Changes in Serum Growth Factors during Resistance to Atezolizumab Plus Bevacizumab Treatment in Patients with Unresectable Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Analysis of Changes in Serum Growth Factors
2.3. Treatment Protocol
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comparison of Baseline Patients’ Characteristics and Growth Factor Levels between Patients with or without Disease Control or an OR
3.3. Changes in Growth Factors between Baseline and Best Overall Response Point in Unresectable HCC Patients with Disease Control by Atezolizumab Plus Bevacizumab
3.4. Changes in Growth Factors between the Best Overall Response Point and PD Point in Unresectable HCC Patients with Disease Control by Atezolizumab Plus Bevacizumab
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2021, 7, 6. [Google Scholar] [CrossRef]
- Kulik, L.; El-Serag, H.B. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 2019, 156, 477–491.e1. [Google Scholar] [CrossRef] [PubMed]
- Wen, N.; Cai, Y.; Li, F.; Ye, H.; Tang, W.; Song, P.; Cheng, N. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines: 2022 update. Biosci. Trends 2022, 16, 20–30. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Kudo, M.; Tsuchiya, K.; Kato, N.; Hagihara, A.; Numata, K.; Aikata, H.; Inaba, Y.; Kondo, S.; Motomura, K.; Furuse, J.; et al. Cabozantinib in Japanese patients with advanced hepatocellular carcinoma: A phase 2 multicenter study. J. Gastroenterol. 2021, 56, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Gordan, J.D.; Kennedy, E.B.; Abou-Alfa, G.K.; Beg, M.S.; Brower, S.T.; Gade, T.P.; Goff, L.; Gupta, S.; Guy, J.; Harris, W.P.; et al. Systemic Therapy for Advanced Hepatocellular Carcinoma: ASCO Guideline. J. Clin. Oncol. 2020, 38, 4317–4345. [Google Scholar] [CrossRef]
- Sho, T.; Suda, G.; Yamamoto, Y.; Furuya, K.; Baba, M.; Ogawa, K.; Kubo, A.; Tokuchi, Y.; Fu, Q.; Yang, Z.; et al. Efficacy and Effect on Liver Functional Reserve of Atezolizumab and Bevacizumab for Unresectable Hepatocellular Carcinoma in Patients Who Do Not Meet Eligibility Criteria of IMbrave150. Cancers 2022, 14, 3938. [Google Scholar] [CrossRef]
- Sho, T.; Suda, G.; Ogawa, K.; Kimura, M.; Kubo, A.; Tokuchi, Y.; Kitagataya, T.; Maehara, O.; Ohnishi, S.; Shigesawa, T.; et al. Early response and safety of atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma in patients who do not meet IMbrave150 eligibility criteria. Hepatol. Res. 2021, 51, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Rimini, M.; Rimassa, L.; Ueshima, K.; Burgio, V.; Shigeo, S.; Tada, T.; Suda, G.; Yoo, C.; Cheon, J.; Pinato, D.J.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: An international propensity score matching analysis. ESMO Open 2022, 7, 100591. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, S.; Suda, G.; Sho, T.; Ogawa, K.; Kimura, M.; Yang, Z.; Yoshida, S.; Kubo, A.; Tokuchi, Y.; Kitagataya, T.; et al. Low baseline CXCL9 predicts early progressive disease in unresectable HCC with atezolizumab plus bevacizumab treatment. Liver Cancer 2022, in press. [CrossRef]
- Kubo, A.; Suda, G.; Kimura, M.; Maehara, O.; Tokuchi, Y.; Kitagataya, T.; Ohara, M.; Yamada, R.; Shigesawa, T.; Suzuki, K.; et al. Characteristics and Lenvatinib Treatment Response of Unresectable Hepatocellular Carcinoma with Iso-High Intensity in the Hepatobiliary Phase of EOB-MRI. Cancers 2021, 13, 3633. [Google Scholar] [CrossRef] [PubMed]
- Sho, T.; Suda, G.; Ogawa, K.; Shigesawa, T.; Suzuki, K.; Nakamura, A.; Ohara, M.; Umemura, M.; Kawagishi, N.; Natsuizaka, M.; et al. Lenvatinib in patients with unresectable hepatocellular carcinoma who do not meet the REFLECT trial eligibility criteria. Hepatol. Res. 2020, 50, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Sho, T.; Suda, G.; Ogawa, K.; Kimura, M.; Shimazaki, T.; Maehara, O.; Shigesawa, T.; Suzuki, K.; Nakamura, A.; Ohara, M.; et al. Early response and safety of lenvatinib for patients with advanced hepatocellular carcinoma in a real-world setting. JGH Open 2020, 4, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Shigesawa, T.; Suda, G.; Kimura, M.; Shimazaki, T.; Maehara, O.; Yamada, R.; Kitagataya, T.; Suzuki, K.; Nakamura, A.; Ohara, M.; et al. Baseline angiopoietin-2 and FGF19 levels predict treatment response in patients receiving multikinase inhibitors for hepatocellular carcinoma. JGH Open 2020, 4, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Suda, G.; Maehara, O.; Ohara, M.; Yoshida, S.; Hosoda, S.; Kimura, M.; Kubo, A.; Tokuchi, Y.; Fu, Q.; et al. Changes in Serum Growth Factors during Lenvatinib Predict the Post Progressive Survival in Patients with Unresectable Hepatocellular Carcinoma. Cancers 2022, 14, 232. [Google Scholar] [CrossRef]
- Hegde, P.S.; Wallin, J.J.; Mancao, C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin. Cancer Biol. 2018, 52, 117–124. [Google Scholar] [CrossRef]
- Ishikura, N.; Sugimoto, M.; Yorozu, K.; Kurasawa, M.; Kondoh, O. Anti-VEGF antibody triggers the effect of anti-PD-L1 antibody in PD-L1(low) and immune desert-like mouse tumors. Oncol. Rep. 2022, 47, 36. [Google Scholar] [CrossRef]
- Iwai, T.; Sugimoto, M.; Patil, N.S.; Bower, D.; Suzuki, M.; Kato, C.; Yorozu, K.; Kurasawa, M.; Shames, D.S.; Kondoh, O. Both T cell priming in lymph node and CXCR3-dependent migration are the key events for predicting the response of atezolizumab. Sci. Rep. 2021, 11, 13912. [Google Scholar] [CrossRef]
- Kudo, M.; Han, K.H.; Ye, S.L.; Zhou, J.; Huang, Y.H.; Lin, S.M.; Wang, C.K.; Ikeda, M.; Chan, S.L.; Choo, S.P.; et al. A Changing Paradigm for the Treatment of Intermediate-Stage Hepatocellular Carcinoma: Asia-Pacific Primary Liver Cancer Expert Consensus Statements. Liver Cancer 2020, 9, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suda, G.; Kudo, M.; Nagasaka, A.; Furuya, K.; Yamamoto, Y.; Kobayashi, T.; Shinada, K.; Tateyama, M.; Konno, J.; Tsukuda, Y.; et al. Efficacy and safety of daclatasvir and asunaprevir combination therapy in chronic hemodialysis patients with chronic hepatitis C. J. Gastroenterol. 2016, 51, 733–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabernero, J.; Hozak, R.R.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Prausova, J.; et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann. Oncol. 2018, 29, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Shimose, S.; Sugimoto, R.; Hiraoka, A.; Tanaka, M.; Iwamoto, H.; Tanaka, Y.; Tada, F.; Ohama, H.; Niizeki, T.; Shirono, T.; et al. Significance of ramucirumab following atezolizumab plus bevacizumab therapy for hepatocellular carcinoma using real-world data. Hepatol. Res. 2022. [Google Scholar] [CrossRef]
- Wada, H.; Suzuki, M.; Matsuda, M.; Ajiro, Y.; Shinozaki, T.; Sakagami, S.; Yonezawa, K.; Shimizu, M.; Funada, J.; Takenaka, T.; et al. Distinct Characteristics of VEGF-D and VEGF-C to Predict Mortality in Patients with Suspected or Known Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e015761. [Google Scholar] [CrossRef]
- Davydova, N.; Harris, N.C.; Roufail, S.; Paquet-Fifield, S.; Ishaq, M.; Streltsov, V.A.; Williams, S.P.; Karnezis, T.; Stacker, S.A.; Achen, M.G. Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D. J. Biol. Chem. 2016, 291, 27265–27278. [Google Scholar] [CrossRef] [Green Version]
- Rissanen, T.T.; Markkanen, J.E.; Gruchala, M.; Heikura, T.; Puranen, A.; Kettunen, M.I.; Kholova, I.; Kauppinen, R.A.; Achen, M.G.; Stacker, S.A.; et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res. 2003, 92, 1098–1106. [Google Scholar] [CrossRef]
- Kashyap, A.S.; Schmittnaegel, M.; Rigamonti, N.; Pais-Ferreira, D.; Mueller, P.; Buchi, M.; Ooi, C.H.; Kreuzaler, M.; Hirschmann, P.; Guichard, A.; et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc. Natl. Acad. Sci. USA 2020, 117, 541–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, A.; Harter, P.N.; Cremer, S.; Yalcin, B.H.; Gurnik, S.; Yamaji, M.; Di Tacchio, M.; Sommer, K.; Baumgarten, P.; Bahr, O.; et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol. Med. 2016, 8, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Mazzieri, R.; Pucci, F.; Moi, D.; Zonari, E.; Ranghetti, A.; Berti, A.; Politi, L.S.; Gentner, B.; Brown, J.L.; Naldini, L.; et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011, 19, 512–526. [Google Scholar] [CrossRef] [PubMed]
Included Patients | DC (+) n = 32 | DC (−) n = 14 | p-Value | |
---|---|---|---|---|
n = 46 | ||||
Age (years), median (range) | 72 (31–84) | 68 (47–74) | 75 (47–81) | 0.0237 |
Sex (male/female) | 37/9 | 27/5 | 10/4 | 0.4226 |
Etiology, n (%) | 0.5596 | |||
HBV | 15 (32.6%) | 12 (37.5%) | 3 (21.4%) | |
HCV | 6 (13.0%) | 4 (12.5%) | 2 (14.3%) | |
NBNC | 25 (54.3%) | 16 (50.0%) | 9 (64.3%) | |
Liver condition | 0.7539 | |||
LC | 22 (47.8%) | 16 (50%) | 6 (42.9%) | |
CH | 24 (52.2%) | 16 (50%) | 8 (57.1%) | |
BCLC stage, n (%) | >0.9999 | |||
B | 16 (34.8%) | 11 (34.4%) | 5 (35.7%) | |
C | 30 (65.2%) | 21 (65.6%) | 9 (64.3%) | |
Child–Pugh class, n (%) | >0.9999 | |||
A | 46 (100%) | 32 (100%) | 14 (100%) | |
B | 0 (0%) | 0 (0%) | 0 (0%) | |
Child–Pugh score, n (%) | 0.3161 | |||
5 | 30 (65.2%) | 19 (59.4%) | 11 (78.6%) | |
6 | 16 (34.8%) | 13 (40.6%) | 3 (21.4%) | |
Biochemical analysis | ||||
Platelets, ×104/μL | 15.3 (6.1–54) | 14.45 (6.1–46.4) | 16.45 (8.5–54) | 0.5351 |
ALT, IU/L | 24.5 (7–278) | 19 (7–278) | 42.5 (19–122) | 0.0010 |
Cr, mg/dL | 0.825 (0.097–2.28) | 0.88 (0.52–2.28) | 0.705 (0.097–1.44) | 0.0913 |
AFP, ng/mL | 24.05 (2.3–57,125.2) | 19.35 (2.3–57,125.2) | 221.6 (2.4–15,009.5) | 0.2023 |
PIVKA-II, mAU/mL | 886.5 (19–213,066) | 1006 (19–213,066) | 881.5 (25–110,159) | 0.8926 |
History of operation | 24 (52.2%) | 14 (43.8%) | 10 (71.4%) | 0.1141 |
History of RFA | 14 (30.4%) | 9 (28.1%) | 5 (35.7%) | 0.7308 |
History of TACE | 25 (54.3%) | 18 (56.3%) | 7 (50%) | 0.7553 |
History of systemic therapy | 24 (52.2%) | 18 (56.3%) | 6 (42.9%) | 0.5252 |
No treatment history | 8 (17.4%) | 6 (18.8%) | 2 (14.3%) | >0.9999 |
Interruption of bevacizumab | 16 (34.8%) | 13 (40.6%) | 3 (21.4%) | 0.3161 |
Included Patients | OR (+) n = 13 | OR (−) n = 33 | p-Value | |
---|---|---|---|---|
n = 46 | ||||
Age (years), median (range) | 72 (31–84) | 68 (47–74) | 70 (31–84) | 0.0236 |
Sex (male/female) | 37/9 | 11/2 | 26/7 | >0.9999 |
Etiology, n (%) | 0.2558 | |||
HBV | 15 (32.6%) | 5 (38.5%) | 10 (30.3%) | |
HCV | 6 (13.0%) | 0 (0%) | 6 (18.2%) | |
NBNC | 25 (54.3%) | 8 (61.5%) | 17 (51.5%) | |
Liver condition | 0.7462 | |||
LC | 22 (47.8%) | 7 (53.8%) | 15 (45.5%) | |
CH | 24 (52.2%) | 6 (46.2%) | 18 (54.5%) | |
BCLC stage, n (%) | 0.7441 | |||
B | 16 (34.8%) | 5 (38.5%) | 11 (33.3%) | |
C | 30 (65.2%) | 8 (61.5%) | 22 (66.7%) | |
Child–Pugh class, n (%) | >0.9999 | |||
A | 46 (100%) | 13 (100%) | 33 (100%) | |
B | 0 (0%) | 0 (0%) | 0 (0%) | |
Child–Pugh score, n (%) | 0.3095 | |||
5 | 30 (65.2%) | 7 (53.8%) | 23 (69.7%) | |
6 | 16 (34.8%) | 6 (46.2%) | 10 (30.3%) | |
Biochemical analysis | ||||
latelets, ×104/μL | 15.3 (6.1–54) | 17.2 (7.6–46.4) | 15.2 (6.1–54) | 0.9568 |
ALT, IU/L | 24.5 (7–278) | 19 (7–43) | 31 (7–278) | 0.0639 |
Cr, mg/dL | 0.825 (0.097–2.28) | 0.78 (0.52–1.42) | 0.89 (0.097–2.28) | 0.3487 |
AFP, ng/mL | 24.05 (2.3–57,125.2) | 18.1 (2.3–2945.4) | 80.1 (2.3–57,125.2) | 0.4145 |
PIVKA-II, mAU/mL | 886.5 (19–213,066) | 277 (19–3217) | 1616 (20–213,066) | 0.0699 |
History of operation | 24 (52.2%) | 6 (46.2%) | 18 (54.5%) | 0.7462 |
History of RFA | 14 (30.4%) | 5 (38.5%) | 9 (27.3%) | 0.4934 |
History of TACE | 25 (54.3%) | 8 (61.5%) | 17 (51.5%) | 0.7437 |
History of systemic therapy | 24 (52.2%) | 9 (69.2%) | 15 (45.5%) | 0.1968 |
No treatment history | 8 (17.4%) | 3 (23.1%) | 5 (15.2%) | 0.6689 |
Interruption of bevacizumab | 16 (34.8%) | 4 (30.8%) | 12 (36.4%) | >0.9999 |
Included Patients | |
---|---|
n = 28 | |
Age (years), median (range) | 70 (31–84) |
Sex (male/female) | 23/5 |
Treatment response | |
CR | 2 (7.1%) |
PR | 7 (25.0%) |
SD | 19 (67.9%) |
Etiology, n (%) | |
HBV | 9 (32.1%) |
HCV | 4 (14.3%) |
NBNC | 15 (53.6%) |
Liver condition | |
LC | 14 (50.0%) |
CH | 14 (50.0%) |
BCLC stage, n (%) | |
B | 10 (35.7%) |
C | 18 (64.3%) |
Child–Pugh class, n (%) | |
A | 28 (100%) |
B | 0 (0%) |
Child–Pugh score, n (%) | |
5 | 16 (57.1%) |
6 | 12 (42.9%) |
Biochemical analysis | |
Platelets, ×104/μL | 13.7 (6.1–41.3) |
ALT, IU/L | 23 (7–278) |
Cr, mg/dL | 0.89 (0.52–2.28) |
AFP, ng/mL | 19.4 (2.3–57,125.2) |
PIVKA-II, mAU/mL | 1852 (20–213,066) |
History of operation | 11 (39.3%) |
History of RFA | 8 (28.6%) |
History of TACE | 15 (53.6%) |
History of systemic therapy | 15 (53.6%) |
No treatment history | 4 (14.3%) |
Interruption of bevacizumab | 13 (46.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Suda, G.; Maehara, O.; Ohara, M.; Yoda, T.; Sasaki, T.; Kohya, R.; Yoshida, S.; Hosoda, S.; Tokuchi, Y.; et al. Changes in Serum Growth Factors during Resistance to Atezolizumab Plus Bevacizumab Treatment in Patients with Unresectable Hepatocellular Carcinoma. Cancers 2023, 15, 593. https://doi.org/10.3390/cancers15030593
Yang Z, Suda G, Maehara O, Ohara M, Yoda T, Sasaki T, Kohya R, Yoshida S, Hosoda S, Tokuchi Y, et al. Changes in Serum Growth Factors during Resistance to Atezolizumab Plus Bevacizumab Treatment in Patients with Unresectable Hepatocellular Carcinoma. Cancers. 2023; 15(3):593. https://doi.org/10.3390/cancers15030593
Chicago/Turabian StyleYang, Zijian, Goki Suda, Osamu Maehara, Masatsugu Ohara, Tomoka Yoda, Takashi Sasaki, Risako Kohya, Sonoe Yoshida, Shunichi Hosoda, Yoshimasa Tokuchi, and et al. 2023. "Changes in Serum Growth Factors during Resistance to Atezolizumab Plus Bevacizumab Treatment in Patients with Unresectable Hepatocellular Carcinoma" Cancers 15, no. 3: 593. https://doi.org/10.3390/cancers15030593
APA StyleYang, Z., Suda, G., Maehara, O., Ohara, M., Yoda, T., Sasaki, T., Kohya, R., Yoshida, S., Hosoda, S., Tokuchi, Y., Kitagataya, T., Suzuki, K., Kawagishi, N., Nakai, M., Sho, T., Natsuizaka, M., Ogawa, K., Ohnishi, S., & Sakamoto, N. (2023). Changes in Serum Growth Factors during Resistance to Atezolizumab Plus Bevacizumab Treatment in Patients with Unresectable Hepatocellular Carcinoma. Cancers, 15(3), 593. https://doi.org/10.3390/cancers15030593