The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. AI in the Diagnosis and Classification of Thyroid Nodules
3.1. Ultrasonography
3.2. Cytopathology
3.3. Whole-Slide Imaging of Frozen Sections
3.4. Probe Electrospray Ionization Tandem Mass Spectrometry (PESI–MS)
3.5. Nuclear Medicine
3.6. Optimization of the Diagnosis Process
3.7. Related Works
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
AUC | an area under the ROC curve |
CAD | computer-aided diagnosis |
CNN | convolutional neural network |
DL | Deep-Learning |
FFPE | formalin-fixed and paraffin-embedded |
FFT | Fast Fourier Transform |
FNAB | fine needle aspiration biopsy |
FS | frozen section |
NPV | negative predictive value |
PESI-MS | probe electrospray ionization tandem mass spectrometry |
PTC | papillary thyroid carcinoma |
ROC | receiver operating characteristic |
ROI | region of interest |
SPECT | single-photon emission computed tomography |
SVM | support vector machine |
TBSRTC | The Bethesda System for the Reporting of Thyroid Cytopathology |
US | ultrasound |
WSI | whole slide image |
References
- Parsa, A.A.; Gharib, H. Epidemiology of Thyroid Nodules. In Contemporary Endocrinology; Totowa, United States, Humana Press Inc.: Totowa, NJ, USA, 2018; pp. 1–11. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Sosa, J.A. The Changing Incidence of Thyroid Cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Brito, J.P.; Vaccarella, S. Long-Term Declines of Thyroid Cancer Mortality: An International Age-Period-Cohort Analysis. Thyroid 2020, 30, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Dal Maso, L. Thyroid Cancer Incidence Trends by Histology in 25 Countries: A Population-Based Study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaul, V.; Enslin, S.; Gross, S.A. History of Artificial Intelligence in Medicine. In Gastrointestinal Endoscopy; Amsterdam, Netherlands, Mosby Inc.: Amsterdam, The Netherlands, 2020; pp. 807–812. [Google Scholar] [CrossRef]
- Mintz, Y.; Brodie, R. Introduction to Artificial Intelligence in Medicine. Minim. Invasive Ther. Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Yang, Y.J.; Bang, C.S. Application of Artificial Intelligence in Gastroenterology. World J. Gastroenterol. 2019, 25, 1666. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Lopez-Jimenez, F.; Attia, Z.; Arruda-Olson, A.M.; Carter, R.; Chareonthaitawee, P.; Jouni, H.; Kapa, S.; Lerman, A.; Luong, C.; Medina-Inojosa, J.R.; et al. Artificial Intelligence in Cardiology: Present and Future. In Mayo Clinic Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; pp. 1015–1039. [Google Scholar] [CrossRef]
- Huynh, E.; Hosny, A.; Guthier, C.; Bitterman, D.S.; Petit, S.F.; Haas-Kogan, D.A.; Kann, B.; Aerts, H.J.W.L.; Mak, R.H. Artificial Intelligence in Radiation Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 771–781. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial Intelligence and Deep Learning in Ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.Y.; Guo, Y.; Shen, M.; Yang, G.Z. Application of Artificial Intelligence in Surgery. Front. Med. 2020, 14, 417–430. [Google Scholar] [CrossRef]
- Christou, C.D.; Tsoulfas, G. Challenges and Opportunities in the Application of Artificial Intelligence in Gastroenterology and Hepatology. World J. Gastroenterol. 2021, 27, 6191–6223. [Google Scholar] [CrossRef]
- Kröner, P.T.; Engels, M.M.L.; Glicksberg, B.S.; Johnson, K.W.; Mzaik, O.; van Hooft, J.E.; Wallace, M.B.; El-Serag, H.B.; Krittanawong, C. Artificial Intelligence in Gastroenterology: A State-of-the-Art Review. World J. Gastroenterol. 2021, 27, 6794–6824. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A. Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [Green Version]
- Castellana, M.; Castellana, C.; Treglia, G.; Giorgino, F.; Giovanella, L.; Russ, G.; Trimboli, P. Performance of Five Ultrasound Risk Stratification Systems in Selecting Thyroid Nodules for FNA. J. Clin. Endocrinol. Metab. 2020, 105, 1659–1669. [Google Scholar] [CrossRef]
- Shreyamsa, M.; Mishra, A.; Ramakant, P.; Parihar, A.; Singh, K.; Rana, C.; Mouli, S. Comparison of Multimodal Ultrasound Imaging with Conventional Ultrasound Risk Stratification Systems in Presurgical Risk Stratification of Thyroid Nodules. Indian J. Endocrinol. Metab. 2020, 24, 537–542. [Google Scholar] [CrossRef]
- Tessler, F.N.; Middleton, W.D.; Grant, E.G.; Hoang, J.K.; Berland, L.L.; Teefey, S.A.; Cronan, J.J.; Beland, M.D.; Desser, T.S.; Frates, M.C.; et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 2017, 14, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Ha, E.J.; Na, D.G.; Baek, J.H. Korean Thyroid Imaging Reporting and Data System: Current Status, Challenges, and Future Perspectives. Korean J. Radiol. 2021, 22, 1569. [Google Scholar] [CrossRef]
- Russ, G.; Bonnema, S.J.; Erdogan, M.F.; Durante, C.; Ngu, R.; Leenhardt, L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur. Thyroid. J. 2017, 6, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Russ, G. Risk Stratification of Thyroid Nodules on Ultrasonography with the French TI-RADS: Description and Reflections. Ultrasonography 2015, 35, 25. [Google Scholar] [CrossRef] [Green Version]
- England, J.R.; Cheng, P.M. Artificial Intelligence for Medical Image Analysis: A Guide for Authors and Reviewers. Am. J. Roentgenol. 2019, 212, 513–519. [Google Scholar] [CrossRef]
- Rashidi, H.H.; Tran, N.K.; Betts, E.V.; Howell, L.P.; Green, R. Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Acad. Pathol. 2019, 6, 2374289519873088. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in Cancer Imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, P. Convolutional Neural Network. In MATLAB Deep Learning; New York, United States, Apress: New York, NY, USA, 2017; pp. 121–147. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichy, R.M.; Kaiser, D. Deep Neural Networks as Scientific Models. Trends Cogn. Sci. 2019, 23, 305–317. [Google Scholar] [CrossRef] [Green Version]
- He, L.-T.; Chen, F.-J.; Zhou, D.-Z.; Zhang, Y.-X.; Li, Y.-S.; Tang, M.-X.; Tang, J.-X.; Liu, S.; Chen, Z.-J.; Tang, Q. A Comparison of the Performances of an Artificial Intelligence System and Radiologists in the Ultrasound Diagnosis of Thyroid Nodules. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2022, 18, 1369–1377. [Google Scholar] [CrossRef]
- Peng, S.; Liu, Y.; Zhou, Q.M.; Wang MPH, H.; Lai, F.M.; Zheng, Q.; Li, Y.; Xiao, H.; Liu, U.Y.; Liang, J.; et al. Deep Learning-Based Artificial Intelligence Model to Assist Thyroid Nodule Diagnosis and Management: A Multicentre Diagnostic Study. Lancet Digit. Health 2021, 3, e250–e259. [Google Scholar] [CrossRef]
- Buda, M.; Wildman-Tobriner, B.; Hoang, J.K.; Thayer, D.; Tessler, F.N.; Middleton, W.D.; Mazurowski, M.A. Management of Thyroid Nodules Seen on Us Images: Deep Learning May Match Performance of Radiologists. Radiology 2019, 292, 695–701. [Google Scholar] [CrossRef]
- Wei, Q.; Zeng, S.E.; Wang, L.P.; Yan, Y.J.; Wang, T.; Xu, J.W.; Zhang, M.Y.; Lv, W.Z.; Cui, X.W.; Dietrich, C.F. The Value of S-Detect in Improving the Diagnostic Performance of Radiologists for the Differential Diagnosis of Thyroid Nodules. Med. Ultrason. 2020, 22, 415–423. [Google Scholar] [CrossRef]
- Barczynski, M.; Stopa-Barczynska, M.; Wojtczak, B.; Czarniecka, A.; Konturek, A. Clinical Validation of S-DetectTM Mode in Semi-Automated Ultrasound Classification of Thyroid Lesions in Surgical Office. Gland Surg. 2020, 9, S77–S85. [Google Scholar] [CrossRef]
- Song, J.; Chai, Y.J.; Masuoka, H.; Park, S.W.; Kim, S.J.; Choi, J.Y.; Kong, H.J.; Lee, K.E.; Lee, J.; Kwak, N.; et al. Ultrasound Image Analysis Using Deep Learning Algorithm for the Diagnosis of Thyroid Nodules. Medicine 2019, 98, e15133. [Google Scholar] [CrossRef]
- Zhu, Y.-C.; Jin, P.-F.; Bao, J.; Jiang, Q.; Wang, X. Thyroid Ultrasound Image Classification Using a Convolutional Neural Network. Ann. Transl. Med. 2021, 9, 1526. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Gao, M.; Yu, R.; Liu, Z.; Gu, Q.; Liu, X.; Zheng, Z.; Zheng, X.; Zhu, J.; Zhang, S. Ensemble Deep Learning Model for Multicenter Classification of Thyroid Nodules on Ultrasound Images. Med. Sci. Monit. 2020, 26, e926096-1. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Paul, A.K.; Kim, N.; Baek, J.H.; Choi, Y.J.; Ha, E.J.; Lee, K.D.; Lee, H.S.; Shin, D.S.; Kim, N. Computer-Aided Diagnosis for Classifying Benign versus Malignant Thyroid Nodules Based on Ultrasound Images: A Comparison with Radiologist-Based Assessments. Med. Phys. 2016, 43, 554–567. [Google Scholar] [CrossRef]
- Kim, H.L.; Ha, E.J.; Han, M. Real-World Performance of Computer-Aided Diagnosis System for Thyroid Nodules Using Ultrasonography. Ultrasound Med. Biol. 2019, 45, 2672–2678. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Yao, J.; Zhou, W.; Dong, Y.; Xu, S.; Zhou, J.; Zhan, W. A Computer-Aided Diagnosing System in the Evaluation of Thyroid Nodules-Experience in a Specialized Thyroid Center. World J. Surg. Oncol. 2019, 17, 1–8. [Google Scholar] [CrossRef]
- Ouyang, F.S.; Guo, B.L.; Ouyang, L.Z.; Liu, Z.W.; Lin, S.J.; Meng, W.; Huang, X.Y.; Chen, H.X.; Qiu-Gen, H.; Yang, S.M. Comparison between Linear and Nonlinear Machine-Learning Algorithms for the Classification of Thyroid Nodules. Eur. J. Radiol. 2019, 113, 251–257. [Google Scholar] [CrossRef]
- Park, V.Y.; Han, K.; Seong, Y.K.; Park, M.H.; Kim, E.K.; Moon, H.J.; Yoon, J.H.; Kwak, J.Y. Diagnosis of Thyroid Nodules: Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.T.; Kang, J.K.; Pham, T.D.; Batchuluun, G.; Park, K.R. Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence. Sensors 2020, 20, 1822. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, Y.; Chang, Q.; Liu, T.; Zhang, S.; Wang, X.; Guo, Q.; Yao, J.; Sun, W.; Niu, L. Evaluation of a Deep Learning-Based Computer-Aided Diagnosis System for Distinguishing Benign from Malignant Thyroid Nodules in Ultrasound Images. Med. Phys. 2020, 47, 3952–3960. [Google Scholar] [CrossRef]
- Thomas, J.; Haertling, T. AIBx, Artificial Intelligence Model to Risk Stratify Thyroid Nodules. Thyroid 2020, 30, 878–884. [Google Scholar] [CrossRef]
- Swan, K.Z.; Thomas, J.; Nielsen, V.E.; Jespersen, M.L.; Bonnema, S.J. External Validation of AIBx, an Artificial Intelligence Model for Risk Stratification, in Thyroid Nodules. Eur. Thyroid J. 2022, 11, e210129. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.N.; Yip, L.; Lubitz, C.C.; Grubbs, E.G.; Miller, B.S.; Shen, W.; Angelos, P.; Chen, H.; Doherty, G.M.; Fahey, T.J.; et al. Executive Summary of the American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Thyroid Disease in Adults. Ann. Surg. 2020, 271, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Baek, J.H.; Chung, J.; Ha, E.J.; Kim, J.H.; Lee, Y.H.; Lim, H.K.; Moon, W.J.; Na, D.G.; Park, J.S.; et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 2016, 17, 370–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliszewski, K.; Ludwig, M.; Ludwig, B.; Mikuła, A.; Greniuk, M.; Rudnicki, J. Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years? Cancers 2022, 14, 3643. [Google Scholar] [CrossRef]
- Kakudo, K.; Kameyama, K.; Miyauchi, A.; Nakamura, H. Introducing the reporting system for thyroid fine-needle aspiration cytology according to the new guidelines of the Japan Thyroid Association. Endocr. J. 2014, 61, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Z.; Zhang, L.; Zhong, D.; Di, J.; Li, X.; Lei, Y.; Li, J.; Liu, Y.; Jiang, R.; et al. Fast Classification of Thyroid Nodules with Ultrasound Guided-Fine Needle Biopsy Samples and Machine Learning. Appl. Sci. 2022, 12, 5364. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, Y.; Ping, B.; Li, D.; Du, J.; Qin, Y.; Lu, H.; Wan, X.; Xiang, J. Deep Convolutional Neural Network VGG-16 Model for Differential Diagnosing of Papillary Thyroid Carcinomas in Cytological Images: A Pilot Study. J. Cancer 2019, 10, 4876–4882. [Google Scholar] [CrossRef]
- Sanyal, P.; Mukherjee, T.; Barui, S.; Das, A.; Gangopadhyay, P. Artificial Intelligence in Cytopathology: A Neural Network to Identify Papillary Carcinoma on Thyroid Fine-Needle Aspiration Cytology Smears. J. Pathol. Inform. 2018, 9, 43. [Google Scholar] [CrossRef]
- Elliott Range, D.D.; Dov, D.; Kovalsky, S.Z.; Henao, R.; Carin, L.; Cohen, J. Application of a Machine Learning Algorithm to Predict Malignancy in Thyroid Cytopathology. Cancer Cytopathol. 2020, 128, 287–295. [Google Scholar] [CrossRef]
- Dov, D.; Kovalsky, S.Z.; Feng, Q.; Assaad, S.; Cohen, J.; Bell, J.; Henao, R.; Carin, L.; Range, D.E. Use of Machine Learning–Based Software for the Screening of Thyroid Cytopathology Whole Slide Images. Arch. Pathol. Lab. Med. 2022, 146, 872–878. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, Q.; Lao, I.; Wang, L.; Wu, Y.; Li, D.; Ji, Q.; Wang, Y.; Zhu, Y.; Lu, H.; et al. Using Deep Convolutional Neural Networks for Multi-Classification of Thyroid Tumor by Histopathology: A Large-Scale Pilot Study. Ann. Transl. Med. 2019, 7, 468. [Google Scholar] [CrossRef]
- Wong, C.K.M.; Wheeler, M.H. Thyroid Nodules: Rational Management. World J. Surg. 2000, 24, 934–941. [Google Scholar] [CrossRef]
- Prades, J.M.; Querat, C.; Dumollard, J.M.; Richard, C.; Gavid, M.; Timoshenko, A.A.; Peoc’h, M.; Martin, C. Thyroid Nodule Surgery: Predictive Diagnostic Value of Fine-Needle Aspiration Cytology and Frozen Section. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2013, 130, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Bollig, C.A.; Jorgensen, J.B.; Zitsch, R.P.; Dooley, L.M. Utility of Intraoperative Frozen Section in Large Thyroid Nodules. Otolaryngol.—Head Neck Surg. 2019, 160, 49–56. [Google Scholar] [CrossRef]
- Posillico, S.E.; Wilhelm, S.M.; McHenry, C.R. The Utility of Frozen Section Examination for Determining the Extent of Thyroidectomy in Patients with a Thyroid Nodule and “Atypia/Follicular Lesion of Undetermined Significance”. Am. J. Surg. 2015, 209, 552–556. [Google Scholar] [CrossRef]
- Roychoudhury, S.; Souza, F.; Gimenez, C.; Glass, R.; Cocker, R.; Chau, K.; Kohn, N.; Das, K. Utility of Intraoperative Frozen Sections for Thyroid Nodules with Prior Fine Needle Aspiration Cytology Diagnosis. Diagn. Cytopathol. 2017, 45, 789–794. [Google Scholar] [CrossRef]
- Antic, T.; Taxy, J.B. Thyroid frozen section: Supplementary or unnecessary? Am. J. Surg. Pathol. 2013, 37, 282–286. [Google Scholar] [CrossRef]
- Sanabria, A.; Zafereo, M.; Thompson, L.D.R.; Hernandez-Prera, J.C.; Kowalski, L.P.; Nixon, I.J.; Shaha, A.; Rodrigo, J.P.; Mäkitie, A.; van der Poorten, V.; et al. Frozen Section in Thyroid Gland Follicular Neoplasms: It’s High Time to Abandon It! Surg. Oncol. 2021, 36, 76–81. [Google Scholar] [CrossRef]
- Kahmke, R.; Lee, W.T.; Puscas, L.; Scher, R.L.; Shealy, M.J.; Burch, W.M.; Esclamado, R.M. Utility of Intraoperative Frozen Sections during Thyroid Surgery. Int. J. Otolaryngol. 2013, 2013, 1–4. [Google Scholar] [CrossRef]
- Wong, Z.; Muthu, C.; Craik, J.; Carter, J.; Harman, C.R. Role of Intraoperative Frozen Section in the Management of Thyroid Nodules. ANZ J. Surg. 2004, 74, 1052–1055. [Google Scholar] [CrossRef]
- Trosman, S.J.; Bhargavan, R.; Prendes, B.L.; Burkey, B.B.; Scharpf, J. The Contemporary Utility of Intraoperative Frozen Sections in Thyroid Surgery. Am. J. Otolaryngol.—Head Neck Med. Surg. 2017, 38, 614–617. [Google Scholar] [CrossRef]
- Li, Y.; Chen, P.; Li, Z.; Su, H.; Yang, L.; Zhong, D. Rule-Based Automatic Diagnosis of Thyroid Nodules from Intraoperative Frozen Sections Using Deep Learning. Artif. Intell. Med. 2020, 108, 101918. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, C.; Guo, Q.; Ma, J.; Sun, F.; Lu, H. Deep Learning-Based Recognition of Different Thyroid Cancer Categories Using Whole Frozen-Slide Images. Front. Bioeng. Biotechnol. 2022, 10, 857377. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Shi, X.; Liang, Y.; Li, Y.; Yang, L.; Gader, P.D. Interactive Thyroid Whole Slide Image Diagnostic System Using Deep Representation. Comput. Methods Programs Biomed. 2020, 195, 105630. [Google Scholar] [CrossRef]
- Goemann, I.M.; Paixão, F.; Migliavacca, A.; Guimarães, J.R.; Scheffel, R.S.; Maia, A.L. Intraoperative Frozen Section Performance for Thyroid Cancer Diagnosis. Arch. Endocrinol. Metab. 2022, 66, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Mallick, R.; Stevens, T.M.; Winokur, T.S.; Asban, A.; Wang, T.N.; Lindeman, B.M.; Porterfield, J.R.; Chen, H. Is Frozen-Section Analysis during Thyroid Operation Useful in the Era of Molecular Testing? J. Am. Coll. Surg. 2019, 228, 474–479. [Google Scholar] [CrossRef]
- Marshall, R.; Alexander, D.; Fleming, J.; Grayson, J.; Peters, G.; Buczek, E. Utility of Intraoperative Frozen Sections of Thyroid Tissue in the Age of Molecular Testing. Clin. Otolaryngol. 2021, 46, 991–997. [Google Scholar] [CrossRef]
- Grisales, J.; Sanabria, A. Utility of Routine Frozen Section of Thyroid Nodules Classified as Follicular Neoplasm. Am. J. Clin. Pathol. 2020, 153, 210–220. [Google Scholar] [CrossRef]
- Najah, H.; Tresallet, C. Role of Frozen Section in the Surgical Management of Indeterminate Thyroid Nodules. Gland. Surg. 2019, 8 (Suppl. S2), S112–S117. [Google Scholar] [CrossRef]
- Siller, M.; Stangassinger, L.; Kreutzer, C.; Boor, P.; Bulow, R.; Kraus, T.; von Stillfried, S.; Wolfl, S.; Couillard-Despres, S.; Oostingh, G.; et al. On the Acceptance of “fake” Histopathology: A Study on Frozen Sections Optimized with Deep Learning. J. Pathol. Inf. 2022, 13, 6. [Google Scholar] [CrossRef]
- DeHoog, R.J.; Zhang, J.; Alore, E.; Lin, J.Q.; Yu, W.; Woody, S.; Almendariz, C.; Lin, M.; Engelsman, A.F.; Sidhu, S.B.; et al. Preoperative Metabolic Classification of Thyroid Nodules Using Mass Spectrometry Imaging of Fine-Needle Aspiration Biopsies. Proc. Natl. Acad. Sci. USA 2019, 116, 21401–21408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Sans, M.; Garza, K.Y.; Eberlin, L.S. Mass spectrometry technologies to advance care for cancer patients in clinical and intraoperative use. Mass Spectrom. Rev. 2021, 40, 692–720. [Google Scholar] [CrossRef] [PubMed]
- Pietrowska, M.; Diehl, H.C.; Mrukwa, G.; Kalinowska-Herok, M.; Gawin, M.; Chekan, M.; Elm, J.; Drazek, G.; Krawczyk, A.; Lange, D.; et al. Molecular Profiles of Thyroid Cancer Subtypes: Classification Based on Features of Tissue Revealed by Mass Spectrometry Imaging. Biochim. Biophys. Acta-Proteins Proteom. 2017, 1865, 837–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurczyk, A.; Gawin, M.; Chekan, M.; Wilk, A.; Łakomiec, K.; Mrukwa, G.; Fratczak, K.; Polanska, J.; Fujarewicz, K.; Pietrowska, M.; et al. Classification of Thyroid Tumors Based on Mass Spectrometry Imaging of Tissue Microarrays; a Single-Pixel Approach. Int. J. Mol. Sci. 2020, 21, 6289. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Ismail, M.; Israr, M.; Ali, N.; Zaman, J. Management of Solitary Thyroid Nodule. J. Postgrad. Med. Inst. 2005, 19, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Ma, C.; Liu, Y.; Wang, X. Thyroid Diagnosis from SPECT Images Using Convolutional Neural Network with Optimization. Comput. Intell. Neurosci. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Niedziela, M. Pathogenesis, Diagnosis and Management of Thyroid Nodules in Children. Endocr.-Relat. Cancer 2006, 13, 427–453. [Google Scholar] [CrossRef]
- Takashima, S.; Matsuzuka, F.; Nagareda, T.; Tomiyama, N.; Kozuka, T. Thyroid nodules associated with Hashimoto thyroiditis: Assessment with US. Radiology 1992, 185, 125–130. [Google Scholar] [CrossRef]
- Sarkar, S.D. Benign Thyroid Disease: What Is the Role of Nuclear Medicine? Semin. Nucl. Med. 2006, 36, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Li, L.; Bian, Y.; Li, G.; Han, X.; Li, M.; Liu, J.; Xue, Y.; Li, Y.; Hu, Y.; et al. Standardized Uptake Value Using Thyroid Quantitative SPECT/CT for the Diagnosis and Evaluation of Graves’ Disease: A Prospective Multicenter Study. BioMed Res. Int. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Pi, Y.; He, T.; Sun, J.; Wei, J.; Xiang, Y.; Jiang, L.; Li, L.; Yi, Z.; Zhao, Z.; et al. Automatic Differentiation of Thyroid Scintigram by Deep Convolutional Neural Network: A Dual Center Study. BMC Med. Imaging 2021, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Pi, Y.; He, T.; Zhou, K.; Zhong, X.; Liu, Y.; Wei, J.; Xiang, Y.; Jiang, L.; Li, L.; et al. Deep Convolution Neural Network Based Articial Intelligence Improves Diagnosis of Thyroid Scintigraphy for Thyrotoxicosis: A Dual Center Study. 2020; 3–17, preprint. [Google Scholar] [CrossRef]
- Qiao, T.; Liu, S.; Cui, Z.; Yu, X.; Cai, H.; Zhang, H.; Sun, M.; Lv, Z.; Li, D. Deep Learning for Intelligent Diagnosis in Thyroid Scintigraphy. J. Int. Med. Res. 2021, 49, 0300060520982842. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.M.; Iqbal, B. Remodeling 99mTc-Pertechnetate Thyroid Uptake: Statistical, Machine Learning, and Deep Learning Approaches. J. Nucl. Med. Technol. 2022, 50, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Medhus, J.B.; Tordrup, K.W.; Lauridsen, J.F.; Hansen, N.H.; Holdgaard, P.C.; Medhus, A.B. Development of an Artificial Intelligence Model Based on the VGG19 Network for Automated Detection of Hypofunctioning Lesions in Thyroid Scintigraphy. J. Nucl. Med. 2022, 63, 3236. [Google Scholar]
- Arabi, H.; AkhavanAllaf, A.; Sanaat, A.; Shiri, I.; Zaidi, H. The Promise of Artificial Intelligence and Deep Learning in PET and SPECT Imaging. Phys. Med. 2021, 83, 122–137. [Google Scholar] [CrossRef]
- Nensa, F.; Demircioglu, A.; Rischpler, C. Artificial Intelligence in Nuclear Medicine. J. Nucl. Med. 2019, 60, 29S–37S. [Google Scholar] [CrossRef]
- Shao, W.; Rowe, S.P.; Du, Y. Artificial Intelligence in Single Photon Emission Computed Tomography (SPECT) Imaging: A Narrative Review. Ann. Transl. Med. 2021, 9, 820. [Google Scholar] [CrossRef]
- Ma, L.; Ma, C.; Liu, Y.; Wang, X.; Xie, W. Diagnosis of Thyroid Diseases Using SPECT Images Based on Convolutional Neural Network. J. Med. Imaging Health Inf. 2018, 8, 1684–1689. [Google Scholar] [CrossRef]
- Schumacher, L.D.; Jäger, L.; Meier, R.; Rachamin, Y.; Senn, O.; Rosemann, T.; Markun, S. Trends and Between-Physician Variation in Laboratory Testing: A Retrospective Longitudinal Study in General Practice. J. Clin. Med. 2020, 9, 1787. [Google Scholar] [CrossRef]
- Lippi, G.; Bovo, C.; Ciaccio, M. Inappropriateness in Laboratory Medicine: An Elephant in the Room? Ann. Transl. Med. 2017, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Poly, T.N.; Yang, H.C.; Li, Y.C. Deep into Laboratory: An Artificial Intelligence Approach to Recommend Laboratory Tests. Diagnostics 2021, 11, 990. [Google Scholar] [CrossRef] [PubMed]
- Zhi, M.; Ding, E.L.; Theisen-Toupal, J.; Whelan, J.; Arnaout, R. The Landscape of Inappropriate Laboratory Testing: A 15-Year Meta-Analysis. PLoS ONE 2013, 8, e78962. [Google Scholar] [CrossRef] [Green Version]
- Crampton, N.; Kalia, S.; del Giudice, M.E.; Wintemute, K.; Sullivan, F.; Aliarzadeh, B.; Meaney, C.; Moineddin, R.; Singer, A.; Hinton, W.; et al. Over-Use of Thyroid Testing in Canadian and UK Primary Care in Frequent Attenders: A Cross-Sectional Study. Int. J. Clin. Pract. 2021, 75, e14144. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhou, Y.; Wang, T.; Chen, H.; Wu, L.; Ling, H.; Wanh, H.; Qiu, L.; Ye, D.; Wang, B. Accuracy of Ultrasound Diagnosis of Thyroid Nodules Based on Artificial Intelligence-Assisted Diagnostic Technology: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Potipimpanon, P.; Charakorn, N.; Hirunwiwatkul, P. A comparison of artificial intelligence versus radiologists in the diagnosis of thyroid nodules using ultrasonography: A systematic review and meta-analysis. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 5363–5373. [Google Scholar] [CrossRef]
- Girolami, I.; Marletta, S.; Pantanowitz, L.; Torresani, E.; Ghimenton, C.; Barbareschi, M.; Scarpa, A.; Brunelli, M.; Barresi, V.; Trimboli, P.; et al. Impact of image analysis and artificial intelligence in thyroid pathology, with particular reference to cytological aspects. Cytopathology 2020, 31, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Anari, S.; Tataei Sarshar, N.; Mahjoori, N.; Dorosti, S.; Rezaie, A. Review of deep learning approaches for thyroid cancer diagnosis. Math. Probl. Eng. 2022, 1–6. [Google Scholar] [CrossRef]
- Sorrenti, S.; Dolcetti, V.; Radzina, M.; Bellini, M.I.; Frezza, F.; Munir, K.; Grani, G.; Durante, C.; D’Andrea, V.; David, E.; et al. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers 2022, 14, 3357. [Google Scholar] [CrossRef] [PubMed]
Group | Sensitivity | Specificity | Accuracy | AUC |
---|---|---|---|---|
Junior radiologist ≤ 4y | 64–96% | 38–84% | 64–83% | 0.67–0.82 |
Senior radiologist > 8y | 75–97% | 63–96% | 73–94% | 0.73–0.86 |
AI system (CNN) | 74–95% | 65–94% | 73–94% | 0.78–0.94 |
CNN-assisted junior ≤ 4y radiologist | 87–95% | 59–81% | 75–87% | 0.76–0.87 |
Group | Sensitivity | Specificity | Accuracy | AUC |
---|---|---|---|---|
CNN [29,30,32,38,40,41] | 74–95% | 65–89% | 73–89% | 0.78–0.94 |
SVM [38,40,41] | 80–90% | 59–83% | 76–82% | 0.95 |
RF [40] | 0.95 | |||
NB [40] | 0.94 | |||
k-NN [40] | 0.94 | |||
Combined 2 CNN with FFT (MAX rule) [42] | 96% | 66% | 92% | |
Combined CNN-based and handcrafted-based features extraction Methods with SVM [43] | 96% | 83% | 93% | 0.88 |
AIBx [44,45] | 78–88% | 44–79% | 51–82% |
Paper | Differentiation between | Sample | Set of Images | Sensitivity [%] | Specificity [%] | Other [%] | |
---|---|---|---|---|---|---|---|
Q. Guan et al. [51] | PTC/Benign nodules | FNAB cytology | Training 759 Test 128 | 100 | 94.91 | ||
Sanyal P. et al. [52] | PTC/non-PTC | FNAB cytology | Training 370 Test 174 | 90.48 | 83.33 | Accuracy 85.06 | |
Elliott R. et al. [53] | Malignant/Benign | FNAB cytology | Training 799 Test 109 | 92 | 90.5 | ||
Li Y. et al. [66] | Malignant/Uncertain/Benign | FS WSI | Training 349 Test 259 | Malignant 88.6 Uncertain 100 Benign 71.8 | Combined classification accuracy 83,4 | ||
Zhu X. et al. [67] | Malignant/Rare/Benign | FS WSI | Training 496 Validation 114 | Test1 617 | AUC Malignant 98,6 | ||
Test2 764 | Rare Detection 88.2 | AUC Malignant 94,6 | |||||
Chen P. et al. [68] | Malignant/Uncertain/Benign | FS WSI | Totally 671 | Cross-validation classification accuracy 96.1 | |||
Wang Y. et al. [50] | Malignant/Benign | PESI-MS | Totally 208 Training: Test ratio 8: 2 | 88.9 | 95.7 | ||
Training 208 Test 17 | Accuracy 72.7 | ||||||
Training 208 Test 37 | Accuracy 82.4 |
Paper | Nuclear Medicine Technique | AI Model | Aim of the Model | Limitations |
---|---|---|---|---|
Yang P. et al. [85,86] | 99 m Tc-pertechnetate scintigraphy | Deep CNN | Classification of four patterns of thyroid scintigram: diffusely increased, diffusely decreased, locally increased, heterogeneous uptake. | Impact of minor differences in images acquired from different institutions and from different devices on the final diagnosis; imperfect differentiation of “heterogeneous uptake” pattern from “diffusely increased’ pattern. |
Qiao T. et al. [87] | 99 m Tc-pertechnetate scintigraphy | Deep CNN | Detection of Graves’ disease and subacute thyroiditis. | Relatively typical images of patients with Graves’ disease, subacute thyroiditis, and absence of thyroid disease were gathered to train the models; some image features regarded as suspicious were neglected and deleted from the model constructions (because of insufficient samples and class imbalances); images of more types of thyroid disease (especially thyroid nodules) need to be gathered. |
Currie G. et al. [88] | 99 m Tc-pertechnetate scintigraphy | ANN; CNN | Comparison of the effectiveness of scintigraphy with biochemical tests in the hyperthyroidism diagnosis. | Small group of patients (123) in the retrospective study; necessity to use an appropriately validated cutoff for the patient population. |
Medhus J. et al. [89] | 99 m Tc-pertechnetate scintigraphy | CNN | Detection and highlighting hypofunctioning lesions found on thyroid scintigraphy. | The impact of the quality of the images used for training on the accuracy of the model. |
Ma L. et al. [80] | SPECT | CNN | Diagnosis of three categories of diseases: Graves’ disease, Hashimoto disease, subacute thyroiditis. | Insufficiently detailed classification and diagnosis of thyroid diseases (because of too little data). |
Ma L. et al. [93] | SPECT | CNN | Distinguishing between four types of thyroid disease: hyperthyroidism, hypothyroidism, methylene inflammation, and Hashimoto’s disease. | Limited spectrum of distinguished thyroid pathologies. |
Paper | Authors | Year | Dataset | Aim |
---|---|---|---|---|
A Comparison of the Performances of an Artificial Intelligence System and Radiologists in the Ultrasound Diagnosis of Thyroid Nodules | He L.-T. et al. | 2022 | Training set containing 1421 images to evaluate 469 nodules in 426 patients | Evaluation of AI in diagnosing thyroid nodules and comparison with the performance of radiologists with different levels of experience |
Deep Learning-Based Artificial Intelligence Model to Assist Thyroid Nodule Diagnosis and Management: A Multicentre Diagnostic Study | Peng S. et al. | 2021 | Training set of 18,049 images of 8339 patients to evaluate 3 different study sets: Test A (2185 images of 1424 patients), Test B (1745 images of 1048 patients), Test C (366 images and videos of 303 patients) | Development of CNN for the diagnosis of thyroid nodules and evaluation how CNN could help radiologists improve their diagnostic performance |
Management of Thyroid Nodules Seen on Us Images: Deep Learning May Match Performance of Radiologists | Buda M. et al. | 2019 | Training set of 1278 nodules in 1139 patients to evaluate test set of 99 nodules in 91 patients | Development of AI for the diagnosis of thyroid nodules and deciding about biopsy. Comparison of AI performance and radiologists performance |
The Value of S-Detect in Improving the Diagnostic Performance of Radiologists for the Differential Diagnosis of Thyroid Nodules | Wei Q. et al. | 2020 | Study set of 204 thyroid nodules in 181 patients | Evaluation of AI in diagnosing thyroid nodules and evaluation how CNN could help radiologists to improve their diagnostic performance |
Clinical Validation of S-DetectTM Mode in Semi-Automated Ultrasound Classification of Thyroid Lesions in Surgical Office | Barczynski M. et al. [33] | 2020 | Study ser of 50 thyroid nodules in 50 patients | Development of CAD system for the diagnosis of thyroid nodules |
Ultrasound Image Analysis Using Deep Learning Algorithm for the Diagnosis of Thyroid Nodules | Song J. et al. [34] | 2019 | Training set of 1358 thyroid nodules to evaluate test set of 155 thyroid nodules | Development of CAD system for predicting FNAB results of thyroid nodules |
Thyroid Ultrasound Image Classification Using a Convolutional Neural Network | Zhu Y.-C. [35] | 2021 | Training set of 600 nodules in 592 patients to evaluate 200 nodules in 187 patients | Development of CNN algorithm for diagnosis of thyroid nodules |
Ensemble Deep Learning Model for Multicenter Classification of Thyroid Nodules on Ultrasound Images | Wei X. et al. [36] | 2020 | Training set of 17859 images to evaluate test set of 8682 images | Development of AI algorithm for diagnosis of thyroid nodules |
Computer-Aided Diagnosis for Classifying Benign versus Malignant Thyroid Nodules Based on Ultrasound Images: A Com-parison with Radiologist-Based Assessments | Chang Y. et al. [37] | 2016 | Test set of 59 thyroid nodules | Evaluation of CAD system for diagnosis of thyroid nodules |
Real-World Performance of Computer-Aided Diagnosis System for Thyroid Nodules Using Ultrasonography | Kim H. et al. [38] | 2019 | Study set of 106 patients with 218 thyroid nodules | Evaluation of the diagnostic performance of CAD system for detecting thyroid cancers |
A Computer-Aided Diagnosing System in the Evaluation of Thyroid Nodules-Experience in a Specialized Thyroid Center | Xia S. [39] | 2019 | Test set of 180 thyroid nodules in 171 patients | Evaluation of the diagnostic performance of CAD system for detecting thyroid cancers |
Comparison between Linear and Nonlinear Machine-Learning Algorithms for the Classification of Thyroid Nodules | Ouyang F. et al. [40] | 2019 | Training set of 700 nodules to evaluate test set of 479 nodules | Comparison of the classification performance of linear and nonlinear AI algorithms for the evaluation of thyroid nodules |
Diagnosis of Thyroid Nodules: Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists | Park V. Y. et al. [41] | 2019 | Training set of 4919 nodules to evaluate test set of 286 nodules in 265 patients | Development of deep learning-based CAD system for the diagnosis of thyroid nodules and comparing its performance with SVM-based CAD system |
Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence | Nguyen D. T. et al. [42] | 2020 | Training set of 237 images to evaluate test set of 61 images | Development of CAD system, that combine CNN and non-neural network algorithms to improve AI performance in diagnosis of thyroid nodule |
Evaluation of a Deep Learning-Based Computer-Aided Diagnosis System for Distinguishing Benign from Malignant Thyroid Nodules in Ultrasound Images | Sun C. et al. [43] | 2020 | Training set of 1037 nodules to evaluate test set of 550 nodules | Evaluation of AI in diagnosing thyroid nodules and comparison with the performance of radiologists |
AIBx, Artificial Intelligence Model to Risk Stratify Thyroid Nodules | Thomas J. et al. [44] | 2020 | Training set of 482 nodules to evaluate test set of 103 thyroid nodules | Development of image similarity algorithm for the diagnosis of thyroid nodules |
External Validation of AIBx, an Artificial Intelligence Model for Risk Stratification, in Thyroid Nodules | Swan K. et al. [45] | 2022 | Test set of 257 nodules in 209 patients | External validation of AIBx algorithm |
Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study | Q. Guan et al. [51] | 2019 | 887 images from 279 cytological smears each from a different patient | Use of AI to differentiate PTC from benign thyroid nodules using cytological images |
Artificial Intelligence in Cytopathology: A Neural Network to Identify Papillary Carcinoma on Thyroid FineNeedle Aspiration Cytology Smears | Sanyal P. et al. [52] | 2018 | 544 images from 30 cytological smears each from a different patient | Development of ANN with the purpose of distinguishing PTC and non-PTC on microphotographs from thyroid FNAB cytology smears |
Application of a Machine Learning Algorithm to Predict Malignancy in Thyroid Cytopathology | Elliott R. et al. [53] | 2020 | 908 WSIs from 659 different patients | Development of AI algorithm to evaluate thyroid FNAB via WSIs to predict malignancy and to identify ROIs |
Use of Machine Learning–Based Software for the Screening of Thyroid Cytopathology Whole Slide Images | Dov et al. [54] | 2022 | 908 WSIs from 659 different patients | Assessing the ability of AI and screening software to identify a group of informative ROIs on thyroid FNA WSI that can be used for definitive diagnosis |
Rule-based automatic diagnosis of thyroid nodules from intraoperative frozen sections using deep learning | Li Y. et al. [66] | 2020 | 608 WSIs | Defining thyroid nodules from intraoperative frozen sections as benign, uncertain, or malignant using AI |
Deep Learning-Based Recognition of Different Thyroid Cancer Categories Using Whole Frozen-Slide Images | Zhu X. et al. [67] | 2022 | 1374 WSIs | Predicting rare categories of thyroid cancer and recommending lesion areas annotated by AI to be rereviewed by pathologists |
Interactive Thyroid Whole Slide Image Diagnostic System using Deep Representation | Chen P. et al. [68] | 2020 | 345 WSIs | Classification of frozen sections of thyroid by AI into malignant, uncertain or benign based on the suspicious regions preselected by pathologists |
On the Acceptance of “Fake” Histopathology: A Study on Frozen Sections Optimized with Deep Learning | Siller et al. [74] | 2022 | 80 WSIs from 40 different patients | Translation of virtual frozen sections into virtual paraffin sections by AI |
Fast Classification of Thyroid Nodules with Ultrasound Guided-Fine Needle Biopsy Samples and Machine Learning | Wang Y. et al. [50] | 2022 | 267 FNAB samples each from a different patient | Determining the malignancy of thyroid nodules by using artificial intelligence, analyzing the PESI–MS results of FNAB samples |
Automatic differentiation of thyroid scintigram by deep convolutional neural network: a dual center study | Yang P. et al. [85] | 2021 | 3389 thyroid scintigrams | Development of AI system that classifies the four patterns of thyroid scintigrams: diffusely increased, diffusely decreased, local increased, heterogeneous uptake |
Deep Convolution Neural Network Based Articial Intelligence Improves Diagnosis of Thyroid Scintigraphy for Thyrotoxicosis: a Dual Center Study | Yang P. et al. [86] | 2020 | 3389 thyroid scintigrams | Development of AI system that classifies the four patterns of thyroid scintigrams: diffusely increased, diffusely decreased, local increased, heterogeneous uptake |
Deep learning for intelligent diagnosis in thyroid scintigraphy | Qiao T. et al. [87] | 2021 | 1430 patients who underwent thyroid scintigraphy | Construction of three DCNN models to diagnose Graves’ disease and subacute thyroiditis by thyroid scintigraphy |
Remodeling 99mTc-Pertechnetate Thyroid Uptake: Statistical, Machine Learning, and Deep Learning Approaches | Currie G. et al. [88] | 2022 | Thyroid scintigrams from 123 different patients | Comparison of the effectiveness of scintigraphy with biochemical tests in the context of the diagnosis of hyperthyroidism; assessment of the utility of ANN and CNN models in the analysis of thyroid scintigrams |
Development of an artificial intelligence model based on the VGG19 network for automated detection of hypofunctioning lesions in thyroid scintigraphy | Medhus J. et al. [89] | 2022 | 1724 thyroid scintigrams | Development of ANN to detect and highlight hypofunctioning lesions found on thyroid scintigraphy automatically |
Thyroid diagnosis from SPECT images using convolutional neural network with optimization | Ma L. et al. [80] | 2019 | 2888 SPECT images | Construction of CNN for the diagnosis of thyroid diseases using SPECT images |
Diagnosis of Thyroid Diseases Using SPECT Images Based on Convolutional Neural Network | Ma L. et al. [93] | 2018 | SPECT thyroid data | Construction of CNN to distinguish four kinds of thyroid diseases: hyperthyroidism, hypothyroidism, methylene inflammation, and Hashimoto’s disease using SPECT images |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig, M.; Ludwig, B.; Mikuła, A.; Biernat, S.; Rudnicki, J.; Kaliszewski, K. The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers 2023, 15, 708. https://doi.org/10.3390/cancers15030708
Ludwig M, Ludwig B, Mikuła A, Biernat S, Rudnicki J, Kaliszewski K. The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers. 2023; 15(3):708. https://doi.org/10.3390/cancers15030708
Chicago/Turabian StyleLudwig, Maksymilian, Bartłomiej Ludwig, Agnieszka Mikuła, Szymon Biernat, Jerzy Rudnicki, and Krzysztof Kaliszewski. 2023. "The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update" Cancers 15, no. 3: 708. https://doi.org/10.3390/cancers15030708
APA StyleLudwig, M., Ludwig, B., Mikuła, A., Biernat, S., Rudnicki, J., & Kaliszewski, K. (2023). The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers, 15(3), 708. https://doi.org/10.3390/cancers15030708