Patients with Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: Efficacy and Safety in CheckMate 141 by Age. Oral Oncol. 2019, 96, 7–14. [Google Scholar] [CrossRef]
- Tao, Y.; Biau, J.; Sun, X.S.; Sire, C.; Martin, L.; Alfonsi, M.; Prevost, J.B.; Modesto, A.; Lafond, C.; Tourani, J.M.; et al. Pembrolizumab versus Cetuximab Concurrent with Radiotherapy in Patients with Locally Advanced Squamous Cell Carcinoma of Head and Neck Unfit for Cisplatin (GORTEC 2015-01 PembroRad): A Multicenter, Randomized, Phase II Trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2023, 34, 101–110. [Google Scholar] [CrossRef]
- de Ruiter, E.J.; Ooft, M.L.; Devriese, L.A.; Willems, S.M. The Prognostic Role of Tumor Infiltrating T-Lymphocytes in Squamous Cell Carcinoma of the Head and Neck: A Systematic Review and Meta-Analysis. Oncoimmunology 2017, 6, e1356148. [Google Scholar] [CrossRef]
- Kim, T.; Jung, S.H.; Kim, S.K.; Kwon, H.J. P16 Expression and Its Association with PD-L1 Expression and FOXP3-Positive Tumor Infiltrating Lymphocytes in Head and Neck Squamous Cell Carcinoma. Mol. Cell. Toxicol. 2019, 15, 137–143. [Google Scholar] [CrossRef]
- Seminerio, I.; Descamps, G.; Dupont, S.; de Marrez, L.; Laigle, J.A.; Lechien, J.R.; Kindt, N.; Journe, F.; Saussez, S. Infiltration of FoxP3+ Regulatory T Cells Is a Strong and Independent Prognostic Factor in Head and Neck Squamous Cell Carcinoma. Cancers 2019, 11, 227. [Google Scholar] [CrossRef]
- Yang, Y.; He, W.; Wang, Z.R.; Wang, Y.J.; Li, L.L.; Lu, J.Z.; Tao, Y.; Zhang, J.; Fu, S.J.; Wang, Z.P.; et al. Immune Cell Landscape in Gastric Cancer. Biomed Res. Int. 2021, 2021, 1930706. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.; Franzen, A.; de Vos, L.; Wuest, L.; Kulcsár, Z.; Fietz, S.; Maas, A.P.; Hollick, S.; Diop, M.Y.; Gabrielpillai, J.; et al. CTLA4 DNA Methylation Is Associated with CTLA-4 Expression and Predicts Response to Immunotherapy in Head and Neck Squamous Cell Carcinoma. Clin. Epigenetics 2023, 15, 112. [Google Scholar] [CrossRef] [PubMed]
- Sholl, L.M. Biomarkers of Response to Checkpoint Inhibitors beyond PD-L1 in Lung Cancer. Mod. Pathol. 2022, 35, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V.; et al. IFN-γ-Related MRNA Profile Predicts Clinical Response to PD-1 Blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B.; Wei, J. Beta2-Microglobulin(B2M) in Cancer Immunotherapies: Biological Function, Resistance and Remedy. Cancer Lett. 2021, 517, 96–104. [Google Scholar] [CrossRef]
- Amodio, V.; Mauri, G.; Reilly, N.M.; Sartore-bianchi, A.; Siena, S.; Bardelli, A.; Germano, G. Mechanisms of Immune Escape and Resistance to Checkpoint Inhibitor Therapies in Mismatch Repair Deficient Metastatic Colorectal Cancers. Cancers 2021, 13, 2638. [Google Scholar] [CrossRef]
- Pontes, H.A.R.; Pontes, F.S.C.; de Jesus, A.S.; Soares, M.C.P.; Gonçalves, F.L.N.; de Lucena Botelho, T.; do Carmo Ribeiro, J.; dos Santos Pinto, D. P-Akt and Its Relationship with Clinicopathological Features and Survival in Oral Squamous Cell Carcinoma: An Immunohistochemical Study. J. Oral Pathol. Med. 2015, 44, 532–537. [Google Scholar] [CrossRef]
- Archewa, P.; Pata, S.; Chotjumlong, P.; Supanchart, C.; Krisanaprakornkit, S.; Iamaroon, A. Akt2 and P-Akt Overexpression in Oral Cancer Cells Is Due to a Reduced Rate of Protein Degradation. J. Investig. Clin. Dent. 2017, 8, e12194. [Google Scholar] [CrossRef]
- Freudlsperger, C.; Horn, D.; Weißfuß, S.; Weichert, W.; Weber, K.J.; Saure, D.; Sharma, S.; Dyckhoff, G.; Grabe, N.; Plinkert, P.; et al. Phosphorylation of AKT(Ser473) Serves as an Independent Prognostic Marker for Radiosensitivity in Advanced Head and Neck Squamous Cell Carcinoma. Int. J. Cancer 2015, 136, 2775–2785. [Google Scholar] [CrossRef]
- Janecka-Widła, A.; Majchrzyk, K.; Mucha-Małecka, A.; Słonina, D.; Biesaga, B. Prognostic Potential of Akt, PAkt(Ser473) and PAkt(Thr308) Immunoreactivity in Relation to HPV Prevalence in Head and Neck Squamous Cell Carcinoma Patients. Pathol. Res. Pract. 2022, 229, 153684. [Google Scholar] [CrossRef]
- Martinez-Morilla, S.; Moutafi, M.; Rimm, D.L. Standardization of PD-L1 Immunohistochemistry. Mod. Pathol. 2021, 35, 294–295. [Google Scholar] [CrossRef]
Group Characteristics | Σ n = 177 |
---|---|
Female n (%) Male n (%) | 34 (19.2) 143 (80.8) |
Median age (years ± SD) | 66 ± 9.8 |
Noxae smoking (>10 py in %): yes/no alcohol (>1 drink/d in %): yes/no no information (smoking/alcohol) | 51.9/34.5 36.7/63.3 11.3/2.3 |
p16/HPV status (%) positive negative | 21 79 |
Tumor stage (UICC stage 8th edition) (n) 1/2/3/4 | 37/56/29/55 |
Localization (n) oral cavity oropharynx hypopharynx larynx | 79 65 18 15 |
Treatment (n) C/RT/RCT/ICI/ICI + C Other/no adjuvant therapy | 66/33/13/27/3 16/19 |
Median survival (month) PFS OS | 21.0 ± 20.6 29.0 ± 21.4 |
Defined Criteria for Evaluation | ||||
---|---|---|---|---|
Cut-Off * | Low/Negative | High/Positive | Median | |
n = 177 | n (%) | n (%) | n (%) | n (%) |
CMTM6 | (CPS) 10 | 57 (32.2) | 120 (67.8) | 33.7 |
PD-L1 | (CPS) 1 | 58 (32.8) | 119 (67.2) | 14.9 |
CTLA-4 | (density of positive cells) low vs. high | 93 (52.5) | 84 (47.5) | - |
FOXP3 | (density of positive cells) low vs. high | 77 (43.5) | 100 (56.5) | - |
AKT | (% positive cells × staining intensity) no/low vs. high | 119 (67.2) | 58 (32.8) | - |
pAKT | (% positive cells × staining intensity) no/low vs. high | 152 (85.9) | 25 (14.1) 67.2 | - |
CMTM6 vs. | Biomarker | |||||
---|---|---|---|---|---|---|
PD-L1 | CTLA-4 | FOXP3 | AKT | pAKT | ||
Treatment Unrelated n = 151 # | r | 0.26 | 0.63 | 0.85 | 0.31 | 0.22 |
95% CI | 0.098 to 0.41 | 0.52 to 0.72 | 0.80 to 0.89 | 0.15 to 0.46 | 0.047 to 0.38 | |
p (two-tailed) | 0.0014 | <0.0001 | <0.0001 | 0.0002 | 0.0110 | |
p value summary | ** | **** | **** | *** | * | |
RT n = 33 | r | 0.32 | 0.76 | 0.89 | 0.19 | 0.16 |
95% CI | −0.061 to 0.62 | 0.54 to 0.88 | 0.78 to 0.95 | −0.20 to 0.54 | −0.26 to 0.53 | |
p (two-tailed) | 0.0877 | <0.0001 | <0.0001 | 0.3221 | 0.4350 | |
p value summary | ns | **** | **** | ns | ns | |
Cisplatin n = 66 | r | 0.36 | 0.55 | 0.85 | 0.03 | 0.13 |
95% CI | −0.12 to 0.56 | 0.34 to 0.70 | 0.76 to 0.91 | −0.25 to 0.31 | −0.16 to 0.40 | |
p (two-tailed) | 0.0037 | <0.0001 | <0.0001 | 0.8311 | 0.3636 | |
p value summary | ** | **** | **** | ns | ns | |
RCT n = 13 | r | 0.51 | 0.84 | 0.71 | 0.29 | 0.31 |
95% CI | −0.10 to 0.85 | 0.53 to 0.95 | 0.25 to 0.91 | −0.39 to 0.77 | −0.38 to 0.77 | |
p (two-tailed) | 0.089 | 0.0006 | 0.0078 | 0.4182 | 0.3549 | |
p value summary | ns | *** | ** | ns | ns |
Biomarker | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 177 | CMTM6 (n) | PD-L1 (n) | FOXP3 (n) | CTLA-4 (n) | ||||||||
Low | High | p | Negative | Positive | p | Low | High | p | Low | High | p | |
Gender | ns | ns | ns | ns | ||||||||
Male | 38 | 105 | 48 | 95 | 60 | 83 | 75 | 68 | ||||
Female | 9 | 25 | 10 | 24 | 17 | 17 | 18 | 16 | ||||
Smoking # | ns | ns | ns | ns | ||||||||
Yes | 33 | 59 | 38 | 54 | 37 | 55 | 56 | 36 | ||||
No | 29 | 36 | 20 | 45 | 35 | 30 | 33 | 32 | ||||
Alcohol ## | ns | ns | ns | ns | ||||||||
Yes | 30 | 31 | 28 | 33 | 24 | 37 | 28 | 33 | ||||
No | 43 | 69 | 41 | 71 | 49 | 63 | 65 | 47 | ||||
HPV | ||||||||||||
Pos. | 10 | 28 | 9 | 29 | 13 | 26 | 15 | 24 | ||||
Neg. | 47 | 92 | 48 | 91 | 64 | 74 | 69 | 69 | ||||
TNM | ns | ns | ns | * | ||||||||
T1 | 9 | 28 | 12 | 25 | 18 | 19 | 10 | 27 | ||||
T2 | 18 | 38 | 15 | 41 | 26 | 30 | 25 | 31 | ||||
T3 | 11 | 18 | 13 | 16 | 9 | 20 | 15 | 14 | ||||
T4 | 19 | 36 | 18 | 37 | 24 | 31 | 34 | 21 | ||||
N−/N+ | 23/34 | 66/54 | ns | 23/35 | 66/53 | ns | 37/40 | 48/52 | ns | 40/44 | 49/44 | ns |
M0/M1 | 43/14 | 102/17 | ns | 43/15 | 103/16 | ns | 63/14 | 83/17 | ns | 65/19 | 81/12 | ns |
Recurrence | ||||||||||||
No | 34 | 92 | * | 24 | 91 | **** | 48 | 91 | **** | 25 | 100 | ** |
Yes | 23 | 28 | 34 | 28 | 27 | 9 | 21 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, A.-S.; Kluge, C.; Schofeld, C.; Zimpfer, A.H.; Schneider, B.; Strüder, D.; Redwanz, C.; Ribbat-Idel, J.; Idel, C.; Maletzki, C. Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response. Cancers 2023, 15, 5597. https://doi.org/10.3390/cancers15235597
Becker A-S, Kluge C, Schofeld C, Zimpfer AH, Schneider B, Strüder D, Redwanz C, Ribbat-Idel J, Idel C, Maletzki C. Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response. Cancers. 2023; 15(23):5597. https://doi.org/10.3390/cancers15235597
Chicago/Turabian StyleBecker, Anne-Sophie, Cornelius Kluge, Carsten Schofeld, Annette Helene Zimpfer, Björn Schneider, Daniel Strüder, Caterina Redwanz, Julika Ribbat-Idel, Christian Idel, and Claudia Maletzki. 2023. "Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response" Cancers 15, no. 23: 5597. https://doi.org/10.3390/cancers15235597
APA StyleBecker, A. -S., Kluge, C., Schofeld, C., Zimpfer, A. H., Schneider, B., Strüder, D., Redwanz, C., Ribbat-Idel, J., Idel, C., & Maletzki, C. (2023). Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response. Cancers, 15(23), 5597. https://doi.org/10.3390/cancers15235597