BR109, a Novel Fully Humanized T-Cell-Engaging Bispecific Antibody with GPRC5D Binding, Has Potent Antitumor Activities in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Cell Culture
2.1.1. Cell Lines
- Chinese hamster ovary cell line K1 expressing exogenous human GPRC5D gene (CHOK1-hGPRC5D);
- HEK293T cell line expressing exogenous human GPRC5D gene (HEK293T_hGPRC5D);
- HEK293T cell line expressing exogenous cynomolgus monkey GPRC5D gene (HEK293T_cynoGPRC5D);
- HEK293T cell line expressing exogenous mouse Gprc5d gene (HEK293T_mGPRC5D);
- HEK293T cell line expressing exogenous human GPRC5A gene (HEK293T_hGPRC5A);
- HEK293T cell line expressing exogenous human GPRC5B gene (HEK293T_hGPRC5B);
- HEK293T cell line expressing exogenous human GPRC5C gene (HEK293T_hGPRC5C).
2.1.2. Cell Culture
2.2. Generation of GPRC5D-Specific mAb
2.3. Binding Flow Cytometry Assay
2.4. Epitope Binning of Anti-GPRC5D Antibody
2.5. Preparation and Characterization of T-Cell-Engaging Bispecific Antibody
2.6. T Cell Activation and T-Cell-Mediated Cytotoxicity
- To each well, 120 μL TDCC medium was added (blank group);
- To each well, 80 μL TDCC medium and 40 μL MM cells were added (minimum release);
- To each well, 80 μL TDCC medium and 40 μL MM cells were added (maximum release);
- To each well, 40 μL TDCC medium, 40 μL PBMCs, and 40 μL MM cells were added (background group);
- To each well, 40 μL TCBs, 40μL PBMCs, and 40 μL MM cells were added (experimental release).
2.7. In Vivo Efficacy Studies
3. Results
3.1. Screening and Characterization of Anti-GPRC5D Antibody
3.2. Construction and Stability Evaluation of Anti-GPRC5D × Anti-CD3 TCB
3.3. Anti-GPRC5D × Anti-CD3 TCBs Can Induce T Cell Activation
3.4. Anti-GPRC5D × Anti-CD3 TCBs Can Induce T-Cell-Mediated Cytotoxicity
3.5. The Antitumor Efficacy of Anti-GPRC5D × Anti-CD3 TCBs in the NCI-H929 Xenograft NPG Mouse Models
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raab, M.S.; Podar, K.; Breitkreutz, I.; Richardson, P.G.; Anderson, K.C. Multiple Myeloma. Lancet 2009, 374, 324–339. [Google Scholar] [CrossRef]
- Palumbo, A.; Anderson, K. Medical Progress Multiple Myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef]
- Cowan, A.J.; Allen, C.; Barac, A.; Basaleem, H.; Bensenor, I.; Curado, M.P.; Foreman, K.; Gupta, R.; Harvey, J.; Hosgood, H.D. Global Burden of Multiple Myeloma: A Systematic Analysis for the Global Burden of Disease Study 2016. JAMA Oncol. 2018, 4, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.-V.; Weisel, K.; De Stefano, V.; Goldschmidt, H.; Delforge, M.; Mohty, M.; Cavo, M.; Vij, R.; Lindsey-Hill, J.; Dytfeld, D. LocoMMotion: A Prospective, Non-Interventional, Multinational Study of Real-Life Current Standards of Care in Patients with Relapsed and/or Refractory Multiple Myeloma. Leukemia 2022, 36, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Ray, U.; Orlowski, R.Z. Antibody–Drug Conjugates for Multiple Myeloma: Just the Beginning, or the Beginning of the End? Pharmaceuticals 2023, 16, 590. [Google Scholar] [CrossRef] [PubMed]
- Baines, A.C.; Ershler, R.; Kanapuru, B.; Xu, Q.; Shen, G.; Li, L.; Ma, L.; Okusanya, O.O.; Simpson, N.E.; Nguyen, W. FDA Approval Summary: Belantamab Mafodotin for Patients with Relapsed or Refractory Multiple Myeloma. Clin. Cancer Res. 2022, 28, 4629–4633. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Mailankody, S.; Landgren, O. T-Cell Engagers—Modern Immune-Based Therapies for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 558–561. [Google Scholar] [CrossRef]
- Holstein, S.A.; Grant, S.J.; Wildes, T.M. Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapy in Multiple Myeloma: Moving Into the Future. J. Clin. Oncol. 2023, 41, 4416–4429. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D., Jr.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Tanenbaum, B.; Miett, T.; Patel, S.A. The Emerging Therapeutic Landscape of Relapsed/Refractory Multiple Myeloma. Ann. Hematol. 2023, 102, 1–11. [Google Scholar] [CrossRef]
- Brudno, J.N.; Maric, I.; Hartman, S.D.; Rose, J.J.; Wang, M.; Lam, N.; Stetler-Stevenson, M.; Salem, D.; Yuan, C.; Pavletic, S.; et al. T Cells Genetically Modified to Express an Anti–B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Poor-Prognosis Relapsed Multiple Myeloma. JCO 2018, 36, 2267–2280. [Google Scholar] [CrossRef]
- Bräuner-Osborne, H.; Jensen, A.A.; Sheppard, P.O.; Brodin, B.; Krogsgaard-Larsen, P.; O’Hara, P. Cloning and Characterization of a Human Orphan Family C G-Protein Coupled Receptor GPRC5D. Biochim. Et Biophys. Acta (BBA)-Gene Struct. Expr. 2001, 1518, 237–248. [Google Scholar] [CrossRef]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X. GPRC5D Is a Target for the Immunotherapy of Multiple Myeloma with Rationally Designed CAR T Cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Yan, H.; Zeng, J.; Ma, S.; Niu, Y.; Zhou, G.; Jiang, Y.; Chen, Y. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats. PLoS ONE 2016, 11, e0151118. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Nambu, T.; Shimomura, T. The RAIG Family Member, GPRC5D, Is Associated with Hard-Keratinized Structures. J. Investig. Dermatol. 2004, 122, 565–573. [Google Scholar] [CrossRef]
- Cohen, Y.; Gutwein, O.; Garach-Jehoshua, O.; Bar-Haim, A.; Kornberg, A. GPRC5D Is a Promising Marker for Monitoring the Tumor Load and to Target Multiple Myeloma Cells. Hematology 2013, 18, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Pillarisetti, K.; Edavettal, S.; Mendonça, M.; Li, Y.; Tornetta, M.; Babich, A.; Majewski, N.; Husovsky, M.; Reeves, D.; Walsh, E. A T-Cell–Redirecting Bispecific G-Protein–Coupled Receptor Class 5 Member D x CD3 Antibody to Treat Multiple Myeloma. Blood J. Am. Soc. Hematol. 2020, 135, 1232–1243. [Google Scholar] [CrossRef]
- Atamaniuk, J.; Gleiss, A.; Porpaczy, E.; Kainz, B.; Grunt, T.W.; Raderer, M.; Hilgarth, B.; Drach, J.; Ludwig, H.; Gisslinger, H. Overexpression of G Protein-Coupled Receptor 5D in the Bone Marrow Is Associated with Poor Prognosis in Patients with Multiple Myeloma. Eur. J. Clin. Investig. 2012, 42, 953–960. [Google Scholar] [CrossRef]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Nath, K.; Costa, B.A.; Mailankody, S. GPRC5D as a Novel Immunotherapeutic Target in Multiple Myeloma. Nat. Rev. Clin. Oncol. 2023, 20, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef] [PubMed]
- Carlo-Stella, C.; Mazza, R.; Manier, S.; Facon, T.; Yoon, S.-S.; Koh, Y.; Harrison, S.J.; Er, J.; Pinto, A.; Volzone, F. RG6234, a GPRC5DxCD3 T-Cell Engaging Bispecific Antibody, Is Highly Active in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated Intravenous (IV) and First Subcutaneous (SC) Results from a Phase I Dose-Escalation Study. Blood 2022, 140, 397–399. [Google Scholar] [CrossRef]
- Bal, S.; Kocoglu, M.H.; Nadeem, O.; Htut, M.; Gregory, T.; Anderson, L.D.; Costa, L.J.; Buchholz, T.J.; Ziyad, S.; Li, M. Clinical Activity of BMS-986393 (CC-95266), a G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)-Targeted Chimeric Antigen Receptor (CAR) T Cell Therapy, in Patients with Relapsed and/or Refractory (R/R) Multiple Myeloma (MM): First Results from a Phase 1, Multicenter, Open-Label Study. Blood 2022, 140, 883–885. [Google Scholar]
- Huang, H.; Hu, Y.; Zhang, M.; Ding, X.; Tang, Y.; He, X.; Chen, S.; Yang, Y. Phase I Open-Label Single Arm Study of GPRC5D CAR T-Cells (OriCAR-017) in Patients with Relapsed/Refractory Multiple Myeloma (POLARIS). HemaSphere 2022, 6, 164–165. [Google Scholar] [CrossRef]
- Huang, W.; Luo, J.; Li, Y.; Fei, D.; Qin, X.; Li, R. Preclinical Activity of LM-305 Targeting G-Protein-Coupled Receptor Class 5 Member D (GPRC5D) Antibody Drug Conjugate for the Treatment of Multiple Myeloma. Cancer Res. 2022, 82, 6020. [Google Scholar] [CrossRef]
- Falchi, L.; Vardhana, S.A.; Salles, G.A. Bispecific Antibodies for the Treatment of B-Cell Lymphoma: Promises, Unknowns, and Opportunities. Blood J. Am. Soc. Hematol. 2023, 141, 467–480. [Google Scholar] [CrossRef]
- Li, N.; Wu, Z.-H.; Mei, X.-F.; Liu, Y.; Chen, Y.; Chen, J.; Jiang, M.-Z.; Wang, H.-B. Development and Validation of a Cell-Based Report Bioassay for a Bispecific Antibody Targeting CD3 and GPRC5D. Chin. J. New Drugs 2022, 31, 1474–1479. [Google Scholar]
- Merchant’, A.M.; Zhu’, Z.; Goddard, A.; Adams, C.W.; Presta, L.G.; Carter’, P. An Efficient Route to Huinan Bispecific IgG. Nat. Biotechnol. 1998, 16, 677–681. [Google Scholar] [CrossRef]
- Hezareh, M.; Hessell, A.J.; Jensen, R.C.; Van De Winkel, J.G.J.; Parren, P.W.H.I. Effector Function Activities of a Panel of Mutants of a Broadly Neutralizing Antibody against Human Immunodeficiency Virus Type 1. J. Virol. 2001, 75, 12161–12168. [Google Scholar] [CrossRef] [PubMed]
- Skrombolas, D.; Frelinger, J.G. Challenges and Developing Solutions for Increasing the Benefits of IL-2 Treatment in Tumor Therapy. Expert Rev. Clin. Immunol. 2014, 10, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, T.; Sano, Y.; Komatsu, S.; Kamata-Sakurai, M.; Kaneko, A.; Kinoshita, Y.; Shiraiwa, H.; Azuma, Y.; Tsunenari, T.; Kayukawa, Y.; et al. An Anti–Glypican 3/CD3 Bispecific T Cell–Redirecting Antibody for Treatment of Solid Tumors. Sci. Transl. Med. 2017, 9, eaal4291. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Kochi, Y.; Nakai, W.; Mizuno, H.; Baba, T.; Habu, K.; Sawada, N.; Tsunoda, H.; Shima, T.; Miyawaki, K.; et al. Anti-GPRC5D/CD3 Bispecific T-Cell–Redirecting Antibody for the Treatment of Multiple Myeloma. Mol. Cancer Ther. 2019, 18, 1555–1564. [Google Scholar] [CrossRef]
- Swan, D.; Murphy, P.; Glavey, S.; Quinn, J. Bispecific Antibodies in Multiple Myeloma: Opportunities to Enhance Efficacy and Improve Safety. Cancers 2023, 15, 1819. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhou, Y.-Q.; Nie, L.; Zhu, S.-S.; Li, N.; Wu, Z.-H.; Wang, Q.; Qi, J.; Wu, B.-Y.; Chen, S.-Q.; et al. BR109, a Novel Fully Humanized T-Cell-Engaging Bispecific Antibody with GPRC5D Binding, Has Potent Antitumor Activities in Multiple Myeloma. Cancers 2023, 15, 5774. https://doi.org/10.3390/cancers15245774
Liu Y, Zhou Y-Q, Nie L, Zhu S-S, Li N, Wu Z-H, Wang Q, Qi J, Wu B-Y, Chen S-Q, et al. BR109, a Novel Fully Humanized T-Cell-Engaging Bispecific Antibody with GPRC5D Binding, Has Potent Antitumor Activities in Multiple Myeloma. Cancers. 2023; 15(24):5774. https://doi.org/10.3390/cancers15245774
Chicago/Turabian StyleLiu, Ying, Ya-Qiong Zhou, Lei Nie, Shan-Shan Zhu, Na Li, Zhen-Hua Wu, Qi Wang, Jian Qi, Bing-Yuan Wu, Shu-Qing Chen, and et al. 2023. "BR109, a Novel Fully Humanized T-Cell-Engaging Bispecific Antibody with GPRC5D Binding, Has Potent Antitumor Activities in Multiple Myeloma" Cancers 15, no. 24: 5774. https://doi.org/10.3390/cancers15245774
APA StyleLiu, Y., Zhou, Y. -Q., Nie, L., Zhu, S. -S., Li, N., Wu, Z. -H., Wang, Q., Qi, J., Wu, B. -Y., Chen, S. -Q., & Wang, H. -B. (2023). BR109, a Novel Fully Humanized T-Cell-Engaging Bispecific Antibody with GPRC5D Binding, Has Potent Antitumor Activities in Multiple Myeloma. Cancers, 15(24), 5774. https://doi.org/10.3390/cancers15245774