Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: The Prognostic Role of Liver Stiffness Measurement
Abstract
:Simple Summary
Abstract
1. Introduction
2. Liver Stiffness Assessment
2.1. Ultrasound-Based Assessment
2.2. Magnetic Resonance Assessment
3. Discussion
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Riazi, K.; Azhari, H.; Charette, J.H.; E Underwood, F.; A King, J.; Afshar, E.E.; Swain, M.G.; E Congly, S.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musso, G.; Gambino, R.; Cassader, M.; Pagano, G. Meta-analysis: Natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann. Med. 2011, 43, 617–649. [Google Scholar] [CrossRef]
- Simon, T.G.; Roelstraete, B.; Sharma, R.; Khalili, H.; Hagström, H.; Ludvigsson, J.F. Cancer Risk in Patients with Biopsy-Confirmed Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Hepatology 2021, 74, 2410–2423. [Google Scholar] [CrossRef] [PubMed]
- Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S.; HCC-NAFLD Italian Study Group. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 2016, 63, 827–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanyal, A.; Poklepovic, A.; Moyneur, E.; Barghout, V. Population-based risk factors and resource utilization for HCC: US perspective. Curr. Med. Res. Opin. 2010, 26, 2183–2191. [Google Scholar] [CrossRef]
- Ertle, J.; Dechêne, A.; Sowa, J.-P.; Penndorf, V.; Herzer, K.; Kaiser, G.; Schlaak, J.F.; Gerken, G.; Syn, W.-K.; Canbay, A. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int. J. Cancer 2011, 128, 2436–2443. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef]
- Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans Is Associated With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131.e1. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.Q.; Singal, A.G.; Kono, Y.; Tan, D.J.; El-Serag, H.B.; Loomba, R. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab. 2022, 34, 969–977.e2. [Google Scholar] [CrossRef]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-A.; Lee, H.C.; Choe, J.; Kim, M.-J.; Lee, M.J.; Chang, H.-S.; Bae, I.Y.; Kim, H.-K.; An, J.; Shim, J.H.; et al. Association between non-alcoholic fatty liver disease and cancer incidence rate. J. Hepatol. 2018, 68, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sanyal, A.J.; George, J.; on behalf of theInternational Consensus Panel. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1991. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.; Neyroud-Caspar, I.; Spahr, L.; Gkouvatsos, K.; Fournier, E.; Giostra, E.; Magini, G.; Frossard, J.-L.; Bascaron, M.-E.; Vernaz, N.; et al. NAFLD and MAFLD as emerging causes of HCC: A populational study. JHEP Rep. 2021, 3, 100231. [Google Scholar] [CrossRef]
- Vitale, A.; Svegliati-Baroni, G.; Ortolani, A.; Cucco, M.; Riva, G.V.D.; Giannini, E.G.; Piscaglia, F.; Rapaccini, G.; Di Marco, M.; Caturelli, E.; et al. Epidemiological trends and trajectories of MAFLD-associated hepatocellular carcinoma 2002–2033: The ITA.LI.CA database. Gut 2023, 72, 141–152. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef]
- Shah, P.A.; Patil, R.; Harrison, S.A. NAFLD-related hepatocellular carcinoma: The growing challenge. Hepatology 2022. [Google Scholar] [CrossRef]
- Dhar, D.; Baglieri, J.; Kisseleva, T.; A Brenner, D. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020, 245, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef] [Green Version]
- Boyum, J.H.; Atwell, T.D.; Schmit, G.D.; Poterucha, J.J.; Schleck, C.D.; Harmsen, W.S.; Kamath, P.S. Incidence and Risk Factors for Adverse Events Related to Image-Guided Liver Biopsy. Mayo Clin. Proc. 2016, 91, 329–335. [Google Scholar] [CrossRef]
- Agbim, U.; Asrani, S.K. Non-invasive assessment of liver fibrosis and prognosis: An update on serum and elastography markers. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Ruffillo, G.; Fassio, E.; Alvarez, E.; Landeira, G.; Longo, C.; Domínguez, N.; Gualano, G. Comparison of NAFLD fibrosis score and BARD score in predicting fibrosis in nonalcoholic fatty liver disease. J. Hepatol. 2011, 54, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Zhu, S.; Xiao, X.; Yan, L.; Yang, J.; Wu, G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017, 66, 1486–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, E.A.; Mózes, F.E.; Jayaswal, A.N.A.; Zafarmand, M.H.; Vali, Y.; Lee, J.A.; Levick, C.K.; Young, L.A.J.; Palaniyappan, N.; Liu, C.-H.; et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2021, 75, 770–785. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E. The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance-From the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [Green Version]
- Berzigotti, A.; Tsochatzis, E.; Boursier, J.; Castera, L.; Cazzagon, N.; Friedrich-Rust, M.; Petta, S.; Thiele, M. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- Sandrin, L.; Fourquet, B.; Hasquenoph, J.-M.; Yon, S.; Fournier, C.; Mal, F.; Christidis, C.; Ziol, M.; Poulet, B.; Kazemi, F.; et al. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med. Biol. 2003, 29, 1705–1713. [Google Scholar] [CrossRef]
- Muller, M.; Gennisson, J.-L.; Deffieux, T.; Tanter, M.; Fink, M. Quantitative Viscoelasticity Mapping of Human Liver Using Supersonic Shear Imaging: Preliminary In Vivo Feasability Study. Ultrasound Med. Biol. 2009, 35, 219–229. [Google Scholar] [CrossRef]
- Nightingale, K.; Soo, M.S.; Nightingale, R.; Trahey, G. Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility. Ultrasound Med. Biol. 2002, 28, 227–235. [Google Scholar] [CrossRef]
- Muthupillai, R.; Lomas, D.J.; Rossman, P.J.; Greenleaf, J.F.; Manduca, A.; Ehman, R.L. Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves. Science 1995, 269, 1854–1857. [Google Scholar] [CrossRef]
- Shili-Masmoudi, S.; Wong, G.L.; Hiriart, J.; Liu, K.; Chermak, F.; Shu, S.S.; Foucher, J.; Tse, Y.; Bernard, P.; Yip, T.C.; et al. Liver stiffness measurement predicts long-term survival and complications in non-alcoholic fatty liver disease. Liver Int. 2020, 40, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Sebastiani, G.; Viganò, M.; Ampuero, J.; Wong, V.W.-S.; Boursier, J.; Berzigotti, A.; Bugianesi, E.; Fracanzani, A.L.; Cammà, C.; et al. Monitoring Occurrence of Liver-Related Events and Survival by Transient Elastography in Patients With Nonalcoholic Fatty Liver Disease and Compensated Advanced Chronic Liver Disease. Clin. Gastroenterol. Hepatol. 2021, 19, 806–815.e5. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Beaugrand, M.; de Ledinghen, V.; Douvin, C.; Marcellin, P.; Poupon, R.; Sandrin, L.; Miette, V. Controlled Attenuation Parameter (CAP): A Novel VCTE™ Guided Ultrasonic Attenuation Measurement for the Evaluation of Hepatic Steatosis: Preliminary Study and Validation in a Cohort of Patients with Chronic Liver Disease from Various Causes. Ultrasound Med. Biol. 2010, 36, 1825–1835. [Google Scholar] [CrossRef]
- Liu, K.; Wong, V.W.-S.; Lau, K.; Du Liu, S.; Tse, Y.-K.; Yip, T.C.-F.; Kwok, R.; Chan, A.Y.-W.; Chan, H.L.-Y.; Wong, G.L.-H. Prognostic Value of Controlled Attenuation Parameter by Transient Elastography. Am. J. Gastroenterol. 2017, 112, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Izumi, T.; Sho, T.; Morikawa, K.; Shigesawa, T.; Suzuki, K.; Nakamura, A.; Ohara, M.; Kawagishi, N.; Umemura, M.; Shimazaki, T.; et al. Assessing the risk of hepatocellular carcinoma by combining liver stiffness and the controlled attenuation parameter. Hepatol. Res. 2019, 49, 1207–1217. [Google Scholar] [CrossRef]
- Braude, M.; Roberts, S.; Majeed, A.; Lubel, J.; Prompen, J.; Dev, A.; Sievert, W.; Bloom, S.; Gow, P.; Kemp, W. Liver stiffness (Fibroscan®) is a predictor of all-cause mortality in people with non-alcoholic fatty liver disease. Liver Int. 2022, 43, 90–99. [Google Scholar] [CrossRef]
- Sugihara, T.; Koda, M.; Matono, T.; Okamoto, K.; Murawaki, Y.; Isomoto, H.; Tokunaga, S. Risk Assessment of Hepatocellular Carcinoma in General Population by Liver Stiffness in Combination with Controlled Attenuation Parameter using Transient Elastography: A Cross Sectional Study. Yonago Acta Medica 2017, 60, 106–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Sinn, D.H.; Park, S.Y.; Shin, H.J.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Oh, J.H.; et al. Liver Stiffness-Based Risk Prediction Model for Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease. Cancers 2021, 13, 4567. [Google Scholar] [CrossRef]
- Miura, K.; Maeda, H.; Morimoto, N.; Watanabe, S.; Tsukui, M.; Takaoka, Y.; Nomoto, H.; Goka, R.; Kotani, K.; Yamamoto, H. Utility of FibroScan-based scoring systems to narrow the risk group of nonalcoholic fatty liver disease with comorbidities. World J. Gastrointest. Pathophysiol. 2022, 13, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Park, C.C.; Nguyen, P.; Hernandez, C.; Bettencourt, R.; Ramirez, K.; Fortney, L.; Hooker, J.; Sy, E.; Savides, M.T.; Alquiraish, M.H.; et al. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 598–607.e2. [Google Scholar] [CrossRef]
- Imajo, K.; Kessoku, T.; Honda, Y.; Tomeno, W.; Ogawa, Y.; Mawatari, H.; Fujita, K.; Yoneda, M.; Taguri, M.; Hyogo, H.; et al. Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography. Gastroenterology 2016, 150, 626–637.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.A.; Kim, S.-S.; Choi, J.-Y.; Seo, Y.S.; Park, B.J.; Sim, K.C. Magnetic resonance imaging improves stratification of fibrosis and steatosis in patients with chronic liver disease. Abdom. Imaging 2022, 47, 3733–3745. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yin, M.; Talwalkar, J.A.; Oudry, J.; Glaser, K.J.; Smyrk, T.C.; Miette, V.; Sandrin, L.; Ehman, R.L.; O’Shea, A.; et al. Diagnostic Performance of MR Elastography and Vibration-controlled Transient Elastography in the Detection of Hepatic Fibrosis in Patients with Severe to Morbid Obesity. Radiology 2017, 283, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, C.; Caussy, C.; Imajo, K.; Chen, J.; Singh, S.; Kaulback, K.; Le, M.-D.; Hooker, J.; Tu, X.; Bettencourt, R.; et al. Magnetic Resonance vs Transient Elastography Analysis of Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Pooled Analysis of Individual Participants. Clin. Gastroenterol. Hepatol. 2019, 17, 630–637.e8. [Google Scholar] [CrossRef] [Green Version]
- Anaparthy, R.; Talwalkar, J.A.; Yin, M.; Roberts, L.R.; Fidler, J.L.; Ehman, R.L. Liver stiffness measurement by magnetic resonance elastography is not associated with developing hepatocellular carcinoma in subjects with compensated cirrhosis. Aliment. Pharmacol. Ther. 2011, 34, 83–91. [Google Scholar] [CrossRef]
- Ichikawa, S.; Motosugi, U.; Enomoto, N.; Onishi, H. Magnetic resonance elastography can predict development of hepatocellular carcinoma with longitudinally acquired two-point data. Eur. Radiol. 2019, 29, 1013–1021. [Google Scholar] [CrossRef]
- Higuchi, M.; Tamaki, N.; Kurosaki, M.; Inada, K.; Kirino, S.; Yamashita, K.; Hayakawa, Y.; Osawa, L.; Takaura, K.; Maeyashiki, C.; et al. Longitudinal association of magnetic resonance elastography-associated liver stiffness with complications and mortality. Aliment. Pharmacol. Ther. 2022, 55, 292–301. [Google Scholar] [CrossRef]
- Ajmera, V.; Kim, B.K.; Yang, K.; Majzoub, A.M.; Nayfeh, T.; Tamaki, N.; Izumi, N.; Nakajima, A.; Idilman, R.; Gumussoy, M.; et al. Liver Stiffness on Magnetic Resonance Elastography and the MEFIB Index and Liver-Related Outcomes in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Individual Participants. Gastroenterology 2022, 163, 1079–1089.e5. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- White, D.L.; Kanwal, F.; El–Serag, H.B. Association between Nonalcoholic Fatty Liver Disease and Risk for Hepatocellular Cancer, Based on Systematic Review. Clin. Gastroenterol. Hepatol. 2012, 10, 1342–1359. [Google Scholar] [CrossRef] [Green Version]
- Masuzaki, R.; Tateishi, R.; Yoshida, H.; Yoshida, H.; Sato, S.; Kato, N.; Kanai, F.; Sugioka, Y.; Ikeda, H.; Shiina, S.; et al. Risk Assessment of Hepatocellular Carcinoma in Chronic Hepatitis C Patients by Transient Elastography. J. Clin. Gastroenterol. 2008, 42, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.S.; Kim, S.U.; Ahn, S.H.; Park, Y.N.; Kim, D.Y.; Park, J.Y.; Chon, C.Y.; Choi, E.H.; Han, K.-H. Risk assessment of hepatitis B virus-related hepatocellular carcinoma development using liver stiffness measurement (FibroScan). Hepatology 2011, 53, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Kim, S.U.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.-H.; Kim, B.K. Liver stiffness-based model for prediction of hepatocellular carcinoma in chronic hepatitis B virus infection: Comparison with histological fibrosis. Liver Int. 2015, 35, 1054–1062. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Ma, L.-N.; Yan, T.-T.; Lu, Z.-H.; Tang, Y.-Y.; Luo, X.; Ding, X.-C. Combined detection of liver stiffness and C-reactive protein in patients with hepatitis B virus-related liver cirrhosis, with and without hepatocellular carcinoma. Mol. Clin. Oncol. 2016, 4, 587–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.S.; Seo, Y.S.; Kim, Y.S.; Lee, C.H.; Lee, H.A.; Um, S.H.; Yoo, J.-J.; Kim, S.G.; Suh, S.J.; Jung, Y.K.; et al. Reduced risk of hepatocellular carcinoma by achieving a subcirrhotic liver stiffness through antiviral agents in hepatitis B virus-related advanced fibrosis or cirrhosis. J. Gastroenterol. Hepatol. 2018, 33, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Yamamoto, Y.; Baba, M.; Suda, G.; Kubo, A.; Tokuchi, Y.; Kitagataya, T.; Yamada, R.; Shigesawa, T.; Suzuki, K.; et al. Prediction of hepatocellular carcinoma using age and liver stiffness on transient elastography after hepatitis C virus eradication. Sci. Rep. 2022, 12, 1449. [Google Scholar] [CrossRef] [PubMed]
- Gyotoku, Y.; Shirahashi, R.; Suda, T.; Tamano, M. Role of liver stiffness measurements in patients who develop hepatocellular carcinoma after clearance of the hepatitis C virus. J. Med. Ultrason. 2021, 49, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Kumada, T.; Toyoda, H.; Yasuda, S.; Sone, Y.; Ogawa, S.; Takeshima, K.; Tada, T.; Ito, T.; Sumida, Y.; Tanaka, J. Prediction of Hepatocellular Carcinoma by Liver Stiffness Measurements Using Magnetic Resonance Elastography After Eradicating Hepatitis C Virus. Clin. Transl. Gastroenterol. 2021, 12, e00337. [Google Scholar] [CrossRef]
Advantages | Disadvantages | |
---|---|---|
Serum test-based scores (NAFLD fibrosis score, BARD score) [22] |
|
|
Ultrasound-based elastography [23,24] |
|
|
Magnetic resonance elastography [23,24] |
|
|
Author (year) | Study Population (n) | LSM and HCC Risk |
---|---|---|
Sugihara (2017) [37] | 181 (NAFLD/NASH, HBV, HCV) | LSM alone (cutoff 5.3 kPa): HCC detection → 100% sensitivity, 75% specificity, 0.88 AUROC |
HCC: 3 | Association LSM+CAP (LSM cutoff 5.3 kPa with any CAP; CAP > 248 dB/m with any LSM): effectiveness in identifying subjects with liver disease at high risk for HCC → 90% sensitivity, 55% specificity, 10% positive predictive value, 99% negative predictive value; p = 0.006 | |
Liu (2017) [34] | 4284 (1542 NAFLD of any degree) | LSM independently predicted liver-related events (including HCC) |
HCC: 34 | CAP ≥ 248 dB/m: no significant predictor for HCC occurrence in multivariate analysis (on univariate analysis: HR 0.485 with 95% CI 0.240–0.980; p = 0.044; continuous variable: HR 0.995 with 95% CI 0.990–1.000; p = 0.068) | |
Izumi (2019) [35] | 1054 (258 NAFLD of any degree)HCC: 88 | Higher HCC incidence (in NAFLD subgroup):
|
Shili-Masmoudi (2020) [31] | 2251 NAFLD of any degree | LSM < 12 kPa: HCC incidence → 0.32% LSM between 12 and 18 kPa: HCC incidence → 0.58% LSM between 18 and 38 kPa: HCC incidence → 9.26% LSM > 38 kPa: HCC incidence → 13.3% |
Lee (2021) [38] | NAFLD of any degree:
| LS ≥9.3 kPa (HR 13.8) in a multivariate analysis with non-US variables: age ≥60 years (HR 9.1), AST > 34 IU/L, platelet count <150 × 103/μL (HR 3.7), LS ≥9.3 kPa (HR 13.8).AUC for HCC prediction:
|
Petta (2021) [32] | 1039 NAFLD with cACLD | Δ-LSM significant predictor of HCC occurrence (HR: 1.72; 95% CI, 1.01–3.02; p = 0.04):
|
Braude (2022) [36] | 22653 NAFLD HCC: 13 | LS increase: growth in overall mortality (including HCC: HR 1.02 per kPa, CI 1.01–1.03, p < 0.001) VCTE-LSM >10 kPa: related with mortality (HR 2.31, CI 1.73–3.09, p < 0.001) CAP: not associated with risk of death in univariate analysis (HR 1.00, CI 1.0–1.0, p = 0.488) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerrito, L.; Mignini, I.; Ainora, M.E.; Mosoni, C.; Gasbarrini, A.; Zocco, M.A. Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: The Prognostic Role of Liver Stiffness Measurement. Cancers 2023, 15, 637. https://doi.org/10.3390/cancers15030637
Cerrito L, Mignini I, Ainora ME, Mosoni C, Gasbarrini A, Zocco MA. Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: The Prognostic Role of Liver Stiffness Measurement. Cancers. 2023; 15(3):637. https://doi.org/10.3390/cancers15030637
Chicago/Turabian StyleCerrito, Lucia, Irene Mignini, Maria Elena Ainora, Carolina Mosoni, Antonio Gasbarrini, and Maria Assunta Zocco. 2023. "Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: The Prognostic Role of Liver Stiffness Measurement" Cancers 15, no. 3: 637. https://doi.org/10.3390/cancers15030637
APA StyleCerrito, L., Mignini, I., Ainora, M. E., Mosoni, C., Gasbarrini, A., & Zocco, M. A. (2023). Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: The Prognostic Role of Liver Stiffness Measurement. Cancers, 15(3), 637. https://doi.org/10.3390/cancers15030637