Presurgical Executive Functioning in Low-Grade Glioma Patients Cannot Be Topographically Mapped
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Measures and Procedure
2.2.1. DWI Tractography by Means of Constrained Spherical Deconvolution
2.2.2. Tumor Segmentation
2.2.3. Coregistration and Normalization
2.2.4. Minimal Distance
2.2.5. Structural Integrity
2.2.6. Cortical Overlap of the Tumor with Yeo’s Networks
2.2.7. Disconets of the Tumor Segmentation
2.2.8. Neuropsychological Assessment
2.2.9. Voxel-Wise Lesion Symptom Mapping
2.3. Statistical Analysis
2.3.1. Descriptive Statistics
2.3.2. Degree of Cognitive Dysfunction
2.3.3. Spearman’s Rank-Order Correlation
2.3.4. Linear Regression
2.3.5. Machine Learning
3. Results
3.1. Descriptive Statistics
3.1.1. Degree of Cognitive Dysfunction
3.1.2. Voxel-Wise Lesion Symptom Mapping
3.1.3. Correlation Analyses Distance, Structural Integrity, and EF
3.1.4. Linear Regression
3.1.5. Spatial Proximity
3.1.6. Structural Integrity
3.1.7. Cortical Parcels-Based Random Forest
3.1.8. Disconets-Based Random Forest
3.1.9. Additional Random Forest Analyses
4. Discussion
Limitations and Recommendations for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Damasio, H.; Damasio, A.R. Lesion Analysis in Neuropsychology; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Ius, T.; Isola, M.; Budai, R.; Pauletto, G.; Tomasino, B.; Fadiga, L.; Skrap, M. Low-grade glioma surgery in eloquent areas: Volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients—Clinical article. J. Neurosurg. 2012, 117, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Berger, M.S. Surgical oncology for gliomas: The state of the art. Nat. Rev. Clin. Oncol. 2018, 15, 112. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, D.; Delmaire, C.; de Champfleur, N.M.; Chiras, J.; Lehéricy, S. Diffusion tractography: Methods, validation and applications in patients with neurosurgical lesions. Neurosurg. Clin. 2011, 22, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, R. Human lesion studies in the 21st century. Neuron 2016, 90, 1151–1153. [Google Scholar] [CrossRef] [Green Version]
- Mah, Y.-H.; Husain, M.; Rees, G.; Nachev, P. Human brain lesion-deficit inference remapped. Brain 2014, 137, 2522–2531. [Google Scholar] [CrossRef] [Green Version]
- Duffau, H. The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir. 2012, 154, 569–574. [Google Scholar] [CrossRef]
- Henderson, F.; Abdullah, K.G.; Verma, R.; Brem, S. Tractography and the connectome in neurosurgical treatment of gliomas: The premise, the progress, and the potential. Neurosurg. Focus 2020, 48, E6. [Google Scholar] [CrossRef] [Green Version]
- Duffau, H. Mapping the connectome in awake surgery for gliomas: An update. J. Neurosurg. Sci. 2017, 61, 612–630. [Google Scholar] [CrossRef]
- Rutten, G.; Kristo, G.; Pigmans, W.; Peluso, J.; Verheul, H. The use of MR-tractogarphy in daily neurosurgical practice. Tijdschr. Voor Neurol. Neurochir. 2014, 115, 204–211. [Google Scholar]
- Molinaro, A.M.; Taylor, J.W.; Wiencke, J.K.; Wrensch, M.R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 2019, 15, 405–417. [Google Scholar] [CrossRef]
- IJzerman-Korevaar, M.; Snijders, T.J.; de Graeff, A.; Teunissen, S.C.; de Vos, F.Y. Prevalence of symptoms in glioma patients throughout the disease trajectory: A systematic review. J. Neuro-Oncol. 2018, 140, 485–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Kessel, E.; Baumfalk, A.E.; van Zandvoort, M.J.; Robe, P.A.; Snijders, T.J. Tumor-related neurocognitive dysfunction in patients with diffuse glioma: A systematic review of neurocognitive functioning prior to anti-tumor treatment. J. Neuro-Oncol. 2017, 134, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, K.X.; Price, B.; Joshi, S.; Alukaidey, L.; Shehab, A.; Mansour, K.; Toor, G.S.; Angliss, R.; Drummond, K. Life after surgical resection of a low-grade glioma: A prospective cross-sectional study evaluating health-related quality of life. J. Clin. Neurosci. 2021, 88, 259–267. [Google Scholar] [CrossRef]
- Ng, J.C.H.; See, A.A.Q.; Ang, T.Y.; Tan, L.Y.R.; Ang, B.T.; King, N.K.K. Effects of surgery on neurocognitive function in patients with glioma: A meta-analysis of immediate post-operative and long-term follow-up neurocognitive outcomes. J. Neuro-Oncol. 2019, 141, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. Stimulation Mapping of Myelinated Tracts in Awake Patients. Brain Plast. 2016, 2, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Rijnen, S.J.; Kaya, G.; Gehring, K.; Verheul, J.B.; Wallis, O.C.; Sitskoorn, M.M.; Rutten, G.-J.M. Cognitive functioning in patients with low-grade glioma: Effects of hemispheric tumor location and surgical procedure. J. Neurosurg. 2019, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cochereau, J.; Lemaitre, A.L.; Wager, M.; Moritz-Gasser, S.; Duffau, H.; Herbet, G. Network-behavior mapping of lasting executive impairments after low-grade glioma surgery. Brain Struct. Funct. 2020, 225, 2415–2429. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, A.; Friedman, N.P. The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef]
- Douw, L.; Wakeman, D.G.; Tanaka, N.; Liu, H.; Stufflebeam, S.M. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience 2016, 339, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadick, J.Z.; Gazzaley, A. Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nat. Neurosci. 2011, 14, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Bray, S.; Arnold, A.E.; Levy, R.M.; Iaria, G. Spatial and temporal functional connectivity changes between resting and attentive states. Hum. Brain Mapp. 2015, 36, 549–565. [Google Scholar] [CrossRef]
- He, B.J.; Snyder, A.Z.; Vincent, J.L.; Epstein, A.; Shulman, G.L.; Corbetta, M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 2007, 53, 905–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dosenbach, N.U.; Fair, D.A.; Cohen, A.L.; Schlaggar, B.L.; Petersen, S.E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 2008, 12, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, G.L.; Astafiev, S.V.; Franke, D.; Pope, D.L.; Snyder, A.Z.; McAvoy, M.P.; Corbetta, M. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J. Neurosci. 2009, 29, 4392–4407. [Google Scholar] [CrossRef] [Green Version]
- De Baene, W.; Kühn, S.; Brass, M. Challenging a decade of brain research on task switching: Brain activation in the task-switching paradigm reflects adaptation rather than reconfiguration of task sets. Hum. Brain Mapp. 2012, 33, 639–651. [Google Scholar] [CrossRef]
- Barbey, A.K.; Colom, R.; Solomon, J.; Krueger, F.; Forbes, C.; Grafman, J. An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain 2012, 135, 1154–1164. [Google Scholar] [CrossRef] [Green Version]
- Gläscher, J.; Adolphs, R.; Damasio, H.; Bechara, A.; Rudrauf, D.; Calamia, M.; Paul, L.K.; Tranel, D. Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 2012, 109, 14681–14686. [Google Scholar] [CrossRef] [Green Version]
- Petrides, M.; Pandya, D.N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 1984, 228, 105–116. [Google Scholar] [CrossRef]
- Nakajima, R.; Kinoshita, M.; Shinohara, H.; Nakada, M. The superior longitudinal fascicle: Reconsidering the fronto-parietal neural network based on anatomy and function. Brain Imaging Behav. 2019, 14, 2817–2830. [Google Scholar] [CrossRef]
- Dadario, N.B.; Sughrue, M.E. Should Neurosurgeons Try to Preserve Non-Traditional Brain Networks? A Systematic Review of the Neuroscientific Evidence. J. Pers. Med. 2022, 12, 587. [Google Scholar] [CrossRef] [PubMed]
- Makris, N.; Kennedy, D.N.; McInerney, S.; Sorensen, A.G.; Wang, R.; Caviness, V.S., Jr.; Pandya, D.N. Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cereb. Cortex 2005, 15, 854–869. [Google Scholar] [CrossRef] [PubMed]
- Mandonnet, E.; Sarubbo, S.; Petit, L. The nomenclature of human white matter association pathways: Proposal for a systematic taxonomic anatomical classification. Front. Neuroanat. 2018, 12, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Pathak, S.; Stefaneanu, L.; Yeh, F.-C.; Li, S.; Fernandez-Miranda, J.C. Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct. Funct. 2016, 221, 2075–2092. [Google Scholar] [CrossRef] [PubMed]
- De Schotten, M.T.; Dell’Acqua, F.; Forkel, S.; Simmons, A.; Vergani, F.; Murphy, D.G.; Catani, M. A lateralized brain network for visuo-spatial attention. Nat. Preced. 2011, 14, 1245–1246. [Google Scholar] [CrossRef]
- Makris, N.; Papadimitriou, G.M.; Kaiser, J.R.; Sorg, S.; Kennedy, D.N.; Pandya, D.N. Delineation of the middle longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cereb. Cortex 2009, 19, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Rojkova, K.; Volle, E.; Urbanski, M.; Humbert, F.; Dell’Acqua, F.; De Schotten, M.T. Atlasing the frontal lobe connections and their variability due to age and education: A spherical deconvolution tractography study. Brain Struct. Funct. 2016, 221, 1751–1766. [Google Scholar] [CrossRef]
- Martino, J.; Hamer, P.C.D.W.; Berger, M.S.; Lawton, M.T.; Arnold, C.M.; de Lucas, E.M.; Duffau, H. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: A fiber dissection and DTI tractography study. Brain Struct. Funct. 2013, 218, 105–121. [Google Scholar] [CrossRef]
- Kinoshita, M.; Nakajima, R.; Shinohara, H.; Miyashita, K.; Tanaka, S.; Okita, H.; Nakada, M.; Hayashi, Y. Chronic spatial working memory deficit associated with the superior longitudinal fasciculus: A study using voxel-based lesion-symptom mapping and intraoperative direct stimulation in right prefrontal glioma surgery. J. Neurosurg. 2016, 125, 1024–1032. [Google Scholar] [CrossRef] [Green Version]
- Mandonnet, E.; Cerliani, L.; Siuda-Krzywicka, K.; Poisson, I.; Zhi, N.; Volle, E.; Thiebaut De Schotten, M. A network-level approach of cognitive flexibility impairment after surgery of a right temporo-parietal glioma. Neurochirurgie 2017, 63, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Muir, R.T.; Lam, B.; Honjo, K.; Harry, R.D.; McNeely, A.A.; Gao, F.-Q.; Ramirez, J.; Scott, C.J.; Ganda, A.; Zhao, J. Trail making test elucidates neural substrates of specific poststroke executive dysfunctions. Stroke 2015, 46, 2755–2761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lus, T.; Angelini, E.; de Schotten, M.T.; Mandonnet, E.; Duffau, H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: Towards a “minimal common brain”. Neuroimage 2011, 56, 992–1000. [Google Scholar]
- Koshiyama, D.; Fukunaga, M.; Okada, N.; Morita, K.; Nemoto, K.; Yamashita, F.; Yamamori, H.; Yasuda, Y.; Matsumoto, J.; Fujimoto, M. Association between the superior longitudinal fasciculus and perceptual organization and working memory: A diffusion tensor imaging study. Neurosci. Lett. 2020, 738, 135349. [Google Scholar] [CrossRef]
- Parlatini, V.; Radua, J.; Dell’Acqua, F.; Leslie, A.; Simmons, A.; Murphy, D.G.; Catani, M.; de Schotten, M.T. Functional segregation and integration within fronto-parietal networks. Neuroimage 2017, 146, 367–375. [Google Scholar] [CrossRef]
- Landers, M.J.; Sitskoorn, M.M.; Rutten, G.-J.M.; Mandonnet, E.; De Baene, W. A systematic review of the use of subcortical intraoperative electrical stimulation mapping for monitoring of executive deficits and neglect: What is the evidence so far? Acta Neurochir. 2022, 164, 177–191. [Google Scholar] [CrossRef]
- Mandonnet, E.; Vincent, M.; Valero-Cabré, A.; Facque, V.; Barberis, M.; Bonnetblanc, F.; Rheault, F.; Volle, E.; Descoteaux, M.; Margulies, D.S. Network-level causal analysis of set-shifting during trail making test part B: A multimodal analysis of a glioma surgery case. Cortex 2020, 132, 238–249. [Google Scholar] [CrossRef]
- Papagno, C.; Comi, A.; Riva, M.; Bizzi, A.; Vernice, M.; Casarotti, A.; Fava, E.; Bello, L. Mapping the brain network of the phonological loop. Hum. Brain Mapp. 2017, 38, 3011–3024. [Google Scholar] [CrossRef] [Green Version]
- Tournier, J.D.; Calamante, F.; Connelly, A. MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 2012, 22, 53–66. [Google Scholar] [CrossRef]
- Huo, Y.; Xu, Z.; Aboud, K.; Parvathaneni, P.; Bao, S.; Bermudez, C.; Resnick, S.M.; Cutting, L.E.; Landman, B.A. Spatially localized atlas network tiles enables 3D whole brain segmentation from limited data. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 698–705. [Google Scholar]
- Meesters, S.; Sanguinetti, G.; Garyfallidis, E.; Portegies, J.; Ossenblok, P.; Duits, R. Cleaning output of tractography via fiber to bundle coherence, a new open source implementation. In Proceedings of the Organization for Human Brain Mapping Annual Meeting, Geneva, Switzerland, 26–30 June 2016; pp. 26–30. [Google Scholar]
- Garyfallidis, E.; Brett, M.; Amirbekian, B.; Rokem, A.; Van Der Walt, S.; Descoteaux, M.; Nimmo-Smith, I.; Contributors, D. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 2014, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Meesters, S.; Landers, M.; Rutten, G.; Florack, L. Subject-specific automatic reconstruction of white-matter pathways. 2021; submitted. [Google Scholar]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [Green Version]
- Clayden, J.; Modat, M.; Presles, B.; Anthopoulos, T.; Daga, P. Package ‘RNiftyReg’. 2019. Available online: http://www.nitrc.org/projects/niistat (accessed on 6 March 2022).
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion tensor imaging of the brain. Neurotherapeutics 2007, 4, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Yeo, B.T.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef] [PubMed]
- Mrah, S.; Descoteaux, M.; Wager, M.; Boré, A.; Rheault, F.; Thirion, B.; Mandonnet, E. Network-level prediction of set-shifting deterioration after lower-grade glioma resection. J. Neurosurg. 2022, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W. The Human Connectome Project: A data acquisition perspective. Neuroimage 2012, 62, 2222–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijnen, S.J.; Meskal, I.; Emons, W.H.; Campman, C.A.; van der Linden, S.D.; Gehring, K.; Sitskoorn, M.M. Evaluation of normative data of a widely used computerized neuropsychological battery: Applicability and effects of sociodemographic variables in a Dutch sample. Assessment 2020, 27, 373–383. [Google Scholar] [CrossRef]
- Schmand, B.; Groenink, S.; Van den Dungen, M. Letterfluency: Psychometrische eigenschappen en Nederlandse normen. Tijdschr. Voor Gerontol. En Geriatr. 2008, 39, 64–74. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Memory Scale-Revised: Manual; Psychological Corp., Harcourt Brace Jovanovich: San Antonio, TX, USA, 1987. [Google Scholar]
- Rijnen, S.J.; Meskal, I.; Emons, W.H.; Campman, C.C.; van der Linden, S.D.; Gehring, K.; Sitskoorn, M.M. Dutch normative data of a computerized neuropsychological battery: CNS Vital Signs. Predict. Cogn. Outcome After Surg. Patients Meningiomas Gliomas 2017, 1, 29. [Google Scholar]
- Grégoire, J.; Van der Linden, M. Effect of age on forward and backward digit spans. Aging Neuropsychol. Cogn. 1997, 4, 140–149. [Google Scholar] [CrossRef]
- Godefroy, O.; Jeannerod, M.; Allain, P.; Le Gall, D. Lobe frontal, fonctions exécutives et controle cognitif. Rev. Neurol. 2008, 164, S119–S127. [Google Scholar] [CrossRef] [PubMed]
- Sperber, C.; Karnath, H.O. Impact of correction factors in human brain lesion-behavior inference. Hum. Brain Mapp. 2017, 38, 1692–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Fischer, J.S. Neuropsychological Assessment, 5th ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef]
- Schimmel, W.; Gehring, K.; Hanssens, P.E.; Sitskoorn, M.M. Cognitive functioning and predictors thereof in patients with 1–10 brain metastases selected for stereotactic radiosurgery. J. Neuro-Oncol. 2019, 145, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godefroy, O.; Azouvi, P.; Robert, P.; Roussel, M.; LeGall, D.; Meulemans, T. Dysexecutive syndrome: Diagnostic criteria and validation study. Ann. Neurol. 2010, 68, 855–864. [Google Scholar] [CrossRef]
- Cochereau, J.; Herbet, G.; Duffau, H. Patients with incidental WHO grade II glioma frequently suffer from neuropsychological disturbances. Acta Neurochir. 2016, 158, 305–312. [Google Scholar] [CrossRef]
- Almairac, F.; Herbet, G.; Moritz-Gasser, S.; de Champfleur, N.M.; Duffau, H. The left inferior fronto-occipital fasciculus subserves language semantics: A multilevel lesion study. Brain Struct. Funct. 2015, 220, 1983–1995. [Google Scholar] [CrossRef]
- Leh, S.E.; Petrides, M.; Strafella, A.P. The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology 2010, 35, 70–85. [Google Scholar] [CrossRef]
- Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: Insights into associations between tumour and brain plasticity. Lancet Neurol. 2005, 4, 476–486. [Google Scholar] [CrossRef]
- Landers, M.; Meesters, S.; van Zandvoort, M.; De Baene, W.; Rutten, G. The frontal aslant tract and its role in executive functions: A lesion-symptom study in glioma patients. Brain Imaging Behav. 2020, 16, 1026–1039. [Google Scholar] [CrossRef]
- Gao, B.; Shen, X.; Shiroishi, M.S.; Pang, M.; Li, Z.; Yu, B.; Shen, G. A pilot study of pre-operative motor dysfunction from gliomas in the region of corticospinal tract: Evaluation with diffusion tensor imaging. PLoS ONE 2017, 12, e0182795. [Google Scholar] [CrossRef] [Green Version]
- Delgado, A.F.; Nilsson, M.; Latini, F.; Mårtensson, J.; Zetterling, M.; Berntsson, S.G.; Alafuzoff, I.; Lätt, J.; Larsson, E.-M. Preoperative quantitative MR tractography compared with visual tract evaluation in patients with neuropathologically confirmed gliomas grades II and III: A prospective cohort study. Radiol. Res. Pract. 2016, 2016, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keidel, J.L.; Welbourne, S.R.; Ralph, M.A.L. Solving the paradox of the equipotential and modular brain: A neurocomputational model of stroke vs. slow-growing glioma. Neuropsychologia 2010, 48, 1716–1724. [Google Scholar] [CrossRef]
- Parisot, S.; Darlix, A.; Baumann, C.; Zouaoui, S.; Yordanova, Y.; Blonski, M.; Rigau, V.; Chemouny, S.; Taillandier, L.; Bauchet, L. A probabilistic atlas of diffuse WHO grade II glioma locations in the brain. PLoS ONE 2016, 11, e0144200. [Google Scholar] [CrossRef] [Green Version]
- De Baene, W.; Rutten, G.J.M.; Sitskoorn, M.M. The Temporal Pattern of a Lesion Modulates the Functional Network Topology of Remote Brain Regions. Neural Plast. 2017, 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Duffau, H. Lessons from brain mapping in surgery for low-grade gliomas: Study of cerebral connectivity and plasticity. In Medical Imaging and Augmented Reality; Yang, G.Z., Jiang, T., Shen, D.G., Gu, L., Yang, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4091, pp. 25–35. [Google Scholar]
- Maier-Hein, K.H.; Neher, P.F.; Houde, J.-C.; Côté, M.-A.; Garyfallidis, E.; Zhong, J.; Chamberland, M.; Yeh, F.-C.; Lin, Y.-C.; Ji, Q. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Schilling, K.G.; Petit, L.; Rheault, F.; Remedios, S.; Pierpaoli, C.; Anderson, A.W.; Landman, B.A.; Descoteaux, M. Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—If we know where white matter pathways start, where they end, and where they do not go. Brain Struct. Funct. 2020, 225, 2387–2402. [Google Scholar] [CrossRef]
- Schilling, K.G.; Nath, V.; Hansen, C.; Parvathaneni, P.; Blaber, J.; Gao, Y.; Neher, P.; Aydogan, D.B.; Shi, Y.; Ocampo-Pineda, M. Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage 2019, 185, 1–11. [Google Scholar] [CrossRef] [Green Version]
- De Baene, W.; Rutten, G.J.M.; Sitskoorn, M.M. Cognitive functioning in glioma patients is related to functional connectivity measures of the non-tumoural hemisphere. Eur. J. Neurosci. 2019, 50, 3921–3933. [Google Scholar] [CrossRef] [Green Version]
- Deuker, L.; Bullmore, E.T.; Smith, M.; Christensen, S.; Nathan, P.J.; Rockstroh, B.; Bassett, D.S. Reproducibility of graph metrics of human brain functional networks. Neuroimage 2009, 47, 1460–1468. [Google Scholar] [CrossRef] [Green Version]
- Tse, C.-Y.; Yip, L.-Y.; Lui, T.K.-Y.; Xiao, X.-Z.; Wang, Y.; Chu, W.C.W.; Parks, N.A.; Chan, S.S.-M.; Neggers, S.F.W. Establishing the functional connectivity of the frontotemporal network in pre-attentive change detection with Transcranial Magnetic Stimulation and event-related optical signal. Neuroimage 2018, 179, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Riddle, J.; Scimeca, J.M.; Pagnotta, M.F.; Inglis, B.; Sheltraw, D.; Muse-Fisher, C.; D’Esposito, M. A guide for concurrent TMS-fMRI to investigate functional brain networks. Front. Hum. Neurosci. 2022, 16, 850. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Krieg, S.M.; Säisänen, L.; Julkunen, P. Mapping of motor function with neuronavigated transcranial magnetic stimulation: A review on clinical application in brain tumors and methods for ensuring feasible accuracy. Brain Sci. 2021, 11, 897. [Google Scholar] [CrossRef]
- Hendrix, P.; Dzierma, Y.; Burkhardt, B.W.; Simgen, A.; Wagenpfeil, G.; Griessenauer, C.J.; Senger, S.; Oertel, J. Preoperative navigated transcranial magnetic stimulation improves gross total resection rates in patients with motor-eloquent high-grade gliomas: A matched cohort study. Neurosurgery 2021, 88, 627–636. [Google Scholar] [CrossRef]
- Kim, J.-H.; Marton, J.; Ametamey, S.M.; Cumming, P. A review of molecular imaging of glutamate receptors. Molecules 2020, 25, 4749. [Google Scholar] [CrossRef] [PubMed]
- Charras, P.; Herbet, G.; Deverdun, J.; de Champfleur, N.M.; Duffau, H.; Bartolomeo, P.; Bonnetblanc, F. Functional reorganization of the attentional networks in low-grade glioma patients: A longitudinal study. Cortex 2015, 63, 27–41. [Google Scholar] [CrossRef]
- Medaglia, J.D.; Pasqualetti, F.; Hamilton, R.H.; Thompson-Schill, S.L.; Bassett, D.S. Brain and cognitive reserve: Translation via network control theory. Neurosci. Biobehav. Rev. 2017, 75, 53–64. [Google Scholar] [CrossRef]
Tilburg T0 (n = 100) | Paris T0 (n = 56) | ||||
---|---|---|---|---|---|
Age mean (SD; range) in years | 40.0 (12.0; 19–67) | 41.2 (10.8; 27–74) | |||
Sex (N) | Male | 62 62.0% | 31 55.4% | ||
Female | 38 38.0% | 25 44.6% | |||
Level of education (N) 1 | Low | 21 21.0% * | 31 55.4% * | ||
Middle | 34 34.0% * | 5 8.9% * | |||
High | 45 45.0% | 20 35.7% | |||
Affected hemisphere (N) | Right | 48 48.0% | 39 65.4% | ||
Left | 52 52.0% | 17 34.6% | |||
Tumor volume median (Q1;Q3) 2 in cm3 | Right | 32.66 (2.9; 18.8) | 37.06 (6.7; 13.0) | ||
Left | 49.06 (7.4; 19.0) | 43.25 (3.4; 12.8) | |||
Mean diffusivity 1 × 10−3 Mean (SD) | Affected | Non Affected | Affected | Non Affected | |
SLF I | Right | 0.75 (0.08) * | 0.73 (0.06) * | 0.64 (0.09) * | 0.61 (0.06) * |
Left | 0.75 (0.09) * | 0.72 (0.06) * | 0.61 (0.07) * | 0.60 (0.08) * | |
SLF II | Right | 0.73 (0.08) * | 0.72 (0.06) * | 0.61 (0.09) * | 0.60 (0.61) * |
Left | 0.74 (0.08) * | 0.73 (0.05) * | 0.61 (0.73) * | 0.59 (0.08) * | |
SLF III | Right | 0.77 (0.1) * | 0.76 (0.1) * | 0.64 (0.09) * | 0.61 (0.07) * |
Left | 0.78 (0.1) * | 0.76 (0.1) * | 0.63 (0.10) * | 0.61 (0.09) * |
Center | ||
---|---|---|
Tilburg T0 (n = 100) | Paris T0 (n = 56) | |
Shifting attention/TMT N | 98 | 52 |
mean (SD) | −0.19 (1.08) | −0.11 (1.28) |
Low performance N (%) | 18(18.4) | 6(11.5) |
of which Impaired N (%) | 12(12.2) | 5(9.6) |
Stroop interference N | 97 | 52 |
mean (SD) | −0.13 (1.30) | −0.42 (1.91) ** |
Low performance N (%) | 18(18.6) | 11(21.2) |
of which Impaired N (%) | 12(12.4) | 7(13.5) |
Letter fluency N | 84 | 53 |
mean (SD) | −0.27 (1.21) * | −0.02 (1.31) |
Low performance N (%) | 24(28.6) | 14(26.4) |
of which Impaired N (%) | 13(15.5) | 3(5.8) |
Digit Span Forward N | 46 | 55 |
mean (SD) | −0.49 (1.06) ** | −0.58 (1.07) ** |
Low performance N (%) | 16(34.8) | 18(32.7) |
of which Impaired N (%) | 8(17.4) | 9(16.4) |
Digit Span Backward N | 46 | 55 |
mean (SD) | −0.50 (1.27) ** | −0.56 (1.09) ** |
Low performance N (%) | 18(39.1) | 19(34.5) |
of which Impaired N (%) | 9(19.6) | 7(12.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landers, M.J.F.; Smolders, L.; Rutten, G.-J.M.; Sitskoorn, M.M.; Mandonnet, E.; De Baene, W. Presurgical Executive Functioning in Low-Grade Glioma Patients Cannot Be Topographically Mapped. Cancers 2023, 15, 807. https://doi.org/10.3390/cancers15030807
Landers MJF, Smolders L, Rutten G-JM, Sitskoorn MM, Mandonnet E, De Baene W. Presurgical Executive Functioning in Low-Grade Glioma Patients Cannot Be Topographically Mapped. Cancers. 2023; 15(3):807. https://doi.org/10.3390/cancers15030807
Chicago/Turabian StyleLanders, Maud J. F., Lars Smolders, Geert-Jan M. Rutten, Margriet M. Sitskoorn, Emmanuel Mandonnet, and Wouter De Baene. 2023. "Presurgical Executive Functioning in Low-Grade Glioma Patients Cannot Be Topographically Mapped" Cancers 15, no. 3: 807. https://doi.org/10.3390/cancers15030807
APA StyleLanders, M. J. F., Smolders, L., Rutten, G. -J. M., Sitskoorn, M. M., Mandonnet, E., & De Baene, W. (2023). Presurgical Executive Functioning in Low-Grade Glioma Patients Cannot Be Topographically Mapped. Cancers, 15(3), 807. https://doi.org/10.3390/cancers15030807